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In patients with esophageal squamous cell carcinoma (ESCC), the incidence

and mortality rate of ESCC in our country are also higher than those in the

rest of the world. Despite advances in the treatment department method,

patient survival rates have not obviously improved, which often leads to

treatment obstruction and cancer repeat. ESCC has special cells called

cancer stem-like cells (CSLCs) with self-renewal and differentiation ability,

which reflect the development process and prognosis of cancer. In this

review, we evaluated CSLCs, which are identified from the expression of cell

surface markers in ESCC. By inciting EMTs to participate in tumor migration

and invasion, stem cells promote tumor redifferentiation. Some factors can

inhibit the migration and invasion of ESCC via the EMT-related pathway. We

here summarize the research progress on the surface markers of CSLCs, EMT

pathway, and the microenvironment in the process of tumor growth. Thus,

these data may be more valuable for clinical applications.
KEYWORDS

esophageal squamous cell carcinoma, cancer stem-like cells, EMT, surface
markers, microenvironment
Introduction

In the past year, esophageal cancer (EC) has increased by 572,000 new cases and

509,000 deaths globally. It ranks seventh in occurrence in all kinds of cancers, which

means one of 20 cancer deaths was due to EC (1). Tumor mass is a heterogeneous

hierarchy. Most of the cells could no longer differentiate. Only a small set of them has the

capacity of self-renewal and could differentiate into malignant cancer cells (2). This small
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group of cells is called CSLCs, or tumor-initiating cells (TICs).

Theories of CSLCs believe that the poor effect of cancer therapies,

which showed relapse and metastasis of cancer cells, might be because

of the therapeutic resistance of CSLCs (3, 4). For example, in breast

cancer cells, studies show that miR-155 enhances stemness, decitabine

(DCA) resistance, and CSLC properties by targeting TSPAN5, which

causes TNBC to have an unfortunate forecast (5). Studies by Li et al.

showed that single-cell RNA sequencing in hepatocellular carcinoma

has produced an abundance of information to validate a panel of cells

with cancer stem-like cells’ properties (6). In cancer treatment, only

the differentiated cells could make a response. However, the surviving

CSLCs may differentiate into new cancer cells. CSLCs are thought to

be seed cells in the process of tumor formation, control of the

occurrence, and metastasis through complex signal transduction

(7). In light of this feature, it should be better to target the CSLCs

in cancer treatments. The targeted molecules specific to CSLCs

became a hot topic in cancer research.

Up to now, a good deal of studies have shown the existence of

CSLCs in ESCC, and their functions involve proliferation and

tumor growth and even indicate poor prognosis. In this review,

that is the reason why we explain recent advances in identification

markers of CSLCs and the link between CSLCs and EMT and the

immune cell microenvironment. There is a need to create new

therapies for CSLCs in ESCC.
Materials and methods

We followed the PRISMA 2020 rules and applied for our review

(8). The articles were carefully reviewed using literature resources

such as PubMed service of the US National Library of Medicine and

Geen Medical. Search algorithms such as “ESCC”, “EMT”, “cancer

stem-like cells”, “marker”, “cancer”, “tumor”, and “pathway” were

used in searches. In this review, references to retrieved articles were

also filtered for additional data. It is important to note that the
Frontiers in Oncology 02
studies described in this article did not use any data (Supplementary

Figure S1).
Overview of CSLC marker in ESCC

Studies suggest that focusing on CSLCmarker-based treatments

might act as a more powerful procedure to take out these

recalcitrant cells (9). These markers and some signaling pathways

may also serve as targets for the elimination of CSLCs (10). First,

Mardani et al. showed that co-articulation of CSLC markers

CD133/CXCR4 might have a poor prognosis in osteosarcoma.

Meanwhile, CD133/SALL4 has a critical relationship among

SALL4 and BMP signal target genes, including SIZN1, VENTX,

and DIDO1. It assumes a significant role in tumorigenesis in ESCC

(11). Next, for CSLC therapy, SN-38 is a nanocarrier for

topoisomerase inhibitors; CD133 is a theoretical CSLC marker;

CD133-NPS-SN-38 represses growth development and can dispose

CD133-positive cells, which is a potential CSLC-designated

treatment (12). Therefore, the exploration of more ESCC-CSLC

markers on the surface can provide a basis for the recognizable

proof of CSLCs and targeted therapy of CSLCs (Figure 1, green).

Similar to other kinds of solid tumors, several cell surface

molecules have been recognized as markers of ESCC-CSLCs.

Wang and Yang exhibited that ALDH1-expressing cells are highly

invasive metastases in ESCC (13, 14). ALDH1 is accounted for as a

marker of normal and malignant stem cells in several lineages.

Nuclear expression of ALDH1 is related to lymph hub metastasis

and low endurance in ESCC (13–15). Based on this research, the

expression of ALDH1 was associated with a poor prognosis in 577

cases of breast cancer (16). CD44 has been utilized as a cell surface

marker for stemness, has CD133. It was also confirmed as the CSLC

marker in ESCC cell lines (17) that could be utilized to efficiently

enrich TICs (17). One study showed cells with CD44High/CD24Low,

which is a recognized marker for CSLCs in breast cancer (18), have
FIGURE 1

Markers in ESCC CSLCs.
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been confirmed to possess CSLC properties (19). Additionally,

CD90+ cells show an improved capacity for self-renewal,

differentiation, and resistance to chemotherapy (20). CD271+

malignant growth cells showed higher sphericity and state-

framing limits, high articulation of immature microorganism-

related qualities, and protection from chemotherapy (21)

(Figure 1, yellow).

CSLC surface markers are important for targeted therapy in

ESCC. Similarly, we also believe that regulating genes associated with

stem cell markers is important. The inhibition of TRPV2 by low

concentrations of Tranilast is more cytotoxic in CSLCs than in the

non-CSLC population, indicating that Tranilast could be utilized as a

novel targeted therapeutic agent against ESCC-CSLCs (22). ABCG2

(23) and Msi1 (24) overexpression cells were found to represent

CSLCs with special harmful potential in ESCC and could regulate the

proliferation, apoptosis, sphere formation, and migration ability in

spheroid cells (25). Cripto-1-positive ESCC cells were higher

stemness-related genes, self-renewal, tumorigenesis, boosting tumor

cell migration, invasion, and angiogenesis (26). Moreover, it has been

reported that KIFC1 (27) and kinesin family 11 (KIF11) (28) were

overexpressed and required for sphere formation in ESCC cells.

Interestingly, in cells with Ras-like expression without CAAX1

(RIT1) exogenously overexpressing, the stemness genes, for

example, ALDH1, ABCG2, OCT4, CD44, and CXCR4, were

significantly downregulated (29) (Figure 1, red).

The green illustrates CD133, CXCR4, and SALL4 presented in a

one-paragraph overview in CSLC marker in ESCC. The yellow

illustrates ALDH1, CD44, CD90+, and CD271+ presented in a two-

paragraph overview of CSLC markers in ESCC. The red illustrates

TRPV2, ABCG2, MSi1, CR-1, KIFC1, and KIF11 presented in a

three-paragraph overview of CSLC markers in ESCC. The blue

illustrates OCT4, SOX1, MYC, Nanog, KLF4, SOX2, and Numb,

presented in a four-paragraph overview of CSLC markers in ESCC.

The organic action of CSLCs is controlled by pluripotent record

factors like SOX2, MYC, KLF4, OCT4, and Nanog (30). Moreover,

studies have shown that pluripotent stem cells could be produced

straightforwardly from the fibroblast culture with certain factors, such

as Oct3/4, c-MYC, and Sox2 (31). The immature microorganism

marker Nanog regulates stem cell differentiation, proliferation, and

asymmetric division (32). Du et al. demonstrated the overexpression of

Nanog and that a mix of Nanog siRNA with cisplatin showed further

improved chemosensitivity in ESCC (33). While SALL4 is obviously

increased in cell spheres, which is deemed as an enrichment of CSC-

like cells (34), SOX1, a tumor-suppressor gene, was shown to be

underexpressed combined with SALL4 overexpression in ESCC and

showed a critical role in the inhibition of aggressiveness, indicating the

therapeutic potential of the molecule against ESCC-CSLCs (35).

Furthermore, the downregulation of the Numb inhibited cell

proliferation and expression of CSLC markers (36) (Figure 1, blue).
EMT pathway and tumor
microenvironment in ESCC-CSLC targeting

In addition to marker identifications, studies started to focus on

exploring CSC features, such as the tumorigenesis, metastasis, and
Frontiers in Oncology 03
therapeutic resistance role of CSLCs in ESCC. However, when the

tumor metastases, the primary tumor needs to invade the blood

vessels, and the distant metastasis needs to activate EMT to

dedifferentiate so that the cancer cells can spread and move (37)

so that the cancer stem-like cells can migrate and move (38). In

addition, cancer-associated EMT results in more migratory cells

capable of forming new tumor tissue, indicating increased stemness

(38, 39). In that way, whether EMT triggers tumor progression by

stimulating CSLC’s potential. One study identified that Twist1 is an

important transcription factor that upregulates the expression of

Oct4 protein and Sox2 protein (40, 41). Knocking down USP4

resulted in a decrease in OCT4 and SOX2 proteins (42). Evolving

evidence suggests that CTAs induce EMT and CSLC generation

(43). In addition, silencing SRPX2 inhibited cell proliferation and

EMT via the Wnt/b-catenin pathway, increasing sensitivity toward

cisplatin for ESCC cells (44). Therefore, this article means to sum up

the progress of EMT regulatory mechanisms, aiming to elucidate

the potential role of EMT in CSLC-targeted therapy and tumor

resistance research.
EMT-associated pathway in CSLCs

EMT-related signaling pathways are involved in the survival, self-

renewal, and differentiation of ESCC-CSLCs. These signaling pathways

form a network of interlaced signaling media that regulate the growth

of CSLCs. The investigation of small-molecule inhibitors of this signal

pathway is a functioning area of cancer drug advancement (45). It has

been found that the abnormal activation of Notch, NF-kB, and Wnt

signaling pathways can result in the proliferation, differentiation, and

self-renewal of CSLCs. It is suggested that Notch can induce the growth

of CSLCs and maintain the stem cells, which is an effective measure to

treat tumors and reverse the drug resistance of tumor chemotherapy.

Therefore, the following describes how signaling pathways

are regulated.
TGF-b signaling pathway in ESCC (ESCC)

TGF-b signaling plays a protumor role by promoting EMT,

migration, and invasion (46). Relevant studies have shown that

knockdown TIP30 can result in EMT via the TGF-B pathway,

improving the invasive ability and advancing growth metastasis in

in vivo and in vitro (47). Additionally, MLL2 (48), EGFR (49), and

LncRNA SPRY4-IT1 (50) were found to directly promote EMT

through the TGF-b pathway in ESCC, which may participate EMT

for patients with ESCC through the different mechanisms (51).

Meanwhile, UHRF2 and miR-655 were recognized to suppress

EMT by the TGF-b pathway (52, 53). Based on research, Tian

et al. found that miR-130a-3p suppressed TGF-b-promoted EMT

progression in a SMAD4-dependent manner in ESCC (54).

Moreover, the PTEN/PI3K/Akt signaling pathway is the major

regulator that promotes EMT progress in ESCC. Hence, these

should be considered in the strategies against EMT (55–

57) (Figure 2).
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PI3K/AKT signaling pathway in ESCC and
association with its targeting CSLCs

The PI3K/AKT Signaling pathway has been demonstrated to be

essential to the regulator of CSLCs by EMT (30). AKT is a vital

individual from the PI3K/AKT signal pathway, which has been

shown to promote the progression of multiple cancers, especially in

the self-renewal of CSLCs (58).

Recent studies showed that B7H4 (59), TNC (60), and LETM1 (61)

were further confirmed to induce CSLC character through the PI3K/

AKT pathway. Additionally, miR-664a attenuates stem-cell-associated

phenotype and ESCC cell malignancy, in part due to the inactivation of

the Akt/GSK-3b/b-catenin pathway through Pitx2 (62). Li et al. also
Frontiers in Oncology 04
showed that PTEN was also involved in the PI3K/Akt/ABCG2

pathway and regulated the CSLC population of ESCC (63). Further

studies have shown that stem cell properties of drug resistance, tumor

initiation, an increase of glycolysis, and oxidative phosphorylation are

dependent on the Hsp27-AKT-HK2 pathway in ESCC (64).

Nevertheless, it upholds the significance of the IGF2-PI3K/AKT-

miR-377-CD133 axis in maintaining the malignant growth of CSLCs

(65). Interestingly, CD133 has been found downstream of PI3K/AKT/

miR-377 to mediate the functions of CSLCs (65). Simultaneously, the

PI3K-AKT signaling pathway can upregulate c-MYC, which will

promote stemness in ESCC (66) (Figure 3).

In addition, the PI3K/mTOR signal pathway plays a significant

part in cell proliferation and survival. Studies have shown that miR-
FIGURE 3

Activated and inhibitor pathways in ESCC CSLCs.
FIGURE 2

EMT-related signaling pathways in ESCC CSLCs.
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495 suppresses proliferation, migration, and invasion in ESCC cells

by AKT1 (67). It has been reported and demonstrated that

circVRK1 suppressed EMT progression and radioresistance. The

possible worth of circVRK1 on ESCC was proposed by miR-624-3p/

PTEN and the PI3K/AKT signal pathway (68). Conversely,

knockdown of TIM-3 suppressed EMT through the Akt/GSK-3b/
Snail pathway in ESCC (69). It was likewise recommended that

fibrinogen promoted EMT via the p-AKT/p-mTOR pathway to

increase cell motility (70). One study showed that silencing Rab3D

inhibited the proliferation by the PI3K/Akt pathway in ESCC (71).

Furthermore, Glypican-1 (GPC1), via the regulation of the PTEN/

Akt/b-catenin signaling pathways, and Sp1/miR-205 via the PTEN/

PI3K/Akt pathway (72) directly enhances EMT in ESCC (73). These

discoveries suggested that they might be a new therapeutic target

and prognostic biomarker for ESCC through the PI3k/Akt

pathway (Figure 2).
JAK-STAT signaling pathway in ESCC
(ESCC) and association with its
targeting CSLCs

Moreover, transcription factors likewise prompt the self-

renewal of CSLCs via the JAK-STAT signaling pathway. STAT3 is

essential for self-renewal in embryonic stem cells (74). Current

studies have focused on its role in oncogenesis. In breast cancer,

STAT3 induces cell proliferation and maintains CSLC stemness

(75). Similarly, the same effect was demonstrated by another group

by means of the AGK/JAK2/STAT3 axis. Patients with ESCC had a

more limited general endurance and a more terrible sickness-free

endurance (76). Interestingly, STAT3b inhibited chemoresistance

and stemness through STAT3a (77), which requires further clinical

investigations (Figure 3).

The impact of other transcription factors’ expression was

induced/reduced by cell migration, invasion, and EMT by the

JAK-STAT pathway. Gao et al. also concluded that it was

associated with SOX2-incited Slug-interceded EMT (78).

Moreover, PKM2 promoted the progress of EMT which induced

TGF-b1 via phosphorylation STAT3 (79). Furthermore, SNHG20

affects EMT by ATM/JAK/PD-L1 pathway in ESCC (80) (Figure 2).
MAPK signaling pathway in ESCC and
association with its targeting CSLCs

The MAPK pathway responds to multiple input signals as

growth factors (75). Research has demonstrated that the MAPK

signaling pathway is a valid target for cancer treatment. For

example, the best progress has been made in drug targets by the

RAS-RAF-MEK-ERK axis (81). Furthermore, some findings

indicate that the FGF-2/FGFR (19) and TDO2/EGFR (82) axes

were essential factors regulating CSLCs via the MAPK pathway in

ESCC. These transcription factors could be potential targets for

ESCC through MAPK stemness (Figure 3).
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In addition, other factors were shown to modulate the EMT

through the MAPK signaling pathway. Our early research suggested

inhibition of FAT1 promotes the progression of EMT, which

induces the MAPK/ERK pathway in ESCC (83). Meanwhile,

relevant research showed that triptolide suppresses cell

proliferation, invasion, and migration through the MAPK/ERK

pathway in ESCC (84). For example, TKT has been identified as a

critical determinant that promotes cell invasion by mediating the

EMT process, leading to esophageal cancer (85). Knockdown of

COL11A1 inhibited migration and invasion capabilities by EMT

(86) (Figure 3).
Wnt, Hh, and Notch signaling pathways in
ESCC and their association with their
targeting CSLCs

The Wnt pathway may directly regulate the self-renewal of

CSLCs (46). MiR-455-3p can promote chemoresistance and

tumorigenesis in ESCC cells through the Wnt/b-catenin pathway

and the TGF-b/Smad pathway (87). Taken together, SALL4 (34),

Lgr5 (88), and ATG7 (89) can also regulate CSLC proliferation by

theWnt/b-catenin pathway in ESCC. c-Myc combined the miR-942

promoter and suppressed sFRP4, GSK3b, and TLE1, which

regulated the Wnt/b-catenin pathway (90). A similar study of

CSLCs of patients with esophageal cancer also showed the

Hedgehog pathway, a key signaling for stemness maintenance of

ESCC cells, played a role in the self-renewal of ESCC-CSLCs based

on overexpression of glioma-associated oncogene homolog1 (Gli1)

(91). The current study found that the Wnt inhibitor IWP-2 can

target the Wnt pathway. Therefore, by inhibiting the Wnt signaling

pathway, it can inhibit the growth of CSLC and achieve the goal of

treating cancer (92). The above experimental results suggest that

these factors may be used as new prognostic biomarkers or

therapeutic targets in ESCC (Figure 3).

Aberrant Notch signaling promotes self-renewal and the transfer

of mammary stem cells (93). Stearoyl-coa desaturase-1 (SCD1) has

been found to be important in the survival of CSLCs. SCD1 inhibitors

can significantly reduce the Notch signaling pathway, which further

damages CSLC and increases the sensitivity of tumors. Therefore,

SCD1 may be a new target in colorectal cancer (94). The Hedgehog

pathway assumes a significant part in cancer through EMT (95).

Strikingly, increased levels of N-myc-downregulated NDRG1

activated the Wnt pathway and EMT, which decreased the

expression of TLE2 and increased b-catenin in ESCC (93). Cao

et al. also concluded that FZD7 promoted the progress of EMT

through the Wnt/b-catenin pathway in ESCC (96). Additionally, the

presence of Msi2 promotes ESCC cell proliferation, between

Hedgehog (Hh) and Wnt/b-catenin by EMT pathways (97).

Furthermore, the EMT regulator SIP1 is positively regulated by the

Hh signal sensor GLI1 (95). On the other hand, Notch2 as the target

gene for miR-146a-5p and miR-1 (98) inhibits EMT in ESCC (50). In

particular, knockdown of NHE leads to EMT by inhibiting the

Notch3 pathway in ESCC (99) (Figure 2).
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The microenvironment associated with
EMT in CSLCs

In addition to pathway and transcription factors, EMT-related

microenvironments are also noteworthy. CSLCs were regarded as

super stem cells and out of control (100). In the tumor

microenvironment, inflammatory cells and molecules influence

almost every process. Research showed that FBXW7-ZEB2

regulates the drug resistance and migration of tumor cells (101).

Chronic tumor-associated inflammation is a marker that stimulates

the progression of metastasis in cancer (5). The tumor

microenvironment is also essential in EMT. Ionizing radiation is

known to induce the self-renewal of CSLCs and promote tumor

progression by activating EMT (102). Hypoxia induces EMT, in

which only the cancer stem-like cells induce invasion and metastasis

(103). CSLC exosomes transported by miR-19b-3p promote cell

proliferation and active EMT (104). ALDH1-positive tumors are

associated with aggressive tumor growth through EMT and IL-6

increases (105). The cancer microenvironment assumes a

significant part in prompting EMTs and keeping up with CSLCs.

These studies reveal interactions between different types of cells in

the tumor microenvironment and their impact on promoting EMT

and enhancing the self-renewal of CSLC. Therefore, there is a

bidirectional relationship among tumor microenvironment, EMT,

and CSLC, which affect each other and promote the development of

tumors and the formation of drug resistance (Figure 4).
Frontiers in Oncology 06
Discussion

CSLCs are believed to be the main cause of the development of

most solid tumors and the major factor in drug resistance.

Targeting cancer patients with stem cells is promising for the

future. Therefore, effective molecular targets for CSLCs must be

carefully selected, and the mechanism of the targeted therapy for

CSLCs must be thoroughly revealed. This paper reviews the

characteristics and identification of CSLCs and discusses the

potential targeted therapies for CSLCs. The identification of

specific early diagnosis and prognostic CSLC markers in ESCC

gives a strategy for the classification of diseases. In order to improve

the outcomes of ESCC treatment, new targeted CSLC therapies are

also needed. The above provides insights into how ESCC CSLCs

initiate cancer and treat resistance and metastasis. At present, drug

development for cell signaling has become a new type of

chemotherapy. It is worth considering that, despite the focus on

key signaling pathways and their potential as a potential treatment

strategy, the trial failure rate remains high. Many drugs may work,

but they may have different effects for patients at different times.

This highlights the importance of precision treatment. The different

roles of CSLCs in ESCC emphasize the importance of their related

genes as therapeutic targets.

Advances in translational medicine have enabled us to better

understand the role and outcomes of cancer therapies. In particular,

the introduction of the CSC concept and the link between EMT and
Hypoxia
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The microenvironment associated with EMT in ESCC CSLCs.
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CSC provide us with new insights into solving ESCC problems. In

addition, EMT may be the main pathway for ESCC cells to obtain

the CSC phenotype, which makes it a powerful new target for ESCC

treatment. That makes these pathways attractive targets for cancer

treatment. Therefore, further study is needed on the association

between EMT and CSC in order to use the EMT-CSC link to

improve treatment practices.

However, there are still many obstacles to the complete

elimination of stem cells. First, stem cells have not yet been

accurately identified. Second, some of the current ESCC-CSC

studies are in bulk cell research. Due to the limitations of

research methods, it is difficult to study the function of related

genes in SP. Cell experiments and other in vitro experiments cannot

fully reflect the changes in the human body. In the context of

precision medicine, patients derived from ESCC organoids can

serve as a reliable model system for studying tumor evolution and

treatment response. Therefore, the development of new methods is

very important. Third, in light of the fact that CSLCs additionally

share some pathways with normal cells, not all controllers that

cause CSLCs are appropriate as focuses for disease treatment.

Fourth, we need to pay more attention to the role of natural

products targeting CSLCs in research. For example, curcumin

cannot only clear cancer cells but also target tumor cells (106).

Fifth, related signaling molecules have emerged as potential stem

cell therapies. Therefore, multitarget inhibitors will be one of the

fundamental techniques to conquer the drug resistance of CSLCs

(106). Sixth, CSLC therapy targets the activation or inhibition of

stem cells to promote or prevent CSLCs from entering the cell cycle,

which is also a problem worth considering (107). Finally, the

treatment of cancer with CSLCs as the target is very promising,

which is a hot topic at present and needs to be further explored.
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