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Vascular co-option in resistance
to anti-angiogenic therapy

Domenico Ribatti 1*, Tiziana Annese1,2 and Roberto Tamma1
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Bari, Italy, 2Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe
Degennaro University, Bari, Italy
Three different mechanisms of neovascularization have been described in tumor

growth, including sprouting angiogenesis, intussusceptive microvascular growth

and glomeruloid vascular proliferation. Tumors can also grow by means of

alternative mechanisms including vascular co-option, vasculogenic mimicry,

angiotropism, and recruitment of endothelial precursor cells. Vascular co-

option occurs in tumors independently of sprouting angiogenesis and the

non-angiogenic cancer cells are described as exploiting pre-existing vessels.

Vascular co-option is more frequently observed in tumors of densely

vascularized organs, including the brain, lung and liver, and vascular co-option

represents one of the main mechanisms involved in metastasis, as occurs in liver

and lung, and resistance to anti-angiogenic therapy. The aim of this review article

is to analyze the role of vascular co-option as mechanism through which tumors

develop resistance to anti-angiogenic conventional therapeutic approaches and

how blocking co-option can suppress tumor growth.
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Angiogenesis and alternative mode of growth of
tumor vasculature

Three types of angiogenesis have been described in tumor growth: sprouting

angiogenesis in which vessel outgrowth from existing vessels is initiated by specialized

endothelial cells termed tip cells (1, 2), intussusceptive microvascular growth (IMG), in

which the vascular network expands by insertion of newly formed columns of interstitial

tissue structures (tissue pillars) into the vascular lumen (3), and glomeruloid vascular

proliferation, in which small glomeruloid bodies, so-called for their morphological

resemblance with the renal glomeruli, are recognizable (4) (Figure 1).

Tumors can also grow without inducing angiogenesis, as occurs in vessel co-option or

vascular co-option, vasculogenic mimicry, angiotropism, and recruitment of endothelial

precursor cells (EPCs). In vasculogenic mimicry, first described in uveal melanoma (6) and

subsequently in other cancers, tumor cells acquire an endothelial phenotype and form

vessel-like networks. Vasculogenic mimicry can serve as a marker for tumor metastasis, a

poor prognosis, worse survival, and the highest risk of cancer recurrence. Angiotropism
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(the pericytic-like location of tumor cells) is a marker of migration

of melanoma and glioma tumor cells along the abluminal vascular

surface (7). EPCs may be recruited from bone marrow mobilized by

vascular endothelial growth factor A (VEGFA) or C-X-C motif

chemokine 12 (CXCL12) released by tumor-infiltrating myeloid

cells or cancer cells (8). However, most human tumors remain in

situ without angiogenesis for a long time before they switch to an

angiogenic phenotype (9).

The aim of this review article it to describe in detail through a

retrospective analysis of the literature data the role of vascular co-

option in the growth of primary and metastatic tumors. Moreover,

the involvement of co-option in the development of resistance to

conventional anti-angiogenic therapies and the possibility to

overcome the resistance will be also described.
Vascular co-option

In the first work on vascular co-option the non-angiogenic

cancer cells were described as “exploiting” pre-existing vessels (10).

Four different histopathological growth patterns have been

described in non-small cell lung cancer. In three of these patterns

(basal, diffuse, and papillary), the tumors are angiogenic, whereas in

the fourth pattern (alveolar), the cancer cells grow in the alveolar air

space of the lung and co-opt alveolar capillaries (10) (Figure 2).

Vascular co-option, described in primary and secondary

(metastatic) sites (Table 1) is defined as a process in which tumor

cells interact with and exploit the pre-existing vasculature of the

normal tissue in which they grow without the need for vascular

proliferation (16). The pre-existing vasculature can be co-opted in

two ways: tumor cells replace normal epithelial cells or penetrate the

stroma surrounding the blood vessels (18). The host vasculature is

incorporated by the growing tumor (19). In vascular co-option,

cancer preserves the well-arranged vascular architecture of the

normal tissue within the tumor, and tumors utilize alternative

mechanisms besides angiogenesis to obtain nutrients for growth

through local tumor invasion and proliferation along co-opted

vessels. Cancer cells migrate along the pre-existing vessels and

infiltrate tissues between co-opted vessels (16). By means of

single-cell transcriptomic analysis, it has been demonstrated that

co-opted endothelial cells and pericytes are characterized by similar
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transcriptomic signature of quiescent healthy endothelial cells and

different from tumor endothelial cell signature recognizable in

angiogenic tumors, characterized by tip, proliferating, and

immature endothelial cells (20). Moreover, different cell types

involved in co-option, including an invasive cancer cell subtype

and a M1-like macrophage subtype have been identified (20).

Some tumors grow by exploiting the host vessels and initiating

pre-existing blood-vessel-dependent tumor growth. These vessels

then regress owing to endothelial cell apoptosis, mediated by

angiopoietin- 2 (Ang-2), whereas angiogenesis occurs at the

periphery of the growing tumor by the interaction of VEGF and

Ang-2 (21). The co-opted vessels trigger an apoptotic cascade,

probably by autocrine induction of Ang-2, followed by vessel

regression resulting in tumor death. However, successful tumors

overcome this vessel regression by initiating neoangiogenesis (22).

Vascular co-option is more frequently observed in tumors of

densely vascularized organs, including the brain, lung, and liver,

where the primary tumor cells co-opt the adjacent quiescent blood

vessels of the host tissue. In the brain, cancer cells can adhere to the

abluminal surface of the brain vessels and grow around them or can

infiltrate the brain parenchyma and migrate between brain vessels.

Vessel co-option has been reported in both low- and high-grade

gliomas (12). In advanced hepatocellular carcinoma, vascular co-

option may interest vessels of the portal tract or liver sinusoidal

vessels (16). The lymph node is also involved in nonangiogenic

growth by vascular co-option (14).
Vascular co-option and metastases

Tumor cells have immediate access to blood vessels, such as

when they metastasize to or are implanted within a vascularized

tissue, co-opt, and often grow as cuffs around adjacent existing

vessels (21). The ability of cancer cells to co-opt the vessels initiates

the process through a few of them will intravasate, starting the

metastatic process (23). Invasive cancer cells express Wnt7b, that

promotes metastasis and vascular co-option in an experimental

model of glioma (24).

The blood vessels at the interface between the tumor and

surrounding tissue can be co-opted through the replacement of
A B C

FIGURE 1

A drawing showing the three types of angiogenesis have been described in tumor growth: (A) sprouting angiogenesis, (B) intussusceptive
microvascular growth (IMG), and (C) glomeruloid vascular proliferation. Sprouting angiogenesis involves formation and outgrowth of sprouts; IMG
involves the formation of new vasculature where a pre-existing vessel splits in two; in glomeruloid vascular proliferation small glomeruloid bodies,
so-called for their morphological resemblance with the renal glomeruli, are recognizable. [Reproduced from (5)].
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epithelial cells by tumor cells and/or the invasion of tumor cells into

the stroma surrounding the blood vessels (25, 26). Many patients

with non-angiogenic vs. angiogenic primary lung tumors developed

distant lung metastases and vessel-co-option was associated with

decreased overall survival, and a 3D-tumor reconstruction showed

that the blood vessel immunostaining resembled a normal lung (27–

29). In breast cancer lung metastases, non-angiogenic growth was

present in 19% of the lung metastases (30).

Melanoma cells migrate extra vascularly in the brain metastasis

along the basement membrane of the blood vessels surrounding the

tumor, constituting an alternative mechanism of tumor spreading

instead of intravascular dissemination (angiotropism or pericytic

mimicry) (7, 31, 32). Vessel co-option occurs in other secondary

brain tumors, including brain metastases of breast, colorectal, and

lung cancer (13). Carcinomas that metastasize to the lung, including

breast, colorectal, gastric, pancreatic, and renal cancer, may be

characterized by vascular co-option (10, 15, 30, 33). Vessel co-option
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can occur in breast cancer metastases to many organs, including the

lungs, liver, lymph nodes, skin, and brain (10, 17, 30, 34, 35).
Experimental models used for the
study of vascular co-option and their
impact on therapy response

Different animal models have been established to study vascular

co-option. By means of intracranial transplantation it has been

demonstrated that different tumor cell lines are able to co-opt pre-

existing brain vessels (21). Anti-VEGF and anti-VEGF receptor 2

(VEGFR2) treatments increased the number of co-opted brain

vessels after injection of human glioblastoma cell lines into nude

rat striatum (36, 37). By means of intracardial transplantation into

the left cardiac ventricle of anesthetized mice it has been

demonstrated that serpins promote cancer cell survival and

vascular co-option in brain metastasis (21). Through direct

injection of tumor cells into the internal carotid artery of

anesthetized mice, it has been demonstrated that VEGFA favors

brain metastasis of different human melanoma cell lines to grow by

means of vascular co-option without sprouting angiogenesis (38).

Moreover, anti-angiogenic therapy of cerebral melanoma

metastases results in sustained tumor progression via vascular co-

option (39). By means of intravenous injection via jugular vein, it

has been demonstrated that lung metastases co-opted the lung

microvasculature (20). Moreover, by means of the same

experimental model, it was shown that vascular co-option

mediates resistance to anti-angiogenic therapy in lung metastasis

(15). Using orthotopic injection of human hepatocellular cell lines

into the livers, it has been demonstrated that vascular co-option is

involved in acquired resistance to anti-angiogenic therapy (40). By

means of zebrafish and chick embryo chorioallantoic membrane

(CAM) assays it has been shown that connexins are involved in
FIGURE 2

Four different histopathological growth patterns in non-small cell lung cancer. In three of these patterns (basal, diffuse, and papillary), the tumors are
angiogenic, whereas in the fourth pattern (alveolar), the cancer cells grow in the alveolar air space of the lung and co-opt alveolar capillaries.
[Modified from (11)].
TABLE 1 Evidence for vascular co-option in human cancers (References
between brackets).

Brain

• Primary brain cancer (12)
• Metastasis derived from breast cancer, colorectal cancer,
lung
cancer, melanoma (13)

Lymph node
• Metastasis derived from breast cancer, colorectal cancer,
head
and neck cancer (14)

Lung

• Primary lung cancer (10)
• Metastasis derived from breast cancer, colorectal cancer,
renal
cell carcinoma (15)

Skin • Metastasis derived from breast cancer (16)

Liver
• Primary liver cancer (16)
• Metastasis derived from breast cancer, colorectal cancer (17)
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metastatic breast cancer and melanoma brain colonization through

vascular co-option (41).
Resistance to anti-
angiogenic therapies

When VEGF-targeted therapies are discontinued, the tumor

vasculature is rapidly re-established (42). Resistance to anti-

angiogenic therapies can be intrinsic, when it is observed at the

beginning of the treatment due to inefficacy of treatment or

acquired, i.e., that it affects the relapsing disease after an initial

response to therapy (43, 44). The main mechanisms of resistance

involve: 1) Vascular co-option (45); vasculogenic mimicry; IMG (a

switch from sprouting to IMG represents an adaptive response to

treatment with anti-angiogenic compounds to restore the

hemodynamic and structural properties of the vasculature-

enhancing tumor drug delivery and sensitivity to treatments (46).

2) Hypoxia that increases the expression of pro-angiogenic factors.

The relationship between hypoxia, VEGF, and angiogenesis has

significant implications for response to therapy, and hypoxic areas

are refractory to chemotherapy and radiotherapy. VEGF blockade

aggravates hypoxia that, in turn, upregulates the production of

angiogenic factors or increases tumor invasiveness (43, 47). 3)

Redundancy of the angiogenic signals, and activation of

alternative signaling pathways [e.g., platelet derived growth

factor/platelet derived growth factor receptor (PDGF/PDGFR);

fibroblast growth factor/fibroblast growth factor receptor (FGF/

FGFR); Ang2/Tie 2] (48). 4) Upregulation of other pro-angiogenic

factors, including FGF2 and PDGF (48). 5) Vascular heterogeneity,

and EPCs recruitment.

In metastatic colorectal cancer patients, bevacizumab treatment

was associated with increased plasma levels of placental growth

factor (PlGF), FGF, and PDGF prior to and along disease

progression (49). Colorectal patients with poor response to

bevacizumab had increased Ang2 serum levels, and VEGF and

Ang2 blockade delayed tumor growth, normalized tumor

vasculature, and increased survival (50, 51).
Resistance and co-option

In patients with metastatic colorectal cancer treated with

neoadjuvant bevacizumab, and then underwent complete

resection of the metastases, a higher number of nonangiogenic

lesions was found in the viable tissue of the poor responder while

prevalently angiogenic metastases were seen among the good

responders (52). In two cohorts of breast cancer patients with

liver metastases, one treated with bevacizumab and chemotherapy

and one with chemotherapy alone prior to metastases resection, all

of the metastatic lesions examined, were nonangiogenic (52). In

colorectal cancer liver metastases, from three cohorts, one not

receiving any neoadjuvant, a second receiving neoadjuvant

chemotherapy, and a third treated with chemotherapy plus

bevacizumab, upon treatment with chemotherapy and

bevacizumab, the nonangiogenic lesions showed no or minimal
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necrosis while the angiogenic tumors had no more than 2% of viable

cells (53). A similar pattern was seen in the patients treated with

chemotherapy alone, the only difference being that in the

angiogenic tumors, the percentage of viable tissue was higher.

Untreated nonangiogenic metastases were comparable to the

treated ones, while untreated angiogenic had a more variable

amount of necrosis, supporting the hypothesis that nonangiogenic

tumors are not only more resistant to bevacizumab but also to the

neoadjuvant chemotherapy used (53).

No differences in intratumor vascularization were found in

node metastases from colorectal cancer patients treated or not

treated with bevacizumab (34). Antiangiogenic treatment of

primary central nervous system tumors has been used for several

years but, again, the results have not lived up the expectations (54).

Vascular co-option mediates resistance to anti-angiogenic therapy

in liver metastases (52), and in an experimental model of

hepatocellular carcinoma, a switch to vascular co-option has been

described as a mechanism of resistance to treatment with tyrosine

kinase inhibitor sorafenib, where over time, tumor cells become

more invasive which promotes co-option of liver vessels in the face

of angiogenesis blockade (55).

Histological examination of patients who died after receiving

treatment with cediranib, an inhibitor of VEGFR2 tyrosine kinases

(56) or bevacizumab regimen (57) showed that the glioma cells were

growing around preexisting vessels in a nonangiogenic fashion.

Vascular co-option and progression in the absence of angiogenesis

in human brain tumor samples, surgical and autoptic, have been

illustrated (26, 54). Breast cancer patients treated with bevacizumab

showed, by dynamic contrast-enhanced magnetic resonance

imaging (DCE-MRI), three response patterns. In the first one, a

decrease in K-trans values over the extent of the tumor was

demonstrated, that is, decreased vascular permeability and/or

vascular surface area, while the second was characterized by

extensive necrosis. These two patterns indicate a response to anti-

angiogenic treatment. In the third one, instead, no changes were

seen, and the authors conclude that, in these lesions, the vessels

were independent of VEGF. Co-option of pre-existing vascular beds

in adipose tissue controls tumor growth rates and angiogenesis (58).

Metastatic lesions in stage III melanoma patients treated with

bevacizumab had a mature vessel morphology and phenotype in

contrast with the newly formed vessels in the relapsing disease from

the patients not receiving bevacizumab (59). Lung metastases of

renal cell carcinoma (RCC) can escape anti-angiogenic treatment

with cediranib and gefitinib by switching phenotype and

progressing in an angiogenesis-independent fashion exploiting

preexisting vessel (60). Treatment of glioma with a monoclonal

antibody against VEGFR2 induced co-option in quiescent cerebral

vessels (37). In glioblastoma biopsies taken after antiangiogenic

treatment, a pattern of infiltration around the normal brain vessels

is present (26). Nonangiogenic growth and spread in the lung have

also been linked to resistance to surgical treatment (61). In

nonangiogenic carcinoma growing in the lung, neoplastic cells

can spread by moving from one alveolar cavity to the other

through the septa pores (61). Co-option of liver vessels has been

demonstrated in acquired sorafenib resistance in hepatocellular

carcinoma (40).
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Combination therapy to overcome
resistance to anti-angiogenic therapy

Dual inhibition of VEGF/PDGFR improves survival in

glioblastoma (62). Bevacizumab-resistant patients exhibit an up-

regulation of c-MET expression (63). The concomitant exposure to

hepatocyte growth factor (HGF)/c-MET inhibitors and sunitinib

abrogated angiogenesis and tumor growth (64). Application of

brivanib, a dual inhibitor of FGF and VEGF pathways, in

bevacizumab-resistant tumors induced an increased overall

survival in breast cancer (65). Aflibercept, a dual inhibitor of

VEGF and PlGF, and bevacizumab are effective in patient-derived

xenograft models of colorectal cancer (66). Lenvatinib, a multiple

receptor tyrosine kinase inhibitor of VEGFRs 1-3, FGFRs 1-4, KIT,

PDGF receptor alpha (PDGFRa), and RET (rearranged during

transfection) exerts antiproliferative and anti-angiogenic effects in

hepatocellular carcinoma (67). Otherwise, both dovitinib and

nintedanib (VEGF, FGF, and PDGF receptor tyrosine kinase

inhibitors) are ineffective (68, 69).
Combination therapy to overcome
resistance and vascular co-option

Combinatorial treatment approaches integrating anti-

angiogenic therapy with blockade of vascular co-option can be

considered. Anti-angiogenic therapy via VEGFR2 blockade reduced

intracerebral glioblastoma growth but caused an increase in tumor

migration with a vascular co-option pattern. The increase in cancer

cell migration may be inhibited by combined treatment with

VEGFR2 and epidermal growth factor receptor (EGFR)

antibodies, as demonstrated by a decreased in vitro migration of

glioblastoma cells (70).

A single agent vanucizumab, a bispecific anti-Ang2/anti-

VEGFA antibody, was tested in a phase I study in adult patients

with advanced solid tumors (71). Dual inhibition of Ang2 and

VEGFRs normalizes tumor vasculature and prolongs survival in

glioblastoma (51). Stimulation of Ang-2 expression in endothelial

cells together with inhibition of VEGF signaling may inhibit

vascular cooption. Signaling of Ang-2 through its receptor Tie-2

can cause sprouting angiogenesis if VEGF levels in the tumor

microenvironment are high. If VEGF levels are low, Ang-2/Tie-2

signaling leads to the regression of co-opted vessels (72–74).

Inhibition of hypoxia-related macrophages and neutrophils

may inhibit vascular co-option. Accumulation of lysyl oxidase like

4 (LOXL-4)-expressing neutrophils in colorectal lung cancer

metastases resistant to anti-angiogenic therapy where vascular co-

option is the dominant pattern of vascularization (75). M1 tumor

associated macrophages (TAMs) are highly detected in vascular co-

option-dependent tumors (20). Treatment with bevacizumab

caused a metabolic shift toward glycolysis, promoting the vascular

co-option pro-invasive phenotype in glioblastoma (76).
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Concluding remarks

Many cancers can co-opt the pre-existing vasculature and, in

this manner, facilitate tumor growth in situ and at distance. The

existence of non-angiogenic tumors allows to predict that these

tumors are non-sensitive to anti-angiogenic treatments (77). Several

preclinical studies support the concept that vessel co-option can

mediate intrinsic and acquired resistance to anti-angiogenic

therapy, and co-option may in part explain the inefficacy of anti-

angiogenic cancer therapies. In this context, blocking or inhibiting

co-option might be considered as an innovative strategy in the

inhibition of the growth of certain tumors, which adopt this

modality of expansion, suggesting that therapeutic strategies

targeting both angiogenesis and co-option might be more

efficacious than targeting angiogenesis alone (73). It will be also

important to consider the role of vascular co-option in the

modulation of the host immune response to tumor and therefore

also the efficacy of immunotherapy in the treatment of tumors (78).

In this context, immune checkpoint-inhibitor treatment might

induce an immune response against the co-opting cancer cells

and synergize with anti-angiogenic agents (79, 80).
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