
Frontiers in Oncology

OPEN ACCESS

EDITED AND REVIEWED BY

Tao Liu,
University of New South Wales, Australia

*CORRESPONDENCE

Fabio Grizzi

fabio.grizzi@humanitasresearch.it

Carmen Bax

carmen.bax@polimi.it

Laura Capelli

laura.capelli@polimi.it

Gianluigi Taverna

gianluigi.taverna@humanitas.it

RECEIVED 14 October 2023

ACCEPTED 18 October 2023

PUBLISHED 24 October 2023

CITATION

Grizzi F, Bax C, Capelli L and Taverna G
(2023) Editorial: Reshaping the
diagnostic process in oncology:
science versus technology.
Front. Oncol. 13:1321688.
doi: 10.3389/fonc.2023.1321688

COPYRIGHT

© 2023 Grizzi, Bax, Capelli and Taverna. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Editorial

PUBLISHED 24 October 2023

DOI 10.3389/fonc.2023.1321688
Editorial: Reshaping the
diagnostic process in oncology:
science versus technology

Fabio Grizzi1,2*, Carmen Bax3*, Laura Capelli3*

and Gianluigi Taverna2,4*

1Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy,
2Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy, 3Politecnico di
Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Milano, Italy,
4Department of Urology, Humanitas Mater Domini, Castellanza, Italy

KEYWORDS

cancer, diagnosis, science, technology, complexity
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Reshaping the diagnostic process in oncology: science versus technology
The notion that carcinogenesis is a multi-faceted process has now been widely

accepted. Nonetheless, only in more recent times have we been able to elucidate a

substantial range of molecular circuits that govern the onset and subsequent

advancement of human malignancies. Following twenty-five years of accelerated

progress, the field of oncology has amassed a complex corpus of data, confirming the

idea that cancer is characterized by genomic alterations (1). Despite these significant strides

in molecular and cellular comprehension, our grasp of the physical principles that

underpin human carcinogenesis remains notably limited (2–4). In recent years, our

understanding of the mechanisms behind tumorigenesis, the progression of cancer, and

clinical treatments for various types of malignancies has undergone substantial

transformations (5). Nevertheless, despite these advancements, considerable challenges

still appear large for researchers and oncologists alike. These challenges span a broad

spectrum, encompassing the decoding of intricate molecular and cellular processes, the

formulation and development of therapeutic strategies and biomarkers, as well as

addressing issues related to the quality-of-life following treatment regimens (6). There is

no doubt that technological advancements hold a pivotal position in combating cancer.

Such innovations have not only transformed the very definition of cancer but have also led

to leaps forward in cytological, morphological, and genotypic phenotyping. These

developments have consequently given rise to an exponentially expanding array of

cancer types and associated care pathways, delineated by their prognostic classifications

(7). Indeed, the enhancements in various medical fields, including surgery, radiotherapy,

pathology, and imaging, correlated with earlier detection and more effective screening

protocols, have served as cornerstones for the betterment of outcomes on a

population scale.

According to the National Health System, “diagnosis” is described as the procedure by

which a medical condition, disease, or injury is identified through its manifest signs and

symptoms. This generally entails accumulating the patient’s medical history, performing a
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1321688/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1321688/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1321688/full
https://www.frontiersin.org/research-topics/30045
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1321688&domain=pdf&date_stamp=2023-10-24
mailto:fabio.grizzi@humanitasresearch.it
mailto:carmen.bax@polimi.it
mailto:laura.capelli@polimi.it
mailto:gianluigi.taverna@humanitas.it
https://doi.org/10.3389/fonc.2023.1321688
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1321688
https://www.frontiersin.org/journals/oncology


Grizzi et al. 10.3389/fonc.2023.1321688
physical assessment, and leveraging a variety of diagnostic tests such

as blood analyses, imaging studies, and biopsies to facilitate a

conclusive diagnosis. While the notion of “medical diagnosis” can

be traced back to eminent historical figures such as the Greek

physician Hippocrates (460 BC - 377 BC) and the Egyptian

polymath Imhotep (2700 BC - 2630 BC), the existing definition is

still marked by certain shortcomings, notwithstanding the plethora

of tools and insights offered by contemporary medical research.

Medical professionals are increasingly evolving into practitioners

who exploit technologies originating from disparate scientific fields,

in the expectation that these instruments will alleviate their

prevailing uncertainties (8, 9). This period of certainty was

constructed upon three fundamental principles: a) laws

formulated on the basis of deterministic theories coupled with the

concept of causality; b) the axioms concerning the divisibility and

measurability of matter, and c) the interlinked notions of stability

and reversibility in biological systems. However, this era of certainty

in the realm of medicine began to diminish during the 19th century,

marked by the emergence of experimental medicine, an approach

prominently advocated by the French physiologist Claude Bernard

(1813-1878). This development catalyzed intellectual movements

that initiated a reevaluation of many overarching conclusions

drawn from deterministic theories (10). This critical reassessment

ultimately led to the disassembly of various doctrines that were

predicated on a strictly mechanistic worldview. Medicine is often

described as a practice of decision-making under uncertainty (10).

In the 1950s the philosopher Hans Reichenbach (1891 – 1953)

posited that there exists no phenomenon in our Universe that

strictly conforms to the principles of cause and effect (11, 12). The

principle of the common cause specifies an important relation

between probability and causality. Experimental medicine and

biology have also disclosed the presence of biological phenomena

and conditions that are observable but defy quantification. The

intricate, non-linear, and complex characteristics inherent to human

cancer have propelled numerous researchers to identify innovative

biomarkers and to develop advanced histological and imaging

methodologies (13).

It is clear that science and technology, while highly

interdependent, remain separate yet synergistic domains. Science

enriches technology through various channels: a) by generating new

knowledge that acts as a wellspring for inventive technological

prospects; b) by offering a repertoire of tools and techniques that

streamline the process of engineering design, as well as a

foundational knowledge base for assessing the viability of these

designs; c) by advancing research instrumentation, laboratory

methodologies, and analytical techniques that ultimately permeate

design or industrial applications, often via intermediary scientific

disciplines; d) by establishing a comprehensive knowledge

repository that fosters more efficacious strategies for the applied

research, development, and refinement of emerging technologies. In

a reciprocal manner, technology serves science by inspiring new

scientific inquiries, thus rationalizing the allocation of resources

required to tackle these questions efficiently and promptly.

This Research Topic has garnered contributions in the form of

original research and review articles that spotlight avant-garde

methodologies to enhance early cancer diagnosis. Hesso et al.
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for the INCISIVE EU H2020 initiative, an undertaking architected

to fully leverage the capabilities of artificial intelligence (AI)-centric

technologies in the realm of cancer imaging. The study was

conducted with the aim of elucidating the experiences of cancer

survivors with healthcare systems in five European nations. In the

current milieu of precision oncology, there has been a growing

emphasis on multi-omics data, encompassing imaging radiomics

and diverse molecular biomarkers, to refine diagnostic and

therapeutic approaches (14). The integration of AI, encompassing

machine learning (ML) and deep learning (DL), with the expanding

accumulation of multi-omics data, holds considerable promise to

bring transformative changes in areas such as cancer subtyping,

risk stratification, prognostic evaluations, predictive analytics,

and clinical decision-making processes (14). Traditional

histopathological methods like immunohistochemistry (IHC)-

based receptor tyrosine-protein kinase erbB-2 (Her2) assessment

have long been encumbered by intrinsic issues of subjectivity and

inconsistency. These challenges have necessitated the recurrent

release of guidelines by the American Society of Clinical

Oncology/College of American Pathologists (ASCO/CAP) aimed

at standardizing the procedure for breast cancer patients. However,

these efforts could be rendered inadequate by the introduction of

Trastuzumab deruxtecan, a pharmaceutical agent with the potential

to be applicable to tumors hitherto classified as Her2-negative. To

address these concerns, Yu et al. explored the utilization of an

Enzyme-Linked Immunosorbent Assay (ELISA)-akin quantitative

dot blot (QDB) methodology as an alternative to IHC. While their

results indicate that the QDB method is superior in terms of

accuracy and reliability compared to IHC for assessing Her2

protein levels, additional scrutiny is required to assess the

viability of the QDB method as an alternative to IHC in

addressing the growing demand for identifying tumors with low

Her2 expression in routine clinical settings.

In the spectrum of human cancers, glioblastoma multiforme

(GBM) is characterized by a high degree of intra-tumoral

heterogeneity, evident at both microscopic and radiological levels

of resolution (15, 16). Diffusion Weighted Imaging and dynamic

contrast-enhanced Magnetic Resonance Imaging are two functional

MRI modalities routinely utilized in clinical settings for evaluating

the properties of GBM tumors. Brancato et al. provide preliminary

findings aimed at ascertaining whether radiomics features (i.e.

radiomics, a quantitative approach aiming to extract mineable

data from medical images using advanced feature analysis),

extracted from preoperative Apparent Diffusion Coefficient

(ADC) maps and post-contrast T1-weighted images, correlate

with pathomic traits (17) (i.e. pathomics embodies the wide

variety of data that is captured from image analyses to generate

quantitative features to characterize the describe diverse phenotypic

features of tissue samples in high-resolution whole-slide images)

discerned from hematoxylin and eosin (H&E) digitized pathology

slides. Their findings (Brancato et al.) indicate the potential

existence of cross-scale associations between digital pathology

metrics and features extracted from ADC and T1c imaging

modalities. The implications of these results extend beyond

merely enhancing our understanding of the intra-tumoral
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heterogeneity inherent in GBM. They also serve to bolster the

applicability of the radiomics methodology in clinical practice,

positioning it as a form of “virtual biopsy.” This could offer fresh

perspectives for the integration of omics data in the direction of

personalized medical treatments. This somber status is largely

attributable to shortcomings in effective early detection

mechanisms as well as the constraints of traditional therapeutic

options available for patients in advanced stages of the disease

(Duan et al.). In recent decades, nanotechnology has risen to

prominence as a groundbreaking methodology for achieving

desired properties by manipulating objects at the molecular level,

garnering significant interest across various medical disciplines.

Research indicates that, in the context of lung cancer,

nanotechnology-based approaches could offer superior specificity

and efficacy in comparison to conventional techniques for the

detection of extracellular cancer biomarkers and in vitro cancer

cells, as well as for in vivo cancer imaging.

Duan et al. summarized and analyzed the potential applications of

nanotechnology in improving the early diagnosis and precision

treatment of lung cancer, intended to provide an adequate theoretical

framework for promoting new diagnosis and treatment options. An

increasing number of nanomedicines are receiving regulatory approval,

showing promising potential for clinical application. Nonetheless, the

integration of nanotechnology into clinical practice faces notable

challenges and necessitates comprehensive research. Our current

knowledge regarding the pharmacokinetics of nanomaterials remains

limited. While certain studies indicate that some nanomaterials can

maintain their structural integrity in vivo for extended periods, the

influence of the physical and chemical properties of these

nanomaterials on pharmacokinetic bioavailability remains obscure.

This lack of understanding complicates the determination of

appropriate dosages and administration timing for nanomedicines,

potentially leading to unpredictable side effects. Furthermore, despite

the significant specificity exhibited by many medical nanomaterials in

research, their minute size makes them susceptible to uptake by non-

target cells through active transport. This can result in unintended

effects or harm to normal tissue cells and may diminish the efficacy of

nanomedicine. Despite the rapid progress in nanoscale drug delivery

systems, designed to address the obstacles of multi-drug resistance

and reduce the impact on healthy tissues by precise delivery to

cancerous areas, additional research is required to fully transition

nanotechnology-based diagnostic and therapeutic approaches into

clinical use.

3D-printed phantoms offer an opportunity to delve deeper into

these aspects while also facilitating CT research, particularly by

leveraging the capabilities of next-generation scanners. In this

Research Topic, Cavaliere et al. introduce a novel anthropomorphic

3D-printed phantom designed for chest lesions. This phantom is

customized based on an actual patient’s CT scan and aims to

scrutinize the variability in volume and Hounsfield Unit (HU)

measurements under diverse CT acquisition conditions. Fused

Deposition Modeling (FDM) technology was the chosen printing

technique, utilizing polylactic acid (PLA) as the filament material.

Comparisons of Dice Similarity Coefficient (DSC) values between the

real patient and phantom scans across different kVp settings and on

both CT scanners demonstrated substantial overlap in various
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compartments and in lesion vascularization. Particularly, high

similarity was observed for lung and lesion masks in each setting,

with DSC values approximately at 0.9 and 0.8, respectively. While the

mean HU values could not be directly equated with real patient data

due to the use of PLA material, the proportional intensity values for

each compartment were maintained. This methodology put forth

establishes the reliability of utilizing 3D-printing technology for

individualized approaches in CT research, and paves the way for

extending this workflow to additional areas in oncology.

Indeed, technology employs the principles of science to address

specific challenges, while science utilizes technology to make novel

findings (18, 19). Nevertheless, the objectives of science and

technology diverge. Science aims to elucidate questions and augment

our understanding of phenomena, whereas the purpose of technology is

to provide practical solutions to real-world issues. In essence, science is an

organized system of acquiring knowledge about the natural universe

through systematic methodologies, including data collection. Conversely,

technology is the field in which scientific principles are operationalized to

develop instruments capable of solving problems and executing various

functions. In other words, technology serves as the practical

implementation of scientific knowledge, making the two inevitably

linked (Figure 1). One example of converting scientific knowledge into

technological advancement is the exploitation of volatile organic

compounds (VOCs) (20–22). Cancer cells release distinct volatile

organic compounds (VOCs), which may arise from the oxidative

breakdown of polyunsaturated fatty acids due to reactive oxygen

species (23). Originally detected by highly trained dogs (24), these

compounds can be detected through electronic olfactory devices

designed to emulate a dog’s sense of smell (25). This groundbreaking

development has promising implications, particularly within the domain

of clinical oncology (26). Innovative technological concepts originate

from novel scientific discoveries and then proceed through a sequential

pathway encompassing applied research, design, production, and

ultimately, commercialization and market distribution (27). As

technology challenges grow in complexity, the emergence and

evolution of technological innovations are not confined to single

domains of knowledge but increasingly occur at the intersection of

various scientific disciplines and technological domains (28). There exist

unresolved questions to this date. Among these, from an ontological

standpoint, one must consider the essential nature of both science and

technology. How do they parallel or diverge from each other? From an

epistemological perspective, questions arise about how knowledge and

proficiency are accrued and authenticated in these respective domains.

Does technology emerge as a byproduct of scientific exploration, or does

science evolve due to technological advancements? Alternatively, could

the relationship be reciprocal? Furthermore, is this relationship

deterministic in nature, implying that every technological

breakthrough necessitates antecedent scientific knowledge? Or is it

more probabilistic, suggesting that individuals with a strong scientific

background are simply more predisposed to technological innovation?

Certainly, the insights gleaned from the studies included in this

Research Topic contribute to an enhanced understanding of the

intricate nature of human cancer. Nevertheless, more

comprehensive research is imperative for a deeper grasp of the

physics underpinning cancer, the modalities of its early detection,

and the mechanisms that contribute to therapeutic resistance.
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Addressing the multidimensional complexity of human cancer,

both temporally and spatially, is poised to unveil additional layers

of its etiology and progression. This multi-faceted approach may

facilitate a more coherent conceptual framework, offer interpretive

clarity for experimental data, suggest targeted experiments, and

provide a rational means of categorizing the wealth of extant

knowledge. It is fundamental that a multi-disciplinary team,

including engineers, clinicians, biologists, and mathematicians,

continue to collaborate in a concerted effort toward a unified,

quantitative comprehension of the complexities of cancer.
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