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Xudong Cao2 and Lihong Yuan1*

1School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University,
Guangzhou, China, 2Deparment of Chemical and Biological Engineering, University of Ottawa,
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Cancer remains the leading cause of death worldwide. In spite of significant

advances in targeted and immunotherapeutic approaches, clinical outcomes for

cancer remain poor. The aim of the present study was to investigate the potential

mechanisms and therapeutic targets of Frondoside A for the treatment of liver,

pancreatic, and bladder cancers. The data presented in our study demonstrated that

Frondoside A reduced the viability and migration of HepG2, Panc02, and UM-UC-3

cancer cell in vitro. Moreover, we utilized the GEO database to screen and identify

for differentially expressed genes (DEGs) in liver, pancreatic, and bladder cancers,

which resulted in the identification of 714, 357, and 101 DEGs, respectively. Gene

Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway annotation were performed using the Metascape database for DEGs that

were significantly associated with cancer development. The protein-protein

interaction (PPI) networks of the identified DEGs in liver, pancreatic, and bladder

cancers were analyzed using Cytoscape 3.9.0 software, and subsequently identified

potential key genes that were associated with these networks. Subsequently, their

prognostic values were assessed by gene expression level analysis and Kaplan-Meier

survival analysis (GEPIA). Furthermore, we utilized TIMER 2.0 to investigate the

correlation between the expression of the identified key gene and cancer immune

infiltration. Finally, molecular docking simulations were performed to assess the

affinity of Frondoside A and key genes. Our results showed a significant correlation

between these DEGs and cancer progression. Combined, these analyses revealed

that Frondoside A involves in the regulation of multiple pathways, such as drug

metabolism, cell cycle in liver cancer by inhibiting the expression of CDK1, TOP2A,

CDC20, and KIF20A, and regulates protein digestion and absorption, receptor

interaction in pancreatic cancer by down-regulation of ASPM, TOP2A, DLGAP5,

TPX2, KIF23, MELK, LAMA3, and ANLN. While in bladder cancer, Frondoside A

regulates muscle contraction, complement and coagulation cascade by increase

FLNC expression. In conclusion, the present study offers valuable insights into the

molecular mechanism underlying the anticancer effects of Frondoside A, and

suggests that Frondoside A can be used as a functional food supplement or

further developed as a natural anti-cancer drug.
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1 Introduction

Cancer remains the predominant cause of mortality globally. In

2020, according to the GLOBOCAN report, the annual incidence of

new cancer cases is estimated to be 19.3 million, with nearly 10.0

million cancer-related deaths (1). The projected incidence of new

cancer cases in China and the USA for the year 2022 is around

4,820,000 and 2,370,000, respectively, with estimated cancer-related

deaths of approximately 3,210,000 and 640,000 in these two

countries (2). In the past decades, many basic and clinical studies

have investigated underlying mechanisms of cancer formation and

progression leading to advances in the molecular biology and

diagnosis of cancers. However, despite these advancements, the

incidence and mortality rates of cancer continue to exhibit high

levels, and the available treatment options remain limited in their

efficacy and scope (3). While there are many treatment options

currently available for cancer patients – and many are clinically

effective – these treatment options are known to have significant

side effects (4, 5). Consequently, the development of novel and

efficacious therapeutic agents for the treatment of cancer constitutes

an urgent requirement. In general, natural products have served as a

principal reservoir of compounds for the management of a diverse

spectrum of cancers, presenting encouraging prospects for

examining not only novel anticancer agents but also unexplored

and potentially significant mechanisms of action (6). Marine

organisms have emerged as a recent research focus for the

identification of novel compounds that hold potential in the

prevention and treatment of cancer (7), and there is growing

interest in exploiting the diverse and complex marine organisms

for rational drug discovery (8). The advancement of technology and

extensive research on marine natural products have culminated in

the identification of a novel cohort of anti-cancer drugs, and a

number of marine biological extracts are currently being studied in

clinical trials after showing anti-cancer activity in various
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preclinical studies (7, 9, 10). So far, 20 drugs from marine sources

are already in clinical use (10).

To date, the exploration for anticancer agents in diverse marine

phyla has unveiled numerous active compounds (11). The

echinoderms, which exclusively inhabit the marine milieu and

encompass sea stars, sea urchins, sand dollars, sea cucumbers,

and sea lilies, have garnered significant attention as a subject of

interest, amongst which sea cucumbers are of particularly

interesting as they have been used as dietary remedies for cancer,

inflammation, and other diseases for centuries (12). For example,

triterpenoid glycosides from diverse species of sea cucumbers have

been recognized for their potential anti-cancer properties (13).

Frondoside A, a specific triterpenoid saponin, has recently gained

significant attention due to its demonstrated potent anti-cancer

effects against various types of solid malignancies and leukemias

(14). However, few studies have attempted either Frondoside A as a

potential treatment option for liver, pancreatic, and bladder cancers

or investigated their mechanisms of action. In this study, we

analyzed the in vitro antitumor activity of Frondoside A and its

potential targets, and mechanisms of action related to the treatment

of liver, pancreatic and bladder cancers using in vitro cellular assays,

bioinformatics and molecular docking techniques. The full

analytical work flow of this study is shown in Figure 1.
2 Materials and methods

2.1 Reagents

Triterpene glycoside Frondosid A (extracted from Cucumaria

frondosa, purity > 98% determined by HPLC) was purchased from

Kerafast (Boston, MA). Cell Counting Kit-8 (CCK-8) was obtained

from US EVERBRIGHT®INC., Suzhou, Jiangsu, China. DMEM

medium, MEM medium, fetal bovine serum (FBS), and phosphate
FIGURE 1

The flow chart for whole process analysis of articles. Preliminary analysis of the anticancer activity of Frondoside A by in vitro cell activity assay and
screening of potential anticancer targets by combining bioinformatics and molecular docking methods.
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buffer solution (PBS, pH 7.4) were purchased from Thermo Fisher

Scientific (Waltham, MA. Finally, penicillin (100 Units/mL),

streptomycin (100 µg/mL), 0.25% Trypsin (×1), and Nonessential

Amino Acid Solution (NAAS, 100X) were obtained fromGibco

(Grand Island, NY) were used in the study Chemotherapeutic agent

Epirubicin hydrochloride (EPI), a commonly used anti-tumor drug

to treat solid tumors, for instance liver cancer, breast cancer, and

bladder cancer, was purchased from Aladdin.
2.2 Cell lines and cell cultures

Three cancer cell lines were used in this study, including

Human liver cancer cell HepG2 (ATCC® No. HB-8065), Human

pancreatic cancer cell Panc02 (ATCC® No. CRL-2553) and Human

bladder cancer cell UM-UC-3 (ATCC® No. CRL-1749). Both

HepG2 and Panc02 cells were incubated with DMEM medium

supplemented with 10% FBS, and UM-UC-3 cells were cultured in

MEM medium supplemented 1% NAAS. Moreover, three cell lines

were supplemented with 10% FBS, 100 Units/mL of penicillin, and

100 mg/mL, and incubated at 37°C with 5% CO2 atmosphere and

100% humidity.
2.3 Cell viability assay

To evaluate the cytotoxicity of drugs of interest, HepG2,

Panc02, and UM-UC-3 cells were seeded in 96-well plates at a

density of 5000 cells per well and incubated overnight. Triplicate

treatments with increasing concentrations of Frondoside A were

administered to the cells for 48 hours, while EPI (10 mM) and PBS

(pH 7.4) were used as positive and blank controls, respectively.

Subsequently, PBS (pH 7.4) was used to carefully wash the cells,

after which 10% CCK-8 reagent was added, and the cultures were

incubated for 3 hours. The plates were analyzed at 450 nm utilizing

a microplate reader (Bio-Rad, Hercules, CA). Cell viabilities were

expressed as proportional viabilities (%) normalized against the

blank control and assumed 100% survival. The half maximal

inhibitory concentration (IC50) values of Frondoside A for

HepG2, Panc02, and UM-UC-3 cell lines were also determined.
2.4 Cell migration assay

Confluent cell monolayers of HepG2, Panc02, and UM-UC-3

cells were cultivated in 6-well tissue culture plates. A plastic

micropipette tip was used to carefully scratch the confluent cell

monolayers, and the cell cultures were subsequently washed twice

with PBS (pH 7.4). The cells were cultured in their respective cell

culture media that contained 1% FBS and supplemented with

Frondoside A at their respective IC50 concentrations for 24 h.

The widths of the wound in the cultures were documented using

an Olympus inverted microscope at 0, 12, and 24 h after the wound.

Finally, the scratched area was measured using a NIH Image J

(Bethesda, MD), and the degree of wound closure was calculated.
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2.5 Microarray data collection

The Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) is a publicly available functional

genomics resource that provides high-throughput gene expression

data, chips, and microarrays (15). For the relevant tumors, gene

expression profile data was acquired from the GEO database. The

inclusion criteria were: (1) The specimens were obtained from

patients with human liver cancer, pancreatic cancer, and bladder

cancer; (2) The study population was comprised of both tumor

patients and normal controls; (3) The study design was “expression

profiling by array”. Finally, we downloaded liver cancer-related

datasets (GSE14520 and GSE60502), pancreatic cancer datasets

(GSE16515 and GSE28735), and bladder cancer datasets

(GSE13507, GSE23732, and GSE37815) from the GEO database.
2.6 DEGs identification and
data visualization

The GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) is an

online analytical tool that is utilized for the identification of

differently expressed genes (DEGs) between tumor and healthy

controls. The data was categorized into tumor and normal groups

and analyzed based on |log2FC| ≥ 1.0 and adj. p value < 0.05,

respectively. Following the screening of the DEGs within each

dataset, the Venny2.0 online tool (https://bioinfogp.cnb.csic.es/

tools/venny/) was employed to identify common targets within

the relevant datasets, and the overlapping DEGs were retained for

further analysis.
2.7 Gene ontology terms and KEGG
enrichment analysis of DEGs

In order to annotate the DEGs identified from the

aforementioned comparison groups in a functional manner, GO

term annotation and KEGG pathway analysis were conducted with

the use of Metascape. Metascape (https://metascape.org/gp/

index.html#/main/step1) (16) is a comprehensive analytical

website that incorporates functional enrichment, gene annotation,

interactome analysis, and membership search, leveraging more than

40 independent knowledge bases. KEGG is a database resource used

for elucidating high-level features and effects of biological systems,

while GO is a widely used bioinformatics program for high-quality

functional gene annotation based on biological processes (BP),

molecular functions (MF), and cellular components (CC).

Metascape was utilized with a minimum overlap of 3 and a

minimum richness of 1.5 as screening criteria to determine the

characteristics of DEGs. A significance level of p < 0.01 was

considered statistically significant, and GraphPad Prism 9.0

software was used to generate bar graphs to visually represent the

obtained results.
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2.8 Protein-protein interaction network
construction and key gene identification

The intersection targets that were obtained were subjected to

analysis and construction of Protein-Protein Interaction (PPI)

networks using the STRING database (https://string-db.org/). The

STRING database is one of the most informative databases for

studying protein interactions at this stage, which evaluates and

integrates information on known and predicted protein interactions

to form a comprehensive protein network covering > 1,100

organisms (17). The STRING database utilizes probability

calculations of various evidence channels, including the correction

of random interaction probability, to construct PPI networks. The

resulting composite score is assigned based on the level of

confidence, with a score of 0.4 indicating medium confidence, 0.7

indicating high confidence, and 0.9 indicating the highest level of

confidence. In this study, a PPI network with a score of 0.9, i.e., the

highest confidence network, was used to import potential targets

into the STRING database and select “Homo Sapiens” species to

obtain target protein interaction relationships.
2.9 Expression analysis of key genes

GEPIA2.0 (http://gepia2.cancer-pku.cn/#index) is a newly

developed web server for cancer and normal gene expression

analysis and the interactive analysis with rich analysis functions,

such as tumor/normal differential expression analysis, survival

analysis, gene correlation analysis, and downscaling analysis (18).

This study will use the GEPIA2.0 database to analyze the obtained

key genes and initially validate their expression differences between

tumor and normal tissues.
2.10 Prognostic analysis of survival of
key genes

In this study, GEPIA2.0 was utilized to examine the correlation

between the expression of key genes in tumors and overall survival

(OS) (18). The statistical analysis was performed by calculating risk

ratios (HR) and p values with 95% interval confidence (IC) using a

Log-rank test. Finally, genes with insignificant differences were

excluded for further analysis to screen for key genes with a

significant expression.
2.11 Analysis of key genes and tumor
immune invasion level

The Tumor Immunity Estimation Resource (TIMER) database

contains 10,897 samples from The Cancer Genome Atlas (TCGA)

for 32 cancer types (19). In this study, the correlation between key

genes and the degree of immune cell infiltration, including B cells,

CD8+ T cells, CD4+ T cells, neutrophils, macrophages, and

dendritic cells, was investigated using the TIMER2 database
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(http://timer.cistrome.org/). The tumor purity of PCs was

adjusted prior to analysis. Key genes were input into the “gene

module” to generate scatter plots, which were used to observe the

relationship between gene expression and the level of tumor

immune invasion.
2.12 Molecular docking

To confirm the binding of Frondoside A to the predicted key

targets, the structural formula of Frondoside A was retrieved and

down loaded f rom the PubChem da taba se (h t tp s : / /

www.ncbi.nlm.nih.gov/pccompound) in mol format. The

structure was optimized using Chem3D 14.0 software with MM2

force field for energy minimization and saved in pdb format. Three-

dimensional structures of CDK1 (PDB ID: 4YC6) (20), ASPM (PDB

ID: 3QBT) (21), BUB1 (PDB ID: 4QPM) (22), KIF20A (PDB ID:

5LEF) (23), TOP2A (PDB ID:5NNE) (24), TPX2 (PDB ID:4C3P)

(25), KIF23 (PDB ID: 3VHX) (26), MELK (PDB ID:5TWL) (27),

and FLNC (PDB ID: 7OUU) were obtained from RCSB PDB

database (https://www.rcsb.org/) (28). The proteins were

preprocessed with PyMOL software for dehydrat ion,

hydrogenation, and removal of irrelevant ligands. The Grid Box

parameters were set with the receptor as the center, and molecular

docking analysis was performed with AutoDock Vina 1.1.2. The

conformation with the lowest free energy was selected and

visualized with PyMOL (29). A binding free energy of < -5 kcal/

mol indicates that the target has some binding activity to the

compound (30), and the lower the binding energy, the more

stable the receptor-ligand binding (31).
2.13 Statistical analysis

The experiments were conducted in triplicate, and the data were

presented as mean ± standard deviation (SD). Statistical analysis

was performed using unpaired Student’s t-test and one-way analysis

of variance (ANOVA). Results with a p-value of less than 0.05 were

considered statistically significant.
3 Results

3.1 In vitro inhibition of tumor cells by
Frondoside A

As shown in Figures 2A to C, Frondoside A exhibited a dose-

dependent reduction in the cell viability in HepG2, Panc02, and

UM-UC-3 cell lines. The IC50 values of Frondoside A for HepG2,

Panc02, and UM-UC-3 were 1.5 mM, 1.5 mM, and 1

mM, respectively.

As shown in Figures 2D to E, both Frondoside A and EPI

treatments significantly inhibited cell migration and reduced the

proliferation of HepG2, Panc02, and UM-UC-3. In addition,

Frondoside A exhibited a more conspicuous suppression of cell
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migration than EPI (Figures 2G–I) The migration rate of HepG2,

Panc02, and UM-UC-3, respectively.
3.2 Identification of DEGs

GEO is a free database of microarray/gene profiles and next-

generation sequencing, from which liver cancer and normal or

adjacent liver tissue gene expression profiles of GSE14520 and

GSE60502 were obtained. Using adj. p < 0.05 and |log2FC|> 1 as

cut-off criteria, from the microarray data of GSE14520 and

GSE60502, 1238 (573 up-regulated and 665 down-regulated) and

1556 (794 up-regulated and 762 down-regulated) DEGs were

extracted, respectively (Figures 3A, B). After integrated

bioinformatical analysis, a total of 714 genes were identified from

the two profile datasets (Figure 3C).

Subsequently, mRNA expression profiles in human pancreatic

tissues and adjacent non-cancerous tissues were analyzed using the

GEO databases (i.e., GSE16515 and GSE28735). In GSE16515, 1853

DEGs (i.e., 1364 up-regulated and 489 down-regulated) had

significant changes in pancreatic cancer tissues (Figure 3D). In

GSE28735, 413 DEGs (i.e., 256 up-regulated and 157 down-

regulated) had significant changes in pancreatic cancer tissues

(Figure 3E). Finally, a total of 357 con-DEGs were obtained for

further investigation (Figure 3F).
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Similarly, mRNA expression profiles in human bladder cancer

tissues and adjacent non-cancerous tissues were also analyzed using

the GEO databases (GSE13507, GSE23732, and GSE37815). For

GSE13507, there were 459 DEGs (i.e., 63 up-regulated and 396

down-regulated) with significant changes in bladder cancer tissues

(Figure 3G). For GSE23732, there were 611 DEGs (i.e., 102 up-

regulated and 509 down-regulated) significant changes in bladder

cancer tissues (Figure 3H). For GSE37815, there were 668 DEGs

(i.e., 190 up-regulated and 478 down-regulated) significant changes

in bladder urothelial carcinoma tissues (Figure 3I). As a result of the

analysis above, a total of 101 genes were used for further

investigation (Figure 3J).
3.3 Enrichment analysis

To investigate the biological functions of DEGs, functional

annotation and pathway enrichment analysis were conducted

using the Metascape database. The results were visualized by

generating bar graphs with GraphPad Prism 9.0 software. GO

(Gene Ontology) analyses are shown in Figures 4A–C, and KEGG

analyses are shown in Figures 4D–F. The results of GO analysis of

DEG in liver cancer are shown in Figure 4A. The most important

biological processes (BPs) of DEGs were “monocarboxylic acid

metabolic process”, “response to xenobiotic stimulus”, “small
B C

D E F

A

G H I

FIGURE 2

Inhibition of tumor cell proliferation and migration by Frondoside A. (A–C) Logarithmic growth HepG2, Panc02, and UM-UC-3 cells were treated
with EPI and Frondoside A for 48 h. (D–F) Figures of cell migration of HepG2, Panc02, and UM-UC-3 respectively were confluent mono-layers
cultured in the presence or absence (control) with the IC50 concentrations of Frondoside A for 0, 12, and 24 h, and EPI (10 mM) as a positive group.
(G–I) The migration rate of HepG2, Panc02, and UM-UC-3, respectively. Determination of cells as described in Materials and methods. All
experiments were repeated at least three times. Data for SD ± means, *p < 0.05, * *p < 0.01, * * * p < 0.001, * * * *p < 0.0001.
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molecule catabolic process”, “response to the hormone”, and

“mitotic cell cycle process”. The molecular functions (MFs) are

mainly enriched in “oxidoreductase activity” , “protein

homodimerization activity”, “kinase binding”, “ATP-dependent
Frontiers in Oncology 06
activity”, and “amide binding”. The cellular component (CC)

analysis revealed that the differentially expressed genes (DEGs)

were predominantly associated with cellular components such as

“blood microparticle”, “mitochondrial matrix”, “secretory granule
B C

D E F

G H I J

A

FIGURE 3

Volcano and Venn diagrams of differentially expressed genes. (A, B) Volcano plot showing DEGs in liver cancer tissues and non-tumor samples in GSE14520
and GSE60502 datasets, respectively. (C) Venn diagram showing the overlapping DEGs from GSE14520 and GSE60502 datasets. (D, E) Volcano plot showing
DEGs in pancreatic cancer tissues and non-tumor samples in GSE16515 and GSE28735 datasets, respectively. (F) Venn diagram showing the overlapping
DEGs from GSE16515 and GSE28735 datasets. (G–I) Volcano plot showing DEGs in bladder cancer tissues and non-tumor samples in GSE13507, GSE23732,
and GSE37815 datasets, respectively. (J) Venn diagram showing the overlapping DEGs from GSE13507, GSE23732, and GSE37815 datasets. Red dots indicate
genes highly induced in cancer; green dots indicate genes greatly reduced in cancer; black dots indicate non-DEGs.
B C

D E F

A

FIGURE 4

GO and KEGG enrichment analysis of DEGs. (A–C) GO enrichment in liver cancer, pancreatic cancer, and bladder cancer, respectively; and
(D–F) KEGG pathway analysis of liver, pancreatic, and bladder cancers, respectively.
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lumen”, “spindle”, and “external side of the plasma membrane”.

KEGG pathway analysis shows that the DEGs are significantly

involved in several key pathways, including the “pathway in

cancer” , “drug metabolism-cytochrome P450 pathway” ,

“complement and coagulation cascades”, “cell cycle”, and “carbon

metabolism” (Figure 4D).

The results of GO analysis of DEG in pancreatic cancer are

shown in Figure 4B, wherein the most important BPs include

“regulation of cell adhesion”, “positive regulation of cell

migration”, “tissue morphogenesis”, “monocarboxylic acid

metabolic process”, and “extracellular matrix organization”. The

main enrichment of MFs is observed in “calcium ion binding”,

“extracellular matrix structural constituent”, “lipid binding”,

“serine-type peptidase activity”, and “oxidoreductase activity”.

The CC consists mainly of the “extracellular matrix”, “apical part

of the cell”, “endoplasmic reticulum lumen”, “perinuclear region of

cytoplasm”, and “lytic vacuole”. KEGG pathway analysis reveals

that the DEGs plays a crucial in the “protein digestion and

absorption”, “retinol metabolism”, “ECM-receptor interaction”,

“transcriptional mis-regulation in cancer”, and “complement and

coagulation cascades” (Figure 4E).

The results of GO analysis of DEG in bladder cancer are shown

in Figure 4C, and its most important BPs include “supramolecular

fiber organization” , “regulation of supramolecular fiber

organization”, “cellular response to cytokine stimulus”, “positive

regulation of cell death”, and “regulation of MAPK cascade”. The

MFs are mainly enriched in “structural molecule activity”, “actin

binding”, “lipid binding”, “protein homodimerization activity”, and

“heparin-binding”. The CC consists mainly of the “extracellular

matrix”, “contractile fiber”, “polymeric cytoskeletal fiber”, “focal

adhesion”, and “receptor complex”. KEGG pathway analysis reveals

that the DEGs plays a significant role in the “vascular smooth

muscle contraction”, “cardiac muscle contraction”, “complement

and coagulation cascades”, and “malaria” (Figure 4F).
3.4 PPI network analysis

using the STRING database, a protein-protein interaction (PPI)

network consisting of 714 conserved genes in hepatocellular

carcinoma was constructed. The network comprised of 656 nodes

and 1461 edges (Figure 5A). By considering the degree of

connectivity in the PPI network, CytoNCA identified CDK1,

TOP2A, ASPM, BUB1, NUSAP1, CDC20, DLGAP5, BUB1B,

KIF20A, and CCNB2 as the top ten genes. These genes were

tentatively regarded as potential key genes associated with

hepatocellular carcinoma, emphasizing the need for further

investigation (Figure 5B).

Similarly, a PPI network was established based on 357

conserved genes in pancreatic cancer, revealing a network with 86

nodes and 1133 edges (Figure 5C). Applying the degree of

connectivity analysis, CytoNCA identified ASPM, TOP2A,

DLGAP5, TPX2, CENPF, KIF23, MELK, LAMC2, LAMA3, and
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ANLN as the top ten genes. These genes were provisionally

considered as potential key genes associated with pancreatic

cancer, warranting further investigation (Figure 5D).

Furthermore, a PPI network was constructed based on 101

conserved genes in bladder cancer, consisting of 101 nodes and 131

edges (Figure 5E). Based on the degree of connectivity, CytoNCA

identified TPM2, MYH11, MYL9, TAGLN, CNN1, ACTC1, FLNC,

LMOD1, CSRP1, and VIM as the top ten genes. These genes were

preliminarily regarded as potential key genes associated with

bladder cancer, necessitating further investigation (Figure 5F).
3.5 Expression levels of key genes

The GEPIA2.0 database was used to verify the mRNA

expression levels of key genes in tumor and normal tissues, and

the results are shown in Figure 6. The expression levels of relevant

potential key genes were markedly elevated in liver cancer and

pancreatic cancer tissues compared to normal tissues (Figures 6A,

B); conversely, the expression levels of these genes were significantly

decreased in bladder cancer tissues compared to normal

tissues (Figure 6C).
3.6 Expression of key genes and their
correlation with prognosis

To investigate whether the variation in mRNA expression levels

of key genes affects the correlation between overall survival (OS) in

cancer patients, further analysis was conducted. The GEPIA2.0

online platform was utilized to conduct Kaplan-Meier survival

analysis, to explore the potential associations between key genes

and overall survival (OS) in tumor patients. The analysis revealed

that a majority of the genes exhibited a significant decrease in

survival rate (p < 0.05, Figure 7). High levels of expression of CDK1

(p = 0.00022), TOP2A (p = 0.003), ASPM (p= 0.00072), BUB1 (p =

0.0012), NUSAP1 (p = 0.0067), CDC20 (p = 6.8E-06), DLGAP5 (p=

0.00049), BUB1B (p = 0.0031), and KIF20A (p = 0.0037) were found

to be significantly associated with the OS in patients with liver

cancer (p < 0.05); while CCNB2 (p = 0.053) expression was not

relevant to survival, as shown in Figure 7A.

High levels of expression of ASPM (p = 0.0039), TOP2A (p =

0.038), DLGAP5 (p = 0.0019), TPX2 (p = 0.00036), KIF23 (p =

0.0034), MELK (p = 0.022), LAMA3 (p = 0.00044), and ANLN (p =

0.015) were significantly correlated with the OS of patients with

pancreatic cancer, while CENPF (p = 0.13) and LAMC2 (p = 0.19)

expression were not relevant to survival, as shown in Figure 7B.

High levels of expression of TPM2 (p = 0.0033), MYH11 (p =

0.04), TAGLN (p = 0.0088), CNN1 (p = 0.014), ACTC1 (p =

0.0085), FLNC (p = 0.00067), LMOD1 (p = 0.01), and CSRP1 (p

= 0.0036) were found to be significantly associated with OS in

patients with bladder cancer, while MYL9 (p = 0.061) and VIM (p =

0.14), as shown in Figure 7C.
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3.7 Key gene expressions are correlated
with immune infiltration and immune cells

The study investigated the association between the expression

of key genes and six types of infiltrating immune cells, namely B

cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and

dendritic cells, in order to determine their potential as independent

predictors of cancer treatment and prognosis.

As shown in Table 1 and Figure 8, CDK1, TOP2A, ASPM,

BUB1, NUSAP1, CDC20, DLGAP5, BUB1B, and KIF20A

expression were positively correlated with infiltration of B cells,

CD4+ T cells, macrophages, neutrophils, and dendritic cells. CDK1,

TOP2A, ASPM, BUB1, NUSAP1, DLGAP5, and BUB1B expression

were positively correlated with infiltration of CD8+ T cells.

As shown in Table 1 and Figure 9, ASPM, TOP2A, DLGAP5,

TPX2, KIF23, MELK, and ANLN were positively correlated with
Frontiers in Oncology 08
infiltration of B cells. ASPM, TOP2A, DLGAP5, TPX2, KIF23, and

ANLN were negatively correlated with infiltration of CD4+ T cells.

TOP2A and KIF23 were positively correlated with infiltration of

neutrophils. TOP2A, DLGAP5, KIF23, and ANLN were positively

correlated with infiltration of dendritic cells.

As shown in Table 1 and Figure 10, TAGLN, CNN1, ACTC1,

FLNC, and LMOD1 were negatively correlated with infiltration of B

cells. TAGLN, CNN1, ACTC1, FLNC, and LMOD1 were positively

correlated with infiltration of CD4+ T cells, and macrophages.
3.8 Molecular docking

Molecular docking can be used to explore the optimal binding

mode between compounds and targets. Therefore, to further
B

C D

E F

A

FIGURE 5

PPI and key target screening of differentially expressed genes. (A, C, E) are the PPI figures for liver cancer, pancreatic cancer, and bladder cancer,
respectively; (B, D, F) are the key targets of liver cancer, pancreatic cancer, and bladder cancer.
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investigate interactions between Frondoside A with its target

molecules, CDK1, ASPM, TOP2A, BUB1, CDC20, KIF20A,

TPX2, KIF23, MELK, and FLNC molecules were used as

molecular docking targets, and the molecular binding free

energies listed in Table 2. Our results show that the interaction

between Frondoside A saponins and key targets via hydrogen-

bonding indicated high stability and the binding free energy of the

Frondoside A and the ten key proteins were all < -5 kcal/mol. Of

these, the affinity by CDK1 performed the best (-10.7 kcal/mol).

The 2D docking diagrams of Frondoside A with the receptor targets

were visualized using PyMOL software as shown in Figure 11.

As shown in Figure 11A, Frondoside A and CDK1 amino acid

residues [LYS-34 (2.3 Å),ARG-36 (3.1 Å and 3.4 Å),GLU-163 (2.6

Å),GLU-209 (3.4 Å),GLN-235 (3.0 Å),ARG-170 (3.1 Å),VAL-174

(2.3 Å),GLU-38(2.9 Å),TYR-181 (3.3 Å),ARG-127 (3.2 Å),THR-47

(3.0 Å) and SER-46 (2.3 Å,3.1 Å and 3.2 Å)] formed fifteen

hydrogen bonds at different distances, and Frondoside A-CDK1

had the shortest hydrogen bond with VAL-174 (2.3 Å) and SER-46

(2.3 Å,3.1 Å and 3.2 Å).

As shown in Figure 11B, Frondoside A formed six hydrogen

bonds at different distances with amino acid residues of TOP2A

[ASN-380 (3.4 Å), SER-320 (2.6 Å), GLN-310 (2.7 Å and 3.0 Å) and

LYS-357(3.0 Å and 3.3 Å)] and the hydrogen bond between

Frondoside A-TOP2A and SER-320 (2.6A) was the shortest.

As shown in Figure 11C, Frondoside A formed ten hydrogen

bonds at different distances with amino acid residues of ASPM
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[GLU-68 (2.6 Å),THR-72 (3.1 Å and 3.3 Å),ASN-105 (3.1Å),HIS-

109 (3.2 Å),GLU-108 (2.3 Å),GLN-609 (2.8 Å),GLU-621 (2.8Å),

SER-600 (3.0Å) and HIS-598 (3.4 Å)] and the hydrogen bond

between Frondoside A-ASPM and GLU-108 (2.3 Å) was

the shortest.

As shown in Figure 11D, Frondoside A formed twelve hydrogen

bonds at different distances with amino acid residues of BUB1

[GLN-972 (2.7 Å),ALA-797 (2.4 Å and 2.6 Å),ASP-921(2.0 Å and

3.4 Å), LYS-919 (1.9 Å),SEP-969 (3.1 Å),ASN-922 (2.3 Å),ASP-946

(2.2 Å),GLU-795 (2.2 Å and 2.2 Å) and THR-873 (2.2 Å)] and the

hydrogen bond between Frondoside A- BUB1 and LYS-919 (1.9 Å)

was the shortest.

As shown in Figure 11E, Frondoside A formed ten hydrogen

bonds at different distances with amino acid residues of CDC20

[ASP-397 (2.0 Å), ARG-383 (1.9Å), HIS-381 (2.9 Å), ASP-397 (2.2

Å,2.6 Å and 3.2Å), ARG-380 (2.4 Å,2.5 Å and 2.6 Å), SER-378 (2.0

Å)] and the hydrogen bond between Frondoside A- CDC20 and

ARG-383 (1.9Å) was the shortest.

As shown in Figure 11F, Frondoside A formed ten hydrogen

bonds at different distances with amino acid residues of KIF20A

[ARG-609 (2.1 Å,2.2 Å,2.5 Å,2.7 Å and 2.8 Å), GLU-603 (2.0 Å) and

GLY-600 (3.0Å,3.1 Å,3.1 Å and 3.6 Å)] and the hydrogen bond

between Frondoside A- KIF20A and GLU-603 (2.0 Å) was

the shortest.

As shown in Figure 11G, Frondoside A formed ten hydrogen

bonds at different distances with amino acid residues of TPX2[SER-
A B

C

FIGURE 6

Differential expression analysis of key genes in tumors in the GEPIA2.0 database. (A) Liver cancer tissue; (B) Pancreatic cancer tissue; and (C) Bladder
cancer tissue.
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266 (3.0 Å), PRO-191 (2.3Å), TYR-197 (2.2 Å and 3.2Å), ARG-189

(3.0 Å and 3.2Å), ARG-195 (2.8 Å,2.9 Å and 3.4 Å) and SER-20 (3.1

Å)] and the hydrogen bond between Frondoside A- TPX2 and

TYR-197 (2.2 Å and 3.2Å) was the shortest.

As shown in Figure 11H, Frondoside A formed nine hydrogen

bonds at different distances with amino acid residues of KIF23

[ASN-172 (3.3 Å and 3.3Å), TRP-168 (3.0Å), ASN-148 (3.0Å),

TRP-149 (2.4Å), ARG-145 (2.6 Å,3.3 Å and 3.1 Å) and ILE-144 (3.3
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Å)] and the hydrogen bond between Frondoside A- KIF23 and

TYR-197 TRP-149 (2.4Å) was the shortest.

As shown in Figure 11I, Frondoside A formed nine hydrogen

bonds at different distances with amino acid residues of MELK

[TYR-97 (3.2 Å), LYS-145 (3.1Å), HIS-68 (2.9 Å and 3.2Å), SER-

118 (3.3Å), ARG-114 (2.4 Å and 3.5 Å), TYR-269 (2.2 Å) and GLU-

272 (3.5 Å)] and the hydrogen bond between Frondoside A- MELK

and TYR-269 (2.2 Å) was the shortest.
B

C

A

FIGURE 7

Relationship between target gene expression and survival of tumor patients. (A–C) are the total survival time of hepatocellular carcinoma, pancreatic
cancer, and bladder cancer, respectively.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1307838
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1307838
As shown in Figure 11J, Frondoside A formed three hydrogen

bonds at different distances with amino acid residues of FLNC

[ASN-1727 (2.9 Å), ASN-1727 (2.7Å) and HIS-1731 (2.98Å)] and

the hydrogen bond between Frondoside A- FLNC and ASN-1727

(2.7Å) was the shortest.
4 Discussion

Conventional chemotherapeutic drugs currently in use have

given rise to drug resistance due to diverse mechanisms of action.

Therefore, new and effective therapeutic agents are urgently needed

to treat cancer (14). The targeting of cancer growth, survival,

migration, and metastasis pathways using drugs with minimal or

no toxicity to normal cells is of significant importance (32).

Frontside A has been shown to have anticancer activities in many

cancer models, such as bladder cancer, lung cancer, breast cancer

(33–36). In the present study, Frondoside A has been demonstrated

to exhibit concentration-dependent inhibitory effects on the

viability of cancer cells. Frondoside A has been observed to

significantly reduce cell migration of HepG2, Panc02, and UM-

UC-3 cells in a time-dependent manner at IC50 concentrations.
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Moreover, the inhibitory effects of Frondoside A on cell migration

were found to be superior to those of EPI. It is important to note

that the development of anti-tumor therapeutic agents that induce

apoptosis and inhibit tumor invasion or metastasis are highly

desirable (37). The effects of Frondoside A on cell viability or

proliferation have been tested using multiple different methods in

many different cancers (14, 38, 39). Frondoside A has demonstrated

potent growth inhibitory effects on human pancreatic cancer cells,

exhibiting an EC50 of approximately 1 µM (38). The observed

inhibition of proliferation is accompanied by a significant increase

in apoptosis (14, 38). Frondoside A exhibits significant cytotoxicity

against urothelial carcinoma cells, with IC50 values ranging from

0.55 to 2.33 mM (33, 40). Consistent with our findings, Frondoside

A, a marine-derived compound, has demonstrated potential as a

therapeutic agent for the treatment of liver, pancreatic, and bladder

cancers. While the precise mechanism underlying the anti-cancer

effects of Frondoside A remains unclear (14), and the effect of

Frondoside A on cell cycle and apoptosis of HepG2, Panc02, and

UM-UC-3 require further investigation.

Recently, a study has reported that metformin can induce G2/M

arrest and significantly inhibit the proliferation of HCC cells (41).

Additionally, metformin has been found to effectively downregulate
TABLE 1 Analysis of key gene expression in various immune cells in liver, pancreatic, and bladder cancers.

Cancers Targets
B cells CD8+ T cells CD4+ T cells macrophages neutrophils dendritic cells

Rho p Rho p Rho p Rho p Rho p Rho p

Liver cancer

CDK1 0.433 3.51e-17 0.114 3.36e-02 0.256 1.43e-06 0.347 3.30e-11 0.187 4.96e-04 0.537 3.80e-27

TOP2A 0.41 2.05e-15 0.15 5.18e-03 0.247 3.30e-06 0.372 9.27e-13 0.239 7.34e-06 0.531 1.60e-26

ASPM 0.364 3.24e-12 0.148 5.81e-03 0.21 8.45e-05 0.294 2.76e-08 0.203 1.43e-04 0.453 7.64e-19

BUB1 0.427 1.05e-16 0.146 6.58e-03 0.235 1.06e-05 0.364 3.05e-12 0.231 1.43e-05 0.564 2.60e-30

NUSAP1 0.459 2.40e-19 0.147 6.24e-03 0.26 1.01e-06 0.382 2.09e-13 0.183 6.17e-04 0.545 4.94e-28

CDC20 0.395 2.42e-14 0.103 5.68e-02 0.213 6.44e-05 0.332 2.48e-10 0.163 2.34e-03 0.531 1.62e-26

DLGAP5 0.439 1.01e-17 0.153 4.42e-03 0.234 1.12e-05 0.354 1.22e-11 0.237 8.24e-08 0.568 6.74e-31

BUB1B 0.442 5.82e-18 0.121 2.43e-02 0.27 3.72e-07 0.393 3.25e-14 0.223 2.95e-05 0.565 1.64e-30

KIF20A 0.411 1.81e-15 0.089 9.76e-02 0.245 4.08e-06 0.33 3.31e-10 0.218 4.39e-05 0.516 6.42e-25

Pancreatic cancer

ASPM 0.28 2.06e-04 0.017 8.25e-01 -0.155 4.23e-02 -0.045 5.60e-01 0.13 8.94e-02 0.12 1.19e-01

TOP2A 0.276 2.52e-04 0.106 1.68e-01 -0.255 7.47e-04 0.062 4.19e-01 0.186 1.49e-02 0.207 6.52e-03

DLGAP5 0.282 1.83e-04 0.054 4.81e-01 -0.171 2.51e-02 -0.066 3.94e-01 0.142 6.31e-02 0.177 2.08e-02

TPX2 0.297 8.06e-05 -0.023 7.62e-01 -0.203 7.71e-03 -0.072 3.52e-01 0.067 3.81e-01 0.089 2.45e-01

KIF23 0.286 1.53e-04 0.084 2.72e-01 -0.183 1.67e-02 -0.002 9.78e-01 0.176 2.14e-02 0.195 1.05e-02

MELK 0.285 1.54e-04 -0.033 6.71e-01 -0.092 2.30e-01 -0.07 3.64e-01 0.077 3.19e-01 0.082 2.88e-01

ANLN 0.243 1.29e-03 0.019 8.01e-01 -0.22 3.86e-03 0.031 6.91e-01 0.125 1.03e-01 0.172 2.41e-02

Bladder cancer

TAGLN -0.178 5.98e-04 0.039 4.5e-01 0.204 8.25e-05 0.28 4.93e-08 0.005 9.31e-01 0.079 1.29e-01

CNN1 -0.171 9.79e-04 -0.028 5.96e-01 0.22 2.05e-05 0.255 7.45e-07 -0.025 6.29e-01 -0.022 6.71e-01

ACTC1 -0.151 3.68e-03 0.026 6.15e-01 0.159 2.16e-03 0.276 7.69e-08 0.014 7.90e-01 0.031 5.49e-01

FLNC -0.147 4.79e-03 0.107 4.00e-01 0.167 1.33e-03 0.338 2.78e-11 0.095 7.00e-01 0.095 6.79e-01

LMOD1 -0.129 1.33e-02 -0.088 9.13e-01 0.252 9.66e-07 0.303 2.84e-09 -0.044 4.01e-01 -0.087 9.47e-01
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the expression of CDK1 (41). Several studies have reported

significant upregulation of TOP2A mRNA and protein expression

in hepatocellular carcinoma (HCC), suggesting that TOP2A is

overexpressed in this cancer type and may serve as a potential

biomarker for HCC (42). ASPM overexpression has been
Frontiers in Oncology 12
recognized as a molecular marker that correlates with heightened

invasive and metastatic potential in hepatocellular carcinoma

(HCC) (43, 44). In contrast, upregulation of BUB1 significantly

promoted cell proliferation, while downregulation of BUB1

expression inhibited the proliferation of liver cancer cell lines
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FIGURE 8

Analysis of key gene expression in various immune cells in liver cancer. The correlation between the expression of (A) CDK1, (B) TOP2A, (C) ASPM,
(D) BUB1, (E) NUSAP1, (F) CDC20, (G) DLGAP5, (H) BUB1B, and (I) KIF20A and the degree of immune invasion in liver cancer was investigated using
the TIMER database (http://timer.cistrome.org). The Rho value, which indicates Pearson’s correlation coefficient, was used to evaluate the
relationship between the genes and immune cells. When |Rho| > 0.1 and p < 0.05, it was considered that a correlation existed between the genes
and immune cells. In general, the shape of the curve varied depending on the Rho value. When Rho < 0.5, the curve was elliptical; when Rho = 0.5,
the curve was parabolic; and when Rho > 0.5, the curve was hyperbolic. These findings provide insights into the potential roles of these key genes in
immune invasion in liver cancer.
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(45–47). Nucleolar and spindle-associated protein 1 (NUSAP1) is a

member of the NUSP1 family of nucleolar-spindle-associated

proteins and is involved in spindle microtubule organization (48).

Li (49, 50) et al. studied the impact of CDC20 on the progression of

hepatocellular carcinoma (HCC) and found that CDC20 expression

was elevated in HCC samples. Transfection with CDC20 small

interfering RNA in HCC cells led to reduced cellular proliferation

and increased cell numbers in the G2/M phase. DLGAP5 (also

known as HURP or KI-AA0008) is a cell-cycle-regulated protein
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that plays a role in tumor development (51). BUB1B, a crucial

mitotic spindle checkpoint, is overexpressed in adrenocortical

carcinomas (52) and promotes tumor proliferation while inducing

radio resistance in glioblastoma (53, 54). KIF20A accumulates in

the nucleus during the G2 phase of the cell cycle and promotes both

normal and pathological hepatocyte proliferation (55).

ASPM-iII has been shown to selectively regulate cyclin E

expression levels and cell cycle progression in PDAC cells (56).

TOP2A expression is upregulated in pancreatic cancer tissues
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FIGURE 9

Analysis of key gene expression in various immune cells in pancreatic cancer. The relationship between the expression of (A) ASPM, (B) TOP2A,
(C) DLGAP5, (D) TPX2, (E) KIF23, (F) MELK, and (G) ANLN and the degree of immune invasion in pancreatic cancer was analyzed using the TIMER
database (http://timer.cistrome.org). The Rho value, which indicates Pearson’s correlation coefficient, was used to evaluate the relationship between
the genes and immune cells. When |Rho| > 0.1 and p < 0.05, it was considered that a correlation existed between the genes and immune cells. The
shape of the curve varied depending on the Rho value, with smaller Rho values resulting in smoother curves, while larger Rho values resulted in
fuller curves. Elliptical curves were observed when Rho < 0.5, parabolic curves when Rho = 0.5, and hyperbolic curves when Rho > 0.5. These
findings provide insights into the potential roles of these key genes in immune invasion in pancreatic cancer.
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compared to non-tumor tissues, and its upregulation is significantly

associated with tumor metastasis and shorter survival in pancreatic

cancer patients (57–59). Knockdown of TOP2A in pancreatic

cancer cell lines inhibits cell proliferation and migration.

DLGAP5 expression is significantly elevated in pancreatic cancer

tissues and is correlated with patients’ survival and progression-free

survival (60). Knockdown of DLGAP5 inhibits pancreatic cancer

cell proliferation, invasion, and migration (61). TPX2 has been

identified as a prognostic biomarker of KARS-mutant PDAC (62).

Knockdown of KIF23 can inhibit pancreatic cell proliferation (63).

Silencing of MELK significantly reduces pancreatic cancer

development (64), as MELK promotes CDK1 involvement in the

cell cycle and cell progression in cancers (65). ANLN expression is

significantly upregulated in pancreatic cancer tissues and cell lines

and is associated with tumor size, differentiation, TNM stage, lymph
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node metastasis, distant metastasis, and poor prognosis in

pancreatic cancer. ANLN knockdown inhibits several cell-cell

adhesions-related genes, including the gene encoding LIM and

SH3 protein 1 (LASP1). LASP1 upregulation partially reverses the

tumor-suppressive effect of ANLN downregulation on pancreatic

cancer cell progression. ANLN contributes to pancreatic cancer

progression by regulating the EZH2/miR-218-5p/LASP1 signaling

axis (66, 67).

Consistent with our study, previous studies have reported these

key genes (TAGLN, CNN1, ACTC1, LMOD1) play important roles

in bladder cancer. TAGLN is a recognized actin-binding protein

that modulates the dynamics of the actin cytoskeleton (68–70).

CNN1 was significantly lowly expressed in BC tissues and cells (70).

ACTC1 is responsible for encoding cardiac actin, and a c.G301A

mutation in this gene has been shown to be associated with
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FIGURE 10

Analysis of key gene expression in various immune cells in bladder cancer. The relationship between the expression of (A) TAGLN, (B) CNN1,
(C) ACTC1, (D) FLNC, and (E) LMOD1 and the degree of immune invasion in bladder cancer was analyzed using the TIMER database (http://timer.
cistrome.org). The Rho value, which indicates Pearson’s correlation coefficient, was used to evaluate the relationship between the genes and
immune cells. When |Rho| > 0.1 and p < 0.05, it was considered that a correlation existed between the genes and immune cells. The shape of the
curve varied depending on the Rho value, with smaller Rho values resulting in smoother curves, while larger Rho values resulted in fuller curves.
Elliptical curves were observed when Rho < 0.5, parabolic curves when Rho = 0.5, and hyperbolic curves when Rho > 0.5. These findings provide
insights into the potential roles of these key genes in immune invasion in bladder cancer.
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hypertrophic cardiomyopathy, which, in some instances, leads to

sudden cardiac death (71). Previous studies showed that ACTC1 is

related to cancer prognosis (72, 73), ACTC1 expression is

significantly upregulated in glioblastoma and inhibits migration of

cancer cells (74), and ACTC1 correlates with the prognosis of

glioblastoma and can be used as a novel prognostic marker in

glioma (72). LMOD1 belongs to the LMOD family of proteins,

which exhibit a striking similarity to actin-capping proteins referred

to as Tropomodulins (TMODs) (75). LMOD1, also known as
15
Leiomodin 1, displays widespread expression in a majority of

tissues, with particularly elevated levels in the thyroid, skeletal

muscle, eye muscle, and ovary (76). Dysregulated expression of

LMOD1 may potentially be linked to various pathological

conditions (77). LMOD1 was found to be a new gastric cancer

biomarker and therapeutic target that induces EMT by regulating

the FAK-Akt/mTOR pathway (78).

Molecular docking was used in this study to investigate the

mechanism and provide valuable guidance for drug screening and

design in future experiments. Based on our molecular

investigations, the free energies of Frondoside A and the critical

proteins were observed to be below -5 kcal/mol, indicating favorable

binding of the aforementioned active ingredients to their respective

targets. Studies have shown that Frondoside A can down-regulate

CDC20 gene expression, which inhibits the proliferation and

migration of cancer cells and promotes cycle arrest and cell

apoptosis (79, 80). In addition, Zhang and colleagues have shown

that TOP2A deletion can significantly inhibit the proliferation and

migration of cancer cells and induce cell apoptosis (81–83).

Furthermore, down-regulated expression of CDK1 not only

inhibits proliferation and migration of hepatocellular carcinoma

cells, but also induces cycle arrest and specific apoptosis of

hepatocellular carcinoma cells (84, 85). Finally, overexpression of

CNN1 has been shown to inhibit the proliferation, invasion and

metastasis of bladder cancer cells (86). Therefore, it is likely that

that Frondoside A inhibits the proliferation and metastasis of

cancer cells by down-regulating CDK1, CDC20, TOP2A and up-

regulating CNN1.It should be noted that the free binding energy
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FIGURE 11

Molecular docking diagrams of Frondoside A and key genes. The yellow, red, green, and light blue represent the hydrogen bond, Frondoside A,
amino acid residues, and target protein, respectively. (A) CDK1, (B) TOP2A, (C) ASPM, (D) BUB1, (E) CDC20, (F) KIF20A, (G) TPX2, (H) KIF23, (I) MELK,
and (J) FLNC.
TABLE 2 Binding Free energy of Frondoside A and targets.

Targets Frondoside A (kcal/mol)

CDK1 -10.7

ASPM -10.0

BUB1 -9.2

TOP2A -9.1

MELK -9.1

KIF23 -7.7

TPX2 -7.6

FLNC -6.8

CDC20 -6.3

KIF20A -5.4
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between Frondoside A and CDK1 was the lowest, measuring

-10.7 kcal/mol. This indicates that Frondoside A may inhibit the

development of liver cancer through its effect on the cell cycle (39).

The specific mechanisms need to be further investigated.

In addition, Frondoside A may affect immune infiltration by

modulating certain targets. These targets may involve activation,

recruitment, or inhibition of immune cells. For example,

Frondoside A may inhibit the expression of certain pro-

inflammatory cytokines in order to reduce the inflammatory

response and immune cell infiltration. Alternatively, it may act

directly on immune cells, such as T cells or macrophages, affecting

their activation and function. This effect may help to improve the

tumor microenvironment and enhance anti-tumor effects.

However, further studies are needed to validate this hypothesis

and determine the specific molecular mechanisms.
5 Conclusions

The integration of bioinformatics and molecular docking

analyses has enhanced our comprehension of the underlying

molecular mechanisms through which Frondoside A exerts its

effects in hepatocellular carcinoma, pancreatic cancer, and

bladder cancer. Our findings suggest that Frondoside A holds

great promise as a potential therapeutic candidate for the

treatment of these cancers due to its multi-targeted and multi-

mechanistic approach.
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