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Universidad Autónoma de Puebla, Puebla, Mexico, 4Consejo Nacional de Humanidades, Ciencias
y Tecnologı́as (CONAHCYT), Mexico City, Mexico, 5Hospital Infantil de México ‘Federico Gómez’,
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Introduction: The decisive key to disease-free survival in B-cell precursor

acute lymphoblastic leukemia in children, is the combination of diagnostic

timeliness and treatment efficacy, guided by accurate patient risk

stratification. Implementation of standardized and high-precision

diagnostic/prognostic systems is particularly important in the most

marginalized geographic areas in Mexico, where high numbers of the

pediatric population resides and the highest relapse and early death rates

due to acute leukemias are recorded even in those cases diagnosed as

standard risk.

Methods: By using a multidimensional and integrated analysis of the

immunophenotype of leukemic cells, the immunological context and the

tumor microenvironment, this study aim to capture the snapshot of acute

leukemia at disease debut of a cohort of Mexican children from vulnerable

regions in Puebla, Oaxaca and Tlaxcala and its potential use in

risk stratification.

Results and discussion: Our findings highlight the existence of a distinct

profile of ProB-ALL in children older than 10 years, which is associated with a

six-fold increase in the risk of developing measurable residual disease (MRD).

Along with the absence of CD34+ seminal cells for normal hematopoiesis,

this ProB-ALL subtype exhibited several characteristics related to poor

prognosis, including the high expression level of myeloid lineage markers

such as MPO and CD33, as well as upregulation of CD19, CD34, CD24, CD20

and nuTdT. In contrast, it showed a trend towards decreased expression of

CD9, CD81, CD123, CD13, CD15 and CD21. Of note, the mesenchymal

stromal cell compartment constituting their leukemic niche in the bone

marrow, d i sp layed charac te r i s t ics o f potent i a l suppress i ve

microenvironment, such as the expression of Gal9 and IDO1, and the

absence of the chemokine CXCL11. Accordingly, adaptive immunity

components were poorly represented. Taken together, our results suggest,

for the first time, that a biologically distinct subtype of ProB-ALL emerges in

vulnerable adolescents, with a high risk of developing MRD. Rigorous

research on potential enhancing factors, environmental or lifestyle, is

crucial for its detection and prevention. The use of the reported profile for

early risk stratification is suggested.
KEYWORDS

tumor microenvironment, risk stratification, ProB-ALL, measurable residual disease
(MRD), Mexican children, acute leukemia
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1 Introduction

In Mexico, acute leukemias (AL) stand as the primary cause of

mortality due to disease in children. Over a 20-year period (1998-

2018), there has been a significant rise in mortality rates from AL in

individuals younger than 19 years of age (1, 2). AL account for more

than 50% of childhood cancer cases, with an overall survival rate

close to 50%, and the age group 0-4 showing the highest incidence

rate, while the group aged 15-19 experiencing the highest

aggressiveness and mortality rates (3, 4). AL are characterized by

the uncontrolled proliferation of oligoclonal precursors, either

lymphoid or myeloid, within the bone marrow (BM), where

pathological hematopoiesis coexists with residual hematopoiesis,

leading to dysfunction in the formation of all types of blood cells

due to tumor growth (5, 6).

Of note, it has recently been suggested that the genetic

landscape of Mexicans may influence the biology and

manifestation of leukemia, and contribute to the increase in the

number of people with high-risk ALL (7, 8). Furthermore, the

impact of social inequality on childhood cancer mortality rates in

Mexico cannot be ignored, since disproportionately higher

mortality rates are registered in States characterized by high or

very high levels of marginalization (3). Moreover, clear differences

in the incidence and risk prognosis of ALL are shown among age

groups, with male adolescents being target of poor prognosis

diseases (2). Such heterogeneity is not only associated with the

molecular identity of the malignant tumor but is also a reflection of

the social, economic, and geographical diversity of the Country,

which denotes substantive gaps in access to health services,

socioeconomic status, and environmental exposition. Indeed, the

States of Puebla and Oaxaca, where marginated populations have

limited access to health services and socioeconomic or

environmental vulnerability are prevalent, have shown constant

mortality increase (4). Thus, regionalization of childhood leukemia

requires a systemic approach allowing the evaluation of

environmental factors to establish more precise clinical and

research approaches for the development of therapies adapted to

local populations. Likewise, the identification of local risk factors

involved in the development of leukemia is crucial for the correct

sub-stratification of patients, registry, and prevention.

An early and accurate diagnosis to identify and classify

leukemic cells is essential for appropriate risk stratification and

the establishment of personalized treatment plans, less intensive

and toxic for standard-risk cases compared to high-risk diagnosis.

Unfortunately, only approximately 17% of cases at diagnosis exhibit

genetic rearrangements associated with prognosis, which limits risk

stratification. Furthermore, relapse frequency in Mexican standard-

risk patients is 55%, suggesting that the sub-stratification of these

patients is crucial (1–4, 6).

Immunophenotyping by multiparametric flow cytometry plays

a pivotal role in the precise characterization and quantification of

AL burden, making it invaluable for accurate classification of

prognostic subgroups and monitoring treatment responses

through the detection of MRD. It allows the classification into

acute lymphoid leukemia (ALL), which can be further categorized

as B-ALL or T-ALL, acute myeloid leukemia (AML) and mixed
Frontiers in Oncology 03
phenotype acute leukemia (MPAL), depending on the lineage

precursor involved. Furthermore, several genetic features of

leukemic cells are associated with the expression of specific

antigens, aiding in risk group stratification (9). Given the high

heterogeneity of the disease, it is crucial to identify

immunophenotypic profiles that facilitate the sub-classification

and risk stratification to contribute to the ongoing efforts to

reduce mortality rates in vulnerable populations. At least three

different clusters, within B-ALL, depending on the differentiation

stage of the leukemic blasts have been clearly identified in Mexican

children: ProB (CD34+CD10+CD19+), PreB (CD34-CD10+CD19+)

or the combination of both ProB and PreB precursors

(10).Moreover, hematopoietic stem cells (HSCs) reside and are

maintained in specialized microenvironments within the BM

known as niches, which are comprised of various cell types,

including stromal cells, particularly mesenchymal stromal cells

(MSCs) (11). BM niches play an important role in sustaining

hematopoiesis (12), by influencing different functions of HSCs

such as homing, mobilization, quiescence, self-renewal or lineage

commitment, protecting the HSCs pool integrity, maintaining

immune privileged zones to safeguard HSCs against insults or

attack by immune cells (13). In ALL, leukemic cells hijack BM

niches, promoting leukemia expansion and creating sanctuaries for

tumor cells, in which MSCs play a fundamental role in the

pathogenesis and drug resistance of B-ALL cells during

chemotherapy, allowing for the reemergence of the disease (14–

16). The evaluation of niches, particularly MSCs, offers new

therapeutic opportunities due to their negative effect, which

corresponds to a critical issue in the treatment of cancer patients.

Given the relevance of urgently addressing the early mortality of

Mexican children with leukemia from vulnerable geographic

regions in the Country, in this work, we have focused the

subclassification by immunophenotype on the identification of

risk profiles, considering, not only the tumor characteristics, but

the immunological and microenvironmental context of the patients.

Our results suggest the occurrence of a biologically distinct subtype

of ProB-ALL in adolescents older than 10 years, with associated risk

of MRD and a potentially suppressive niche.
2 Methods

2.1 Patient characteristics and
sample collection

This research was performed in accordance with the Declaration

of Helsinki and was approved by the Ethics, Research and Biosafety

Committees from the National Committee of Scientific Research at

IMSS (R-2020-785-177). All samples were collected after informed

consent from parents. The study included 159 pediatric patients

diagnosed with acute leukemia, who were referred to the

Oncoimmunology and Cytomics Laboratory at IMSS for

immunophenotyping test. This cohort consisted of pediatric

patients from March 2022 to June 2023 attended at the Unidad

Médica de Alta Especialidad (UMAE) Hospital de Especialidades

IMSS, Hospital para el Niño Poblano, Hospital Infantil de Tlaxcala,
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Hospital de la Niñez Oaxaqueña and Hospital General de Zona No.1

IMSS. Control BM (No-leukemic patients) were obtained from

patients with suspected leukemia but after immunophenotyping no

blast cells were detected in the BM sample. BM specimens were

collected by aspiration before any treatment and according to

international and institutional guidelines.
2.2 Immunophenotyping and classification
of acute leukemia

BM samples were stained and acquired for flow cytometry

analysis according to EuroFlow guidelines. First, samples were

stained using the Acute Leukemia Orientation Tube (ALOT) to

determine the lineage of immature blast cell populations. We

classified AL in five categories according to the affected cell

lineage: ProB-ALL (CD34+ CD19+ cyCD79a+), ProB-PreB-ALL

(CD34-/+ CD19+ cyCD79a+), PreB-ALL (CD34- CD19+

cyCD79a+), T-ALL (cyCD3+ smCD3lo CD7+) and AML (cyMPO+

or CD7+cyCD3-). Once identified the malignant hematopoietic

lineage, complementary antibody panels were applied (BCP-ALL,

T-ALL and AML, Supplementary Table 1). Sample acquisition was

conducted using BD FACSCanto II or BD FACSLyric cytometers.

Analysis of flow cytometry data was performed using Infinicyt

2.0 software.
2.3 Isolation, expansion and
immunophenotyping of BM mesenchymal
stromal cells

Mononuclear cells (2-4 x 106) from BMwere placed in culture with

low glucose Dulbecco´s modified Eagle´s medium (DMEM, Gibco)

supplemented with 10% fetal bovine serum (FBS, Gibco) and 100 U/ml

of penicillin/streptomycin (Gibco) (17). MSC were then isolated by

their plastic adherence properties according to the International Society

for Cellular Therapy (18). Upon confluence, cell monolayers were

trypsinized and reseeded for their expansion and biological

characterization. All experiments were conducted with harvested cells

from the second passage.MSC staining for flow cytometry analyses was

performed according to our previous report (17) for surface molecules

of interest, including CD90, CD73, CD105 and CD45 markers for

general MSC identification, and CXCL12, CXCL11, Galectin-9

(LGALS9), CD39 and IDO1 for immune regulatory functions.
2.4 High dimensional reduction analysis

Age, frequencies of residual and leukemic hematopoietic cell

populations and blast expression based on mean fluorescence

intensity of ALOT were subjected to unsupervised clustering

using the graph-based visualization method Uniform Manifold

Approximation and Projection (UMAP) and Principal

Component Analysis (PCA). The analysis was performed in

Rstudio with the library “umap” and GraphPad Prism 10.0.3 (La

Jolla, California USA), respectively.
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2.5 Statistical analysis

Bar graphs show mean values and standard deviation (SD).

GraphPad Prism version 10.0.2 for Windows (La Jolla, California

USA) was used for data analysis. Differences within groups were

established by the non–parametric Kruskal–Wallis with Dunn’s

post–test to compare continuous variables. Relative risk (RR) and

95% confidence interval (CI) was calculated with Koopman

asymptotic score. Relative risk values of detectable MRD

(RRMRDd) were calculated by classification (each group vs PreB-

ALL), sex (males vs females), age group I (1-9 vs 10-18 years old

group), age group II (each age group vs 5-9 years old group),

phenotype classification and age group (each group vs the ProB-

PreB-ALL 1-9 years old group) and by UMAP cluster (each group

vs group 1). To generate phenotypic signatures using Principal

Component Analyses (PCA), we used frequencies and mean

fluorescence intensities of each tumoral and immunological

populations. Pearson’s test was used to determine correlations

between signatures. p values < 0.05 were considered

statistically significant.
3 Results

3.1 ProB-ALL with high expression of
myeloid markers is prevalent in Mexican
children from vulnerable regions

This study includes a cohort of 159 pediatric patients aged 1 to 17

years, with a median age at presentation of 9 years. The age

distribution of cases shows the highest incidence occurring within

the 10-14 age group, accounting for 33.96% of cases. While the age

group of 1-4 years constituted 29.56% of cases and the 5-9 years age

group accounted for 27.04%, adolescents 15-18 years old showed a

notably lower incidence rate of 9.44% (Figure 1A). Among these

patients, 51.57%weremales, although females weremore prevalent in

the 1-4 age group, while males in the 10-14 age group (Figure 1B). At

clinical diagnosis, the distribution of leukemia subtypes was: 78.62%

of patients were classified as B-ALL (mainly categorized as ProB-

ALL), 3.14% T ALL, 16.98% AML, 0.63% MPAL (mixed phenotype

acute leukemia) and 0.63% blastic plasmacytoid dendritic cell

neoplasm (BPDCN). A noticeable trend emerges, showing a

positive correlation between the incidence of ProB-ALL cases and

age, in contrast to the negative correlation between ProB-PreB cases

and age. Remarkably, all cases of T-ALL were exclusively observed in

the 10-14 age group (Figure 1C).

At the onset of AL, normal CD34+ hematopoietic stem and

progenitor cells (HSPCs) coexists with malignant blasts within the

same hematopoietic niche, so they and their progeny recurrently

show a crucial reduction in cell frequencies. When investigating

both residual and malignant cell populations to evaluate the degree

of differentiation imbalance based on the AL subtype, we observed

that patients with AML debut with a significantly lower tumor

burden compared to those with ProB-ALL. Accordingly, ProB-ALL

cases exhibit the lowest frequencies of normal CD34+ seminal cells,

as well as T, B and NK lymphoid lineage cells (Figure 1D).
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Strikingly, ProB-ALL leukemic cells show higher expression levels

of myeloid markers such as CD66c, CD33 and the immaturity

marker CD123, along with the apparent downregulation of CD20,

CD38, CD81 and CD24 expression. In contrast, PreB-ALL blasts

display significantly lower expression levels of such infidelity
Frontiers in Oncology 05
markers, including CD66c and CD33, while the highest

expression of CD81 and CD24 was recorded in this ALL subtype.

Interestingly, the potentially transitional ProB-PreB-ALL subtype

exhibited the highest co-expression of myeloid marker CD15 and

lymphoid proteins such as nuTdT, CD10 and CD20 (Figure 1E).
A B

D

E

C

FIGURE 1

Cellular epidemiology of acute leukemias (AL) in Mexican children from Puebla, Oaxaca, and Tlaxcala. Distribution of AL cases by (A) age groups,
(B) sex, (C) AL subtype according to age (D) Cell frequencies of normal and malignant hematopoietic populations at diagnosis by AL subtype. Bar
graphs exclude MPAL and BPDCN due to the limited occurrence of cases (one each). (E) Marker expression patterns in B-ALL subtypes. AL, Acute
Leukemia ALL, Acute Lymphoblastic Leukemia; AML, Acute Myeloid Leukemia; MPAL, Mixed Phenotype Acute Leukemia; BPDCN, Blastic
Plasmacytoid Dendritic Cell Neoplasm; NK, Natural Killer; MFI, Mean Fluorescence Intensity; nuTdT, nuclear Terminal deoxynucleotidyl Transferase.
* p<0.05, ** p<0.01, ***p<0.001. Bar plots shown mean ± standard deviation. n AL cases=159.
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3.2 Adolescents aged 10-18 years suffering
ProB-ALL or AML face the highest relative
risk of residual disease

To identify potential patient groups with more susceptibility to

adverse events, we calculated the relative risk (RR) of detecting

MRD based on variables such as AL subtype, sex, age and combined

stratification of AL subtype and age range. Regarding AL subtype,

patients with AML demonstrated a significantly higher risk. A

tendency for higher risk was observed in patients with ProB-ALL,

followed by patients with ProB-PreB-ALL, although these did not

reach significance. No significant difference was observed between

females and males. On the other hand, patients older than 10 years

were found to have a 2.649-fold increased risk of detectable MRD.

Of note, within this age range, patients aged 10-14 years exhibited

the highest RR value. By combining AL subtypes and age, patients

aged 10-18 with AML display a 10-fold increase in risk, followed by

patients with ProB-ALL aged 10-18, with 7-fold increased

risk (Table 1).
3.3 UMAP-based clustering identifies a
poor prognosis ProB-ALL subgroup

To identify patients at risk of developing adverse events, we

used the high dimensional reduction algorithm UMAP, which

generate unsupervised clusters based on factors such as age, the

protein expression of leukemic cells (CD45, CD34, CD19, cyCD79a,

cyCD3, smCD3, CD7 and cyMPO) and the frequencies of residual

and pathological hematopoietic populations detected in the ALOT

assay at the time of diagnosis. Our high precision analysis revealed

eight distinct clusters (Figure 2A). Cluster 1 primarily comprises

PreB-ALL cases, with only one exception, and includes some ProB-

PreB cases. Of note, this cluster exhibited the lowest number of

detectable MRD and was therefore used as the reference group for

comparisons. Interestingly, cluster 1 had a significantly lower mean
Frontiers in Oncology 06
age than cluster 5, along with a higher frequency of normal CD34+

cells (HSPCs) and the lowest expression of CD34 marker on blast

cells. AML cases were primarily clustered in groups 2 and 4.

Although no significant difference in age was observed between

them, group 2 exhibited the top risk of detectable MRD. This group

was characterized by high frequency of blasts and higher expression

levels of cyMPO, along with a reduction in the neutrophil and T cell

compartments. In this group, leukemic cells lack CD34.

Group 3 mainly contained T ALL cases and one AML case with

aberrant expression of CD7 and CD56 according to the AML panel,

and a RR value of 9.00, although with no statistical significance.

While groups 5 and 7 primarily consisted of ProB and ProB-PreB

cases, group 5 had a higher risk, with a 6.231-fold increase

compared to the 2-fold increase in group 7. Notably, group 5

included older patients with leukemic blast cells showing a

tendency toward lower expression of cyCD79a. Group 6 had a RR

value of 5.143, although it did not reach statistical significance. This

group consists solely of ProB-ALL cases with mean age of 5.61, a

low frequency of B cells and the lowest expression of CD45, this

group warrants attention as, based on the classification of AL

subtype and age, it is categorized with lower risk. Lastly, group 8

encompassed all 5 subtypes of acute leukemia. Interestingly, this

group coincided with the lowest frequency of blasts, concomitant

with the highest frequency of B, T and NK cells (Figures 2B, C).
3.4 PCA-based profiles define signatures
between B-ALL clusters

Although it is true that the evaluation of unique markers

provides invaluable information about the behavior of the tumor,

the understanding of its interaction with the surrounding

microenvironment must be evaluated considering each of the

variables that identify the complex intrinsic and extrinsic

relationships of tumor cells. For this, an unsupervised analysis of

all variables was performed. Principal component analysis was
TABLE 1 Relative risk (RR) of detectable MRD by immunophenotype, sex and age in 159 pediatric acute leukemia cases.
RR values were calculated by immunophenotype classification (each group vs PreB-ALL), sex (males vs females), age group I (1-9 vs 10-18 years old group), age group II (each age group vs 5-9
years old group), and by classification in each age group (each group vs the ProB-PreB-ALL 1-9 years old group). ALL, Acute Lymphoblastic Leukemia; AML, Acute Myeloid Leukemia; MRD,
Measurable Residual Disease. * p<0.05, ** p<0.01. RR plot shown RR value ± 95% confidence intervals.
Bold values means statistically significant.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1304662
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Romo-Rodrı́guez et al. 10.3389/fonc.2023.1304662
based on age, cell frequencies, and mean fluorescence intensity of

normal hematopoietic (leukocytes, neutrophils, lymphocytes, B

cells, T/NK cells, eosinophils, and erythroid precursor cells) and

leukemic cell populations to identify unique profiles within groups

5, 6, and 7 (Figures 3A, B). The proportion of CD66c expression in

neutrophils and blasts was used as an indicator of the level of

expression of this aberrant marker. Loadings representing the

correlation between the original variables and the principal

components are shown (Figure 3A). The loadings of a PCA

indicate the contribution of each variable to the corresponding

principal component. Variables with high loadings (positive or

negative) have a significant impact on that component, therefore,

the loading profile between each signature is different. This

highlighting that although groups 5 and 7 grouped by the UMAP

are composed of ProB and ProB-PreB subtype leukemias, the

identity profile shown by PCA is different between these groups.

Leukocytes and neutrophils cell frequencies, MFI from blasts,

eosinophils, erythroid precursors, and the expression ratio of the

CD66c marker, clearly generate particularly different profiles

between these clusters.
3.5 A subtype of ProB- and ProB-PreB-ALL,
but not PreB-ALL, are supported by a
suppressive niche

Here, we investigated the expression level of a number of

mesenchymal markers to identify a potential microenvironmental

signature by the unique ProB-ALL subtype. Interestingly, our

results suggest phenotypical differences between B-ALL subtypes.

Exhaustive flow cytometry of CD105+ CD73+ CD90+ and CD45-

MSCs cells, a likely suppressive phenotype, characterized by

expression of CXCL11, Galectin-9 (LGALS9), CD39 and

indolamine 2,3-dioxygenase (IDO1), was observed in ProB and

ProB-PreB MSCs compared to PreB MSCs (Figure 4A). Lower

expression of CXCL12 by BCP-ALL MSCs than No-ALL was

confirmed (17).

To determine whether the phenotypic characterization of MSCs

could also be associated with any of the clusters depicted from

UMAP analysis, we identified the leukemia cases corresponding to

the mesenchymal subtypes within the UMAP clusters (Figure 4B).

While CXCL11 was apparently a marker for cluster 7, LGALS9 and

CD39 show the lowest expression in cluster 6. In contrast, clusters 5

and 7 exhibit high percentages of MSCs positive for these markers,

suggesting they may promote suppressive conditions in some ProB

and ProB-PreB-ALL. Preliminary, cluster 4 lacks expression of IDO

while showing the highest cell frequencies of CD39 positive MSCs.
3.6 A risk profile for children over 10 years
of age emerges from integration of the
leukemic phenotype, the immunological
context, and the tumor microenvironment

We focused on a subset of B-ALL cases, the ProB subtype cases

within the UMAP clusters 5-7. Our primary goal was to gain
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insights into the immune context, tumor immunophenotype and

microenvironment components in order to identify a potential risk-

prognostic profile.

Cluster 5, characterized by the highest rate of MRD,

predominantly consisted of patients older than 10 years, showing

a tendency for increased neutrophils and NK cell frequencies and

less burden of blast cells, compared to values from clusters 6 and 7

(Figure 5A). HSPC normal counterpart is exceptionally low in

ProB-ALL from cluster 5. Strikingly, when analyzing the

immunophenotype of tumor cells within this cluster, an upward

trend in the expression levels of CD19, CD34, CD24, CD20, nuTdT,

cyMPO, and CD33 was recorded (Figure 5B). Conversely, there was

a downward trend in the expression of CD9, CD81, CD123, CD13,

CD15, and CD21 markers. Regarding the microenvironment

profile, cases from cluster 5 displayed a tendency toward elevated

expression of Gal9 and IDO, along with reduced expression of

CXCL11 in their MSC, compared to their counterparts from

clusters 6 and 7 (Figure 5C). Thus, a different tumor ecosystem in

children who show a higher risk of relapse is suggested.
4 Discussion

Due to the high incidence of relapse in Mexican children from

vulnerable populations, there is an urgent need of a comprehensive

prognostic profile in those who debut even with a standard risk

diagnosis to precisely target the risk and ultimately improve their

clinical outcomes.

In acute leukemias, the principal contribution to disease free

survival is provided by an adequate treatment of the disease,

according to patient risk stratification and identifying relapse

factors (6). Although the wide range of immunophenotypic and

molecular profiles of leukemic cells contribute to the risk of relapse

(19), the identification of a single biomarker associated with

prognosis has proven to be insufficient. Of note, leukemic burden,

and progression in acute leukemias are shaped not only by the

neoplastic cell component but are also influenced by elements

within the tumor microenvironment (20).

Here, we conducted for the first time, an integral analysis of the

immunophenotypic profile, hematopoietic and microenvironmental

cell populations, and age distribution among 159 pediatric patients

recruited from five hospitals located in Puebla, Oaxaca and Tlaxcala,

Mexico, from March 2022 to June 2023. The highest incidence was

registered within the 10-14 years age group, with a male-to-female

ratio of 0.74 among children aged 1 – 4 years and 1.35 among those

aged 10-14 years. This differs from the findings of the Cancer Registry

in Children and Adolescents of Mexico, where the highest incidence

is recorded among children aged 1–4 years, and a predominance of

male patients is observed across all age groups (21). A total of 35.22%

of the cohort had a high-risk diagnosis due to the age group (>10

years old). It is worth noting that the absence of clinical parameters,

such as leukocyte count and molecular biology test, may potentially

lead to an underrepresentation of the number of cases within this

specific category.

ALL emerged as the most prevalent lineage affected, accounting

for the substantial 81.76% of all cases. Within the ALL category, the
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B-cell subtype was predominant at 96.15%, while the T-cell subtype

was observed in 3.85% of cases. This, again, contrasts with the

worldwide distribution of ALL, which consists of approximately

85% B-cell subtype and 15% T-cell subtype cases (22). Among the B
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ALL cases 84.8% displayed CD34 expression, which aligns with

previous work indicating that CD34 is present on the outer

membrane of blast cells in 60-83% of patients with B-lineage

ALL (23).
A

B

C

FIGURE 2

UMAP: an innovative approach to leukemic profiles of prognostic value in childhood acute leukemias. Risk stratification in acute leukemias was
explored by Uniform Manifold Approximation and Projection (UMAP). (A) Identification of 8 leukemia clusters by UMAP analysis of 159 AL cases
based on age, cell frequencies of normal and leukemic hematopoietic cell populations and expression levels of ALOT markers based on mean
fluorescence intensity. (B) Cell populations and blast expression patterns in UMAP clusters. (C) RR values of detectable MRD (RRMRDd) were
calculated by UMAP clusters (each group vs group 1). UMAP, Uniform Manifold Approximation and Projection; NK, Natural Killer; MFI, Mean
Fluorescence Intensity; nuTdT, nuclear Terminal deoxynucleotidyl Transferase; cy-, cytoplasmic; sm-, surface membrane; RR, Relative risk; MRD,
Measurable Residual Disease; MRDd, detectable MRD. * p<0.05, ** p<0.01, ***p<0.001, ****p<0.0001. Bar plots shown mean ± standard deviation.
RR plot shown RR value ± 95% confidence intervals.
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At the debut of the disease, leukemic cells exert a detrimental

impact on both resident HSPC and the microenvironment (24).

Our findings revealed that, on average, blast cells occupied 77% of

the bone marrow space. This displacement led to a reduction in the

frequency and functionality of the normal progenitor compartment.

Here, the ProB-ALL cases exhibited lower frequencies of normal

CD34+ cells, along with reduced frequencies of B, T and NK cells, as
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previously reported by Ramıŕez et al. (25). Accordingly, Balandrán

et al. reported that lower cell frequencies of HSPC in ProB-ALL

correlated to high-risk prognosis at disease debut (10). Demanou-

Peylin et al. reported that, in the context of B-ALL at the initial

diagnosis, the limited number of HSPCs demonstrated diminished

hematopoietic potential, with a high mortality rate, which can be

explained by their low intrinsic functional activity (24). In AL,
A B

FIGURE 3

Unsupervised sub-stratification of BCP-ALL defines unique phenotypic profiles. (A) Principal component analysis (PCA) and (B) Pearson correlation
matrix of 5, 6 and 7 groups by UMAP clusters were performed based on age, cell frequencies and mean fluorescence intensity of normal
(leukocytes, neutrophils, lymphocytes, B cells, T/NK cells eosinophils and erythroid precursor cells) and leukemic hematopoietic cell populations.
The ratio of CD66c expression on neutrophils and blasts was used as indicator of level expression of this aberrant marker. p values are shown in
correlation matrix.
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consequently, this results in severe pancytopenia that clinically

includes anemia, recurrent infections and petechiae (1).

Aberrant immunophenotypes have been investigated as

prognostic factors in AL by several studies (26–28). In this

cohort, we evaluated the presence of cross-lineage myeloid

markers such as CD66c, CD33, CD13 and CD15, some associated

with specific molecular abnormalities including NG2 and CD9, and

overexpression of B-cell lineage markers in B-ALL cases. Notably,

our findings reveal that the ProB-ALL subtype display significantly

elevated expression levels of myeloid markers, including CD66c,

CD33 and CD13, concomitant by a tendency toward lower

expression of CD9, this profile contrasts to the PreB-ALL cases.

The glycoprotein CD66c is abnormally expressed on blast cells,
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particularly in cases with the t(9;22) translocation that originates

the BCR::ABL1 fusion protein and in some hyperdiploid molecular

subgroups (26). BCR::ABL positive cases often display increased

expression of myeloid markers like CD13 and CD33, alongside a

CD34hi and CD38lo profile, typically without expression of CD117

(29). Regrettably, among our B-ALL cases, approximately 44%

correspond to the ProB subtype. The identification of this B-ALL

subtype with this profile increases the likelihood of encountering

this gene fusion, which is associated with a poor prognosis. The

ProB-PreB-ALL cases exhibited the highest expression of CD15,

CD10 and CD20. Positive CD10 expression has been associated

with favorable clinical outcomes in children (30). Indeed, Kulis

et al., found a strong association between the high expression of
A

B

FIGURE 4

B-ALL BM niches are distinct in leukemic groups at debut. (A) Phenotypic evaluation of MSC stratified by B-ALL subtypes and No ALL-MSC. No ALL =
1, ProB-ALL = 10, PreB-ALL = 1, ProB-PreB-ALL = 4. (B) Percentage of CXCL11-, LGALS9-, CD39-, IDO1- and CXCL12- expressing MSC on clusters 4
(n=1), 5 (n=6), 6 (n=2) and 7 (n=5) according UMAP subclassification for Pro-B-ALL and Pro-B-Pre-B-ALL subtypes. B-ALL, B-cell precursor acute
lymphoblastic leukemia; MSC, mesenchymal stromal cells; CXCL, chemokine (C-X-C motif) ligand (CXCL); LGALS9, galectin 9; IDO, Indoleamine
2,3-dioxygenase. Bar plots shown mean ± standard deviation.
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CD10 and the presence of the ETV6::RUNX1 gene fusion (9, 31).

The analysis by Bhojwan et al. revealed that ETV6::RUNX1 is

associated with patients aged 1-9 years, categorized as low-risk

before treatment, and displaying lower levels of MRD on day 19 of

therapy (p<0.001) (32). Very interestingly, in the Mexican

population, the occurrence of ETV6::RUNX1, which is generally

associated with a standard prognosis, is less common. Instead,

rearrangements involving CRLF2 and iAMP21, which confer a

high risk for leukemia, are more frequently observed among

Mexican patients (8). The prognostic significance of CD20 in

pediatric B-ALL has yielded conflicting results across studies, in

contrast to adult B-ALL that have consistently shown that CD20

positivity is typically linked to a less favorable outcome (26).

Based on the computed relative risk (RR) values for detectable

MRD reported in this study, it was evident that patients with AML

exhibited the highest risk of detecting residual disease. Among all

cases of B-ALL, the ProB-ALL subtype showed a notable tendency

towards the highest RR value, followed by ProB-PreB-ALL. These

subcategories are primarily distinguished by the expression of

CD34, a transmembrane protein initially identified on HSPCs.

CD34 plays a pivotal role in facilitating the attachment of these

progenitor cells to the stromal microenvironment components,

thereby supporting their growth and differentiation (33). Our

observations align with the findings of Modving et al., who

demonstrated that a lack of CD34 expressions serves as a

favorable prognostic factor in ALL (34). Conversely, high CD34
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expression is associated with poor therapy response and an altered

gene expression profile resembling that of migrating cancer stem-

like cells (35). Our findings revealed that the age group between 10

and 14 years exhibited a significant RR for detectable MRD. This

contrasts with the previously reported data indicating that

individuals aged 15 to 19 experience the highest levels of

aggressiveness and mortality rates (4). Among the cases of B-ALL

recorded in patients aged 10 years and older, it was observed that

the ProB-ALL subtype exhibited a substantial increase in the

likelihood of presenting adverse events. In contrast, the PreB-ALL

subtype continued to demonstrate a favorable prognosis even

within this age group.

UMAP analyses have clearly shown that the highest RR value is

in a cluster of AML cases, where blast cells exhibited the absence of

CD34 expression and a trend of higher cyMPO expression. The

literature offers no definitive consensus regarding the prognostic

significance of CD34 expression in AML. Some studies have

reported that its expression is associated with a favorable

prognosis (33), while others have suggested that CD34 expression

correlates with poor clinical outcome, and CD38-negative CD34-

positive leukemic cells demonstrate enhanced leukemia-initiating

capacity and exhibit stem-like features, including a quiescent

phenotype and increased expression of adhesion-related

molecules such as CD44, CXCR4, integrins, as well as the growth

guidance receptor ROBO4 (35). Significantly, the UMAP analysis

identified an immunophenotype profile associated with a poor
A B C

FIGURE 5

Identity of ProB-ALL within UMAP clusters. The comparison of ProB-ALL immunological context (A), malignant cell immunophenotype (B) and
mesenchymal stromal microenvironment immunophenotype (C) within UMAP clusters 5 to 7 is represented by heatmaps. Mean values of age,
frequency of hematopoietic cell populations, MFI of tumor cell markers and percentage of mesenchymal stromal cells expressing CD markers, are
shown. UMAP, Uniform Manifold Approximation and Projection; NK, Natural Killer; MFI, Mean Fluorescence Intensity; nuTdT, nuclear Terminal
deoxynucleotidyl Transferase; MPO, myeloperoxidase; CXCL, C-X-C motif chemokine; IDO1, Indoleamine-pyrrole 2,3-dioxygenase; cy-,
cytoplasmic; sm-, surface membrane; CD, cluster differentiation.
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prognosis in AML cases, despite the absence of statistical differences

in age between clusters 2 and 4. To investigate deeper into ProB-

ALL cases within cluster 5, which predominantly comprised

adolescent patients older than 10 years old, our risk stratification

analysis, exhibited a distinct tumor cell profile in cluster 5,

compared to ProB-ALL cases within cluster 7, which had a lower

RRMRDd. Firstly, there was a higher expression of CD34, a marker

often linked to poor outcomes in ALL. Secondly, the elevated

expression of CD20, typically associated with a less favorable

prognosis in adult patients. Additionally, cluster 5 exhibited

significantly higher levels of cyMPO (higher expression than

other B-ALL cases but lower compared to AML or MPAL cases,

that cannot be categorized as positive), a marker known to be

associated with an increased risk of relapse and even worse event-

free survival, even in the absence of other myeloid markers (36).

Also, the presence of the aberrant marker CD33 (Figure 5). Notably,

the ProB-ALL cases in cluster 5 displayed several features associated

with a less favorable prognosis.

Novel immunological treatments are gaining interest in the

treatment of ALL, so it is elemental to examine ALL immunobiology

in more detail (37). The tumor microenvironment (TME) plays a

critical role in cancer development (from the first steps of initiation,

through invasion and metastasis) (34, 38). Within this intricate milieu,

it is becoming increasingly evident that understanding the dynamic

interplay between tumor cells and their microenvironment is of

greatest importance. The analyses of TME may also provide more

detailed information on tumor ecosystems and predict the response

and applicability of immunotherapy (39). Accordingly, at least 2

differential niches of MSCs that may have clinical implications for

ALL patients, and a detailed transcriptional fingerprint in healthy BM

samples have enabled to define phenotypically and functionally

distinct stromal subsets (40).

Inflammation is an important hallmark of cancer and is

associated with many types of malignancies (34). The adaptability

of the BM niche to stress suggests that there may be premalignant

niches which could support the expansion of clones with some

growing advantages. BM-MSC can play both inflammatory and

anti-inflammatory functions. MSC derived from a healthy donor

can suppress T-cell proliferation and NK cytotoxicity by the

expression of PD-L1, IL-10, IDO1 and TGFb (13, 41). Thus, the

functional role of MSCs depends on the components within the

microenvironment (42).

Furthermore, adenosine production increases during

inflammation by CD39 and CD73 that act sequentially limiting

immune response. CD39 is an ecto-nucleoside enzyme that binds

ATP and converts it to adenosine. By converting ATP into AMP,

CD39 increases adenosine production via CD73, which is also an

ecto-enzyme that acts by hydrolyzing AMP into adenosine. The co-

expression of both ectoenzymes is high in human tumors (41, 43).

The BM niches recruit Treg cells via CD39 activity (13). Although

CD73 is a major cell surface marker for MSCs, the knowledge about

the role of this molecule in the regulation of these cells is very low

(44). CD73 apparently participates in tumor immune-escape by

inhibiting activation, clonal expansion, and homing of tumor-

specific T cells, impairing tumor cell killing and enhancing the
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conversion of antitumor type 1 macrophages into protumor type 2

macrophages. Thus, CD73 expressed on stromal cells or tumor cells

contributes to tumor-induced immune suppression (44). On the

other hand, CXCL11 is a chemokine with a key role in immune and

inflammatory responses by promoting the recruitment and

activation of different subpopulations of leukocytes. IL1b, IFN-g
and IFN-b have been reported to increase the production of

CXCL11 (45). This chemokine has the highest affinity with

CXCR3, and also can bind CXCR7 (46). Our discovery of its

absence in the niches supporting the ProB subtype, associated

with a higher risk of relapse in older children, aligns with the

concept of an immunosuppressive identity present from the early

stages of the disease.

This study has notable strengths, such as the inclusion of samples

collected at the time of diagnosis from vulnerable regions across the

country, which is particularly significant as most of the existing

literature consists primarily of patient cohorts in Mexico City. By

encompassing a more geographically diverse patient population, our

study allows for a comprehensive analysis of the interplay between

tumor and microenvironment components and the age-specific

characteristics of this high-mortality region. Limitations of our

study include the absence of detailed information on key laboratory

parameters, including leukocyte, neutrophil, and platelet counts.

Additionally, our work lacks comprehensive data on comorbidities

and the occurrence of adverse events, such as opportunistic

infections, which can significantly impact patient outcomes.

Furthermore, the limited availability of monitorization test (MRD)

from only 95 patients in the cohort (59.7%), may restrict the

generality of our conclusions. Also, we have a small sample size of

5 patients with T-ALL, this limited number of cases may impact the

observed trends, warranting careful consideration and potential

cautious interpretation. A more extensive dataset would provide a

more robust basis for obtaining comprehensive insights and making

broader recommendations.

Here, we successfully identified immunophenotypic profiles

associated with clinical prognosis, addressing an urgent need

considering the constrained access to molecular biology tests

within public health systems, which are used to assign AL cases

to risk groups. These limitations arise due to the considerable

expenses involved and a shortage of human resources. Overall,

this study reveals the substantial importance of risk stratification

beyond the tumor immunophenotype, especially in Mexican

patients who present greater vulnerability conditions. We have

discovered the integrated ecosystem of a leukemia with ProB

tumor characteristics and myeloid elements, which grows at the

expense of normal hematopoietic differentiation and in a potentially

suppressive microenvironmental context. It is highly relevant to

thoroughly investigate the signals and environmental factors that

induce this phenotype for further intervention.
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Gómez-Almaguer D, Pelayo R, et al. Molecular and cellular markers for measurable
residual disease in acute lymphoblastic leukemia Vol. 78. Mexico City, Mexico: Boletin
Medico del Hospital Infantil de Mexico. Publicaciones Permanyer (2021) p. 159–70.

2. Muñoz-Aguirre P, Zapata-Tarrés M, Espinosa-Tamez P, Sánchez-Blas H,
Brochier M, Lamadrid-Figueroa H. Childhood acute lymphoblastic leukemia in
Mexico: mortality trend analysis, 1998-2018 Vol. 25. Mexico City, Mexico: Salud
Publica Mex (2022) p. 26–34. doi: 10.21149/13210

3. Castro-Rıós A, Reyes-Morales H, Pelcastre BE, Rendón-Macıás ME, Fajardo-
Gutiérrez A. Socioeconomic inequalities in survival of children with acute
lymphoblastic leukemia insured by social security in Mexico: A study of the 2007-
2009 cohorts. Int J Equity Health (2019) 18(1):40. doi: 10.1186/s12939-019-0940-3
4. Zapata-Tarrés M, Carlos Balandrán J, Rivera-Luna R, Pelayo R. Childhood acute
leukemias in developing nations: successes and challenges. Curr Oncol Rep (2021) 23
(5):23–56. doi: 10.1007/s11912-021-01043-9

5. Davis KL. Understanding the hematopoietic factory during acute
lymphoblastic leukemia. Pediatr Res (2022) 91(5):1023–4. doi: 10.1038/s41390-
022-01957-5
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Rosas-Cruz, Alfaro-Hernańdez, Trejo-Pichardo, Alberto-Aguilar, Casique-
Aguirre, Vilchis-Ordoñez, Solis-Poblano, Garcıá-Stivalet, Terań-Cerqueda,
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