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Hubei, China
C-type lectin receptors are a family of immune response receptors that can bind

with a broad repertoire of ligands. It can function as innative immune receptors

to surveillance bacteria, fungi, and virus invasions. The expressions of C-type

lectin receptors (CLRs) are found in different types of tumors. But the role of C-

type lectin receptors in cancer is not fully elucidated. And the underlying

mechanisms of CLRs in carcinogenesis and tumor development remained

unknown. It is known that CLRs bind to the glycosylated antigen on the cancer

cells, regulating cancer cell invasion, migration, and metastasis. Meanwhile, the

recognition of tumor glycans by antigen-presenting cells can stimulate

antitumor immune response and induce immune tolerance. Also, some types

of CLRs can be used as diagnostic markers for tumor cells, suggesting that C-

type lectin can function as a new tumor therapeutic target and potential

biomarkers. Given the therapeutic potential of CLRs in tumor treatments and

the emerging roles of CLR in the tumor hallmarks, the multiple roles of CLRs in

cancer were summarized in this review.
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1 Introduction

C-type lectin receptors (CLRs) are a group of innate immune receptors expressed on

antigen-presenting cells (APCs), including dendritic cells (DCs), Langerhans cells (LCs)

and macrophages (1). CLRs mediated multiple functions of APCs including antigen

presentation (1), T-cell priming against tumor or pathogen antigens (2). The role of C-

type lectin (CLEC) in recognizing pathogens has been long recognized (3–9). However, the

role of CLECs in cancer has not yet been fully elucidated. As major immune players, CLRs

are involved in multiple tumor immune responses. They recognize glycosylated tumor–

associated antigens, priming DC maturation and activation and inducing an active T-cell

response (10). Tumor cells can also target CLECs to evade immune surveillance (10).

Targeting antitumor vaccine to CLRs expressed on APCs has emerging as a potential

strategy of vaccine development (2). In the present review, we introduced the family of

CLRs and elucidated the multiple roles of CLEC in tumor biology.
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2 Composition of CLEC family

Conserved pathogen-associated molecular pattern molecules can

be recognized by host pattern recognition receptors (PRRs), the most

well-known being Toll-like receptors (TLRs) and C type lectin

receptors (CLRs) (11). CLRs are among the important PRRs

associated with native immunity (3). There are two carbohydrate

recognition domains (CRD) in the C-type lectin receptors, one can

bind with mannose and N-acetylglucosamine (GlcNAc), the other

one recognizes N-acetylgalactosamine (GalNAc) (12). Glu-Pro-Asn

(EPN) tripeptide motifs containing CLRs bind with GlcNAc ligand

and mannose, e.g., DC-SIGN. Glu-Pro-Asp (QPD) containing CLRs

bind with GalNAc and galactose. Binding of the C type lectin

receptors with ligands can activate the tyrosine-based activating

motif (ITAM) signaling, recruit the tyrosine kinase and lead to the

activation of downstream NF-kB activation, and active immune

response (13). On the other hand, activation of immunoreceptor

tyrosine-based inhibitory motif (ITIM)-containing CLRs, can recruit

tyrosine phosphatases Src-homology-2-domain-containing protein

tyrosine phosphatase 1 (SHP-1) or SHP-2, and negatively regulate

immune response (13). CLR-mediated downstream signal

transduction can be mediated by ITAM-containing adaptor

proteins e.g., Fc receptor g chain (FcRg).

CLEC family members, such as dendritic cell-specific ICAM-

grabbing non-integrin (DC-SIGN), CD206, and langerin (CD207),

are highly expressed by DCs and phagocytes (14). Most CLRs

expressed as membrane proteins are present on APCs (15).

Hence, we discussed the expression of CLECs on APCs and

tumor cells (Figure 1).
2.1 CD205

CD205 is a 205-kDa type I cell-surface protein that belongs to

the CLEC family (16). CD205 is expressed on DCs and alveolar

macrophages (17). CD205 is also expressed on tumor cells (16, 18).
2.2 CD206

Macrophage mannose receptor (MR, CD206) is a carbohydrate

receptor belonging to type I CLECs (19–21). The MR binds to

glycoconjugates terminated in mannose, fucose, or GlcNAc in a

calcium-dependent manner (22, 23). It is mainly expressed in liver

and spleen endothelial cells, in macrophages, and to a lesser extent,

in DCs (24). The MR-binding receptor requires a partner to trigger

phagocytosis in specialized cells such as macrophages (25). MR is

also responsible for the recognition and phagocytosis of pathogens

and allergens, promotion of Th2 immune responses, and antigen

presentation (25).
2.3 CD207

CD207 is specifically expressed by Langerhans cells in the

epidermis (26). Langerhans cells do not express CD209 (27).
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Although both CD207 and CD209 bind to HIV, they exhibit

contrasting functions (26). Compared with CD209, CD207 is a

barrier to HIV dissemination (28). Instead of promoting the

dissemination of HIV, CD207 prevents HIV-1 transmission (28,

29). CD207 is also expressed on tumor tissues (30). One third of the

primary breast tumors are positive for CD207, which is a marker of

immature DCs or Langerin cells (31).
2.4 CD209

The DC-specific intercellular adhesion molecule-3–grabbing

nonintegrin (DC-SIGN, CD209) is a type II integral membrane

protein expressed on DCs and some tissue macrophages (32). DC-

SIGN is mainly expressed on immature monocyte-derived DCs,

and the maturation of the DCs decreases the expression of DC-

SIGN (10)}. As an ITAM or ITIM independent receptor, activation

of DC-SIGN leads to the activation of serine and threonine kinase

Raf-1 and acetylation of the NF-kB subunit p65 (33). CD209/DC-

SIGN is also a cell adhesion molecule expressed on APCs (32). DC-

SIGN is expressed on the mucosal surfaces of fibrous connective

tissue (34). It binds to human immunodeficiency virus (HIV) (14,

35, 36) and multiple pathogens (4, 5, 7, 37).
3 The roles of CLEC in cancer

3.1 CD205

Besides APCs, the thymic cortical epithelial cells express

CD205, especially in thymic epithelial neoplasms, which can be

used as a diagnostic marker (18). CD205 is also expressed in non-

small cell carcinomas of the lung, squamous cell carcinoma of the

head and neck, and squamous cell carcinoma of the esophagus (18).

The expression of CD205 was detected in ovarian cancer and

modulate metastasis (38). But the functional role of CD205

expression in some tumor types, including squamous cell

carcinoma of the head and neck and non-small cell lung

carcinoma, need further investigation (18). The CD205+

polymorphonuclear myeloid-derived suppressor cells (MDSCs)

can promote tumor suppression (30).
3.2 CD206

CD206 is also upregulated in acute myeloid leukemia (39) and

in the alveolar lavage fluid of patients with small cell lung cancer

(40). It is detected in hepatocellular carcinoma (41), and its

expression correlates with lower overall survival and disease-free

survival (41).
3.3 DC-SIGN(CD209)

Human DC-SIGN can be expressed on not only APCs but also

epithelial cells (42). Human cancer cells can express C-type lectin in
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situ (34, 41, 42). The expressions of DC-SIGN are reported on

multiple tumor cells, including colon cancer (43, 44), gastric cancer

cells (45), regulating tumor cells proliferation, migration, and

metastasis (45, 46). Binding of DC-SIGN with colorectal cancer

cell glycosylated antigen promote the secretions of IL-6 and IL-10,

and induce an immune tolerogenic microenvironment (47). Many

cancer cells, including colon and Lewis lung cancer cells, can

express human DC-SIGN (46–48). It is expressed at a high level

in metastatic colorectal cancer cell lines (46). The Binding of DC-

SIGN on DC with tumor-specific glycosylation can suppress DC

functions and felicitate immunosurveillance of the tumor cells (47,

49, 50). Fan et al. reported that CLEC promoted glioblastoma

formation by regulating Phosphoinositide 3-kinase (PI3K)/V-akt

murine thymoma viral oncogene homolog (AKT) signaling (51).

CLEC was expressed on the colorectal mucosal surfaces (42). Jiang

et al. reported the expression of DC-SIGN and DC-SIGNR in

immunohistochemical assays of cancer tissues but only a weak

expression in normal tissues (44). In contrast, the serum levels of

DC-SIGN were higher than those in healthy controls (44). High

numbers of DC-SIGN+ dendritic cells were also found in the lesions

of cutaneous T-cell lymphoma (52).

The single-nucleotide polymorphisms in the DC-SIGN gene-

encoding region were associated with the susceptibility of multiple

cancers, for example, nasopharyngeal carcinoma (53) and

colorectal cancer (54). Lu et al. found that single nucleotide

polymorphisms (SNPs) in three C-type lectin genes, CD209,

MBL2 and REG4, correlates with colorectal cancer (CRC) risk

(54). It indicated DC-SIGN can function as biomarkers for the
Frontiers in Oncology 03
early diagnosis of cancer and predict the clinical outcome of

malignant disease (50).
4 Roles of CLEC in cancer

CLR acts as an antigen-presenting receptor during antigen

capture and presentation (55). DC-SIGN can recognize the

foreign glycans on the parasite and bacteria in a Ca2+-dependent

manner (9, 14, 35, 36). Except for the antigen presentation function

of CLEC, CLRs can also recognize and bind with the glycosylated

proteins in a Ca2+-dependent manner (56). Multiple types of tumor

antigens can be recognized by CLR (57). Lewis antigen, N-

acetylgalactosamine, and glycans, components of tumor cells, can

bind to CLRs as ligands (10).
4.1 Glycosylation of CLRs in cancer cells

Glycosylation is one of the markers of cancer cells (58, 59). The

glycosylation of the cancer cells is associated with the acquisition of

other hallmarks of the cancer cells, including evading immune

surveillance, invasion, metastasis, and so forth (60) Glycosylation

refers to the linkage of saccharides to saccharides, proteins, or lipids

(14). The change of glycosylation state of cancer cells is be

attributed to the aberrant expression of glycosyltransferases, the

localization of glycosyltransferases, the conformation of the peptide

backbone (14). Glycosylation can affect the function of E−cadherin,
FIGURE 1

The structure and functions of CLRs. CD209 is expressed on macrophages and dendritic cells, and it is ITAM/ITIM independent receptor. The CD209
receptor can bind with carbohydrate ligands of pathogens or tumor cell antigen. The binding of CD209 receptor on tumor cells can lead to the
activation of downstream NF-gB signaling. CD207 is mainly expressed by Langerhans cell, CD205 is expressed on macrophages and dendritic cells,
myoepithelial cells, and cancer cells. CD206 is mainly expressed on macrophages and dentritic cells.
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a glycoprotein modulating epithelial cell–cell adhesion (14).

Glycans can have a profound effect on the metabolism shift of

cancer cells (14). High DC-SIGN and L-SIGN in B-cell ALL

correlated with poor prognosis of the disease (10). In Non-Small

Cell Lung Cancer (NSCLC), higher CD209+ M2 macrophages i is

correlated with metastasis (2).There is also a positive correlation

between the progression of colorectal cancer clinical stage and

remote metastasis and beta-galactoside-specific lectin galectin-3

expression (15, 16).”

The glycosylation of tumor antigen during malignant

transformation can promote the binding of the carbohydrate

structures of tumor cells with C-type lectins on dendritic cells

(47). The glycosylation of carcinoembryonic antigen (CEA) and

CEA-related cell adhesion molecule 1 (CEACAM1) on cancer cells

are two important examples (47). CEA is widely expressed in

gastrointestinal cancers, including colorectal cancer (47). The

CEA protein undergoes aberrant glycosylation during cancer

progression, for example, in colon carcinoma (61–63). Following

glycosylation, the CEA is recognized by DC-SIGN, but the

nonglycosylated CEA is not recognized (64). Lea/Leb glycans are

expressed at a high level on colon cancer epithelial cells, but not on

normal colon epithelial cells (47). The expression of Lewis blood

group family of antigens during malignant transformation increases

(65). Lewis X and de novo Lewis Y on tumor-specific CEA in

intestinal epithelial cells (IECs) increase during the carcinogenesis

(43). Lewis antigens can bind with DC-SIGN and induce the

secretion of inflammatory cytokine secretions (e.g., IL-6 and IL-

10) which can promote the establish of a tolerogenic

microenvironment for colorectal cancer (49).

Malignant transformation increases the glycosylation of the

cancer cell (66). CEACAM1 is highly expressed in ovarian cancer

(67). DC-SIGN can bind with the high-mannose oligosaccharides in
Frontiers in Oncology 04
Follicular lymphoma (68). It can mediate the binding of DCs and

colorectal cancer cells in situ (47). MUC1 is a highly glycosylated

tumor antigen that binds to CLEC. It is expressed in breast cancer

and undergoes glycosylation during malignant transformation

(69, 70).
4.2 CLRs mediates escape
of immunosurveillance

DCs and macrophages are two important components in the

induction of antitumor immune responses (49). Van Kooyk

reported that DC-SIGN on immature DCs instead of mature DCs

could recognize the glycosylated CEA on colorectal cancer cells

(49). This interaction is mediated by the binding of CEA-carrying

LewisX/Y on colorectal cancer cells with DC-SIGN on DCs (49).

This interaction does not exist between DC-SIGN and CEA with

low levels of Lewis antigen on the normal colon cells (49). This

might contribute to the escape of immunosurveillance by colon

cancer cells (49).
4.3 CLRs promote metastasis of
cancer cells

The breast cancer cells express clusterin, which undergoes

aberrant fucosylation and interacts with DC-SIGN (71). The

glycan in the tumor cells can also bind to CLEC, resulting in

metastasis (43). The colon cancer cells bind with DC-SIGNR on

liver sinusoidal endothelial cells and promote the migration of

colon cancer cells to liver (43) (Figure 2). The expression of

metallothioneins and Matrix metallopeptidase 9 (MMP9) which
FIGURE 2

The roles of CLRs in cancer. The binding of CLRs with the carbohydrate ligands of cancer cells can promote the dissemination of the cancer cells.
And CLRs can be targeted by vaccine for priming the T cells. Tumor antigen is cloned to the heavy chain of anti- CD205 antibody and targeted to
dendric cells which express CD205, and initiate an active T cell response.
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can degrade extracellular matrix in colon cancer cells are regulated

by DC-SIGNR (43). In follicular lymphoma, the expression level of

glycosyltransferases, which promote the synthesis of both N- and

O-linked oligosaccharides, changed, leading to the aberrant

glycosylation of the tumor cells, and benefiting the tumor cell

migration and metastasis (72). And the expression of DC-SIGN

on the lymphatic endothelial cells can potentially promote the

metastasis of follicular lymphoma (73, 68). L-SIGN expressed by

lymphatic endothelial cells can bind with high-mannose glycans on

malignant follicular lymphoma B cells, and promote the

dissemination of follicular lymphoma (73).

DC-SIGN can promote the metastasis of colorectal cancer

through the PI3K/Akt/b-catenin signaling pathway and further

upregulation of the transcriptions of MMP-9 and VEGF (46).

CRC metastases are facilitated by DC-SIGN in vitro and in vivo.

Tyrosine-dependent signaling is activated by DC-SIGN, and

activate PI3K/Akt/b-catenin signaling which is tumor promotive

(46). Platelet-activating C-type lectin-like receptor-2 (CLEC-2) can

promote the metastasis of hematogenous tumor and facilitate

tumor progression (74). Hematogenous metastasis is enhanced by

tumor cell-induced platelet aggregation which is mediated through

CLEC-2–podoplanin interaction.
4.4 CLRs mediate the edit of
tumor microenvironment

Tumor cells can polarize the macrophages to a phenotype that

facilitates metastasis (48). The M1 and M2 macrophages are

acquired by macrophages polarized by interleukin (IL)-10 and IL-

4/IL-13, respectively (75). DC-SIGN is found to be expressed on

tumor immunosuppressive M2 macrophages (75), and the

expression of DC-SIGN can be induced by IL-4 and macrophage

colony stimulating factor (M-CSF), indicating that DC-SIGN is a

marker of M2 macrophages (75). Therefore, it indicated that DC-

SIGN contributes to an immunosuppressive microenvironment

(76). For example, Lewis lung cancer cells can secrete IL-4 to

polarize the macrophages to M2 phenotypes which express DC-

SIGN and facilitate immune evasion (48).

Tumor-associated macrophages (TAMs) occupy 5%–40% of the

tumor tissues (77), and their abundance correlates with poor

prognosis (78). CD206, another member of CLRs, can modulate

the tumor environment (79). It is not expressed in classical M1

macrophages and only in M2 macrophages, which secrete cytokines

interleukin (IL)-4, IL-13, and IL-10 (80). Enninga et al. found that

carbohydrate-binding protein galectin-9 bound to CD206 on the

macrophages and induced tumor formation (79). Haque et al. found

that CD206+ tumor–associated macrophages are present in oral

squamous cell carcinoma (OSCC) (81). The coculture of OSCC cells

with CD206+ cells promote their proliferation and invasion, this is

due to the epidermal growth factor (EGF) produced by CD206+

TAMs (81).

The skin lesions of cutaneous T-cell lymphoma also express

CLRs, including CD206, CD207, and CD209 (52). The expression of

CD209 is correlated with poor prognosis in acute lymphoblastic

leukemia (82). DC-SIGN expressing TAMs is associated with an
Frontiers in Oncology 05
immunosuppressive tumor environment (83). The inhibition of DC-

SIGN-expressing TAMs using a neutralizing antibody can reactivate

the antitumor immunity and improve the immunotherapy against

bladder cancer (83).
4.5 Role of CLEC-mediated infection
in cancer

The relationship between chronic infection and tumor

development has been recognized, e.g., in colorectal cancer (CRC)

(13), Helicobacter pylori infection in developing gastric cancer (84).

The role of microbiota in the development of CRC is under

extensive investigations (13). The interaction between microbiota

and carcinogenesis is characterized in breast cancer (85), CRC (86),

gastric (87), lung cancer (88), bladder cancer (89) and multiple

tumor types (90). C type lectin can play a role in mediating the

bacteria infection and tumor development (13).

The three major functions of DC-SIGN include T-cell priming,

regulation of DC migration, and antigen presentation (34). The

CLEC also acts as a pathogen recognition receptor (34). CLRs are

important receptors on pathogens that mediate the interaction

between the host and pathogens (34). It is widely accepted that

CLEC mediates the binding of pathogens to epithelial cells and is

involved in complement-mediated opsonophagocytosis (91). It was

also demonstrated that DC-SIGN interacted with bacterial

pathogens such as Mycobacterium tuberculosis (92) and

Helicobacter pylori (93) and other bacteria (91).

Emerging evidence suggests that, besides the canonical function

of CLEC in bacterial adherence, macrophages expressing the CD209

receptor participates in bacterial persistent infection (94).

Macrophages and dendritic cells can function as a shelter of

persistent bacterial infection (95). Inflammation caused by the

persistent infection of bacteria can favor the carcinogenesis of

cancer (96). Release of cytokines and chemokines, remodeling an

immune suppressive microenvironment, damage to the DNA

function to promote the carcinogenesis and facilitate tumor

development (97).
5 CLEC as potential therapeutic
targets and future perspective

As a pathogen recognizing receptor of various pathogens, CLRs

can recognize HIV (14),Mycobacterium species, Helicobacter pylori

via mannose or fucose moieties (93). Mucin 1 (MUC1), as a

transmembrane mucin glycoprotein on the epithelial cells, can

bind with multiple bacteria, e.g., H. pylori, Pseudomonas

aeruginosa, Salmonella typhi and Escherichia coli (98). The

expression of MUC1 on macrophage can be upregulated by

Pseudomonas aeruginosa and function in host defense against

bacterial infection (98). Binding of MUC1 can lead to the

activation of NF-kB signaling and the nuclear translocation of

MUC1–p65 complex which can upregulate EMT master

modulator Zinc finger E-box binding homeobox 1 (ZEB1) (98).
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C type lectins have been implicated in the intestinal microbiota-

inflammation-cancer axis (13). NF-kB is essential downstream

signal of CLRs, and connect inflammation and carcinogenesis

(13). Microbiota is emerging as a critical regulator in tumor

development. Microbiota dysbiosis take part in the carcinogenesis

of colon cancer by inducing hypermethylated genes to cause

epigenetic regulation (13). The metabolites of microbiota can

cause intestinal inflammation (13).

Given the role of persistent bacterial infection in tumor

development, C type lectin mediated bacterial infection is

potentially involved in tumorigenesis. Further investigations are

warranted to elucidate the potential roles of CLRs in carcinogenesis

and their roles as therapeutic targets of tumors. Small-molecule

inhibitors that inhibit CLEC–ligand interaction can overcome

pathogen infections, such as HIV, mediated by CLEC (99).

Synthetic glycodendrimers can block HIV transmission via

competitive inhibition through DC-SIGN on DCs (100). Lewis X

component from human milk can inhibit HIV-1 transfer to CD4+

T lymphocytes by binding with DC-SIGN (101). Especially, the

carbohydrate structures, such as Lewis antigen, ligands of CLRs are

shared by pathogens and tumors. It indicated blocking the CLRs on

tumor cells might inhibit the implications of CLRs in

tumor biology.

On the other hands, targeting antigens to CLRs can stimulate

immune response to tumor cells (10). Scodeller et al. has investigated

tumor therapies using the CD206-binding peptide target tumor cells

(102). Lepland et al. found the CD206-binding mUNO peptide

coupled with molecular and nanoscale cargoes can interact with

mouse CD206 (103), and can target M2 TAMs in breast cancer (103).

These inspiring finding encourage the investigation of the therapeutic

potential of CLEC as inhibitor targets.

The increase of Lewis X and Lewis Y on CEA enhance the

interaction between DC and intestinal epithelial cells, and mediate

tumor cells to escape immunosurveillance (49). The interaction

between aberrantly glycosylated CEA and CEACAM1 suppress the

function and differentiation of monocyte-derived dendritic cells

by secreting immunosuppressive cytokines IL-6 and IL-10 (57).

It indicated the molecular basis of inhibiting the binding of

C type lectin with tumor glycosylated antigen in antitumor

therapeutic strategies.

Also, antitumor vaccine developed by conjugating human

cancer antigen with anti-CD205 antibody opened a potential field

of tumor vaccine investigation (104, 105). CD205 targeting vaccine

has been initiated by Ralph M. Steinman (104). Human cancer

antigen mesothelin were conjugated with antibody targeting mouse

DEC-205 receptor (104). Stronger CD4+ T-cell responses and

humoral immune responses were induced (104). Monoclonal

anti-C type lectin receptor antibodies were engineered to express
Frontiers in Oncology 06
as vaccine proteins (104). It improved the improving the delivery of

human cancer antigen to dendritic cells (104). Naïve CD4+ CD25-

Foxp3- T cells were converted into stable Foxp3+ Treg cells favoring

by dendritic cells.

Except for the application development in the antitumor

vaccine development, CLRs targeting vaccine is also explored in

anti-HIV infection vaccine and pulmonary mucosal immune

responses against pneumonic plague (106, 107).

In conclusion, a better understanding of the interaction between

CLEC and tumor cells may contribute to the development of new

antitumor strategies. C type lectins are emerging as a new target for

treatment of cancer. Understanding the complex roles of C-type

lectins in tumor will initiate new dimensions of anti-

tumor strategies.
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interacts with ligands from both endogenous and pathogenic origin. Immunol Lett
(2014) 158:33–41. doi: 10.1016/j.imlet.2013.11.007

67. Fiori V, Magnani MM, The expression C. and modulation of CEACAM1 and tumor
cell transformation. Ann Ist Super Sanita. (2012) 48:161–71. doi: 10.4415/ANN_12_02_09

68. HollanderN,Haimovich J. AlteredN-linked glycosylation in follicular lymphoma and
chronic lymphocytic leukemia: involvement in pathogenesis and potential therapeutic
targeting. Front Immunol (2017) 8:912. doi: 10.3389/fimmu.2017.00912

69. Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD,
Klausing S, et al. The mucin MUC1 modulates the tumor immunological
microenvironment through engagement of the lectin Siglec-9. Nat Immunol (2016)
17:1273–81. doi: 10.1038/ni.3552

70. Kim MJ, Choi JR, Tae N, Wi TM, Kim KM, Kim DH, et al. Novel antibodies
targeting MUC1-C showed anti-metastasis and growth-inhibitory effects on human
breast cancer cells. Int J Mol Sci (2020) 21:3258. doi: 10.3390/ijms21093258

71. Merlotti A, Malizia AL, Michea P, Bonte PE, Goudot C, Carregal MS, et al.
Aberrant fucosylation enables breast cancer clusterin to interact with dendritic cell-
specific ICAM-grabbing non-integrin (DC-SIGN). Oncoimmunology (2019) 8:
e1629257. doi: 10.1080/2162402X.2019.1629257

72. Hollander N, Haimovich J. Altered N-linked glycosylation in follicular lymphoma
and chronic lymphocytic leukemia: involvement in pathogenesis and potential therapeutic
targeting. Front Immunol (2017) 8:912. doi: 10.3389/fimmu.2017.00912

73. Amin R, Mourcin F, Uhel F, Pangault C, Ruminy P, Dupré L, et al. DC-SIGN–
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