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Identification and validation of
a prognostic risk-scoring
model for AML based on m7G-
associated gene clustering
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Xiaoqing Wu1,2, Yunmiao Guo3* and Zhigang Yang1,2,3*

1Department of Hematology, Central People’s Hospital of Zhanjiang, Zhanjiang, China,
2Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research,
Zhanjiang, China, 3Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of
Zhanjiang, Zhanjiang, China
Background: Acute myeloid leukemia (AML) patients still suffer from poor 5-

year survival and relapse after remission. A better prognostic assessment tool

is urgently needed. New evidence demonstrates that 7-methylguanosine

(m7G) methylation modifications play an important role in AML, however, the

exact role of m7G-related genes in the prognosis of AML remains unclear.

Methods: The study obtained AML expression profiles and clinical information

from TCGA, GEO, and TARGET databases. Using the patient data from the

TCGA cohort as the training set. Consensus clustering was performed based

on 29 m7G-related genes. Survival analysis was performed by KM curves. The

subgroup characteristic gene sets were screened using WGCNA. And tumor

immune infiltration correlation analysis was performed by ssGSEA.

Results: The patients were classified into 3 groups based on m7G-related

genebased cluster analysis, and the differential genes were screened by

differential analysis and WGCNA. After LASSO regression analysis, 6

characteristic genes (including CBR1, CCDC102A, LGALS1, RD3L, SLC29A2,

and TWIST1) were screened, and a prognostic risk-score model was

constructed. The survival rate of low-risk patients was significantly higher

than that of high-risk patients (p < 0.0001). The area under the curve values at 1,

3, and 5 years in the training set were 0.871, 0.874, and 0.951, respectively,

indicating that this predictive model has an excellent predictive effect. In

addition, after univariate and multivariate Cox regression screening,

histograms were constructed with clinical characteristics and prognostic risk

score models to better predict individual survival. Further analysis showed that

the prognostic risk score model was associated with immune cell infiltration.

Conclusion: These findings suggest that the scoring model and essential risk

genes could provide potential prognostic biomarkers for patients with acute

myeloid leukemia.
KEYWORDS

acute myeloid leukemia, prognostic risk-score model, immune infiltration, m7G,
prognostic biomarkers
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1 Introduction

Acute myeloid leukemia (AML) is a heterogeneous disease at

the genetic level caused by the accumulation of mutations in

hematopoietic stem and progenitor cells (1). Although the

remission rate of AML has been significantly improved due to the

development of therapeutic modalities such as combination

chemotherapy, hematopoietic stem cell transplantation, and

targeted therapy, the 5-year survival rate of patients with AML

remains poor and relapse after remission has become a major cause

of poor prognosis (2). In recent years, studies for prognostic

assessment of AML have been carried out and either genetic or

cytogenetic abnormalities as a more comprehensive risk

stratification system have provided effective therapeutic guidance

for the clinical management of AML patients (3). Meanwhile,

structural genomic alterations and targeted sequence-based

screening have also provided important tools for clinical

diagnosis and risk stratification of AML, enabling favorable

treatment options for low-risk and high-risk patients. However,

appropriate treatment option for patients in the intermediate-risk

group remains unsatisfied (4). Therefore, a more comprehensive

prognostic risk scoring model is urgently needed for accurate

treatment option and precise prognosis in patients with AML.

Accumulated evidence suggests that RNA modifications play a

critical role in various malignancies. More than 170 types of RNA

modifications have been documented and are not limited to mRNA,

rRNA, and tRNA (5–7). N7-methylguanosine (m7G) modifications

are widely present within the RNA of living organisms (8–14). The

understanding of the regulators of m7G modifications is still in the

preliminary stage. Identified m7G regulators in mammals include

RNMT/RAM, METTL1/WDR4 and WBSCR22/TRMT112 (9). As

an universal RNA modification, m7G modification is not only

required for eukaryotic mRNA translation but is also present

within rRNA and tRNA of all species (8–14). It has been shown

that Methyltransferase-like 1 (METTL1), a regulator of m7G in

mammals, binds to the cofactor WD repeating domain 4 (WDR4)

and installs m7G modifications in tRNAs, miRNAs and mRNAs (9).

rRNA guanine-7 methyltransferase (RNMT) is also involved in the

regulation of m7G modification at the 5’ cap of mRNA upon

binding to the cofactor RNMT activates microproteinsl (RAM)

(15). 18S rRNA m7G modification in humans is installed by a

complex formed by Willimams-Beuren syndrome chromosome 22

region (WBSCR22) and TRM112-like protein(TRMT112) (16).

METTL1 and WDR4 are significantly overexpressed in AML

samples and knockdown of METTL1 effectively inhibits the

growth of leukemic stem cells (17). A recent transcriptome-wide

study of differential m7G methylationome profiling showed that

drug-resistant AML cells had significantly different levels of m7G

mRNA modification from AML cells and were significantly

enriched in drug resistance-associated mRNA (18). These findings

suggest that m7G methylation modifications have potential

predictive value for the prognosis of AML.

In the present study, based on the gene expression data of AML

samples from The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) databases, a cluster analysis was
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performed with m7G-related genes to interrogate the genetic

characteristics of AML patients in different subgroups. Moreover,

by analyzing the characteristic genes of each subgroup, a new

prognostic model was constructed, and the relationship between

the prognostic model and tumor immune microenvironment (TIM)

was further investigated.
2 Materials and methods

2.1 Data download and pre-processing

TCGA and GEO data were downloaded and pre-processed using R

software, and RNA sequencing (RNAseq) data were downloaded using

the “TCGAbiolinks” package on May 3rd, 2022. During the data

download phase, we used the “GDCquery” function in the

“TCGAbiolinks2.25.2” package and selected the data type “HTSeq-

count,”; used the “GDCdownload” function to download the results,

and the “GDCprepare” function to convert the results into R language

processable SE (SummarizedExperiment) files. The “GDCquery_clinic”

function in the “TCGAbiolinks 2.25.2” package of R software is used to

download the relevant clinical information, and the download time is

also onMay 3rd, 2022. The “TCGAanalyze_Preprocessing” function in

the “TCGAbiolinks 2.25.2” was used for data preprocessing. Removing

outliers from data using spearman correlation coefficient. The

“SummarizedExperiment” package was then used to annotate the

expression matrix genes.

Genomic, transcriptomic, and matched clinical data for patients

with metastatic uroepithelial carcinoma treated with anti-PD-L1

agents are available under a Creative Commons 3.0 license and

can be downloaded from http://research-pub.gene.com/

IMvigor210CoreBiologies. The corresponding dataset(miniml

format) was downloaded from the GEO website, from which the

corresponding expression matrix and clinical information

were extracted.
2.2 Consensus clustering and identification
of related gene sets

2.2.1 Gene screening
We identified m7G-related genes from the published literature.

We identified gene sets named “m7G(5`)pppN diphosphatase

activity”, “RNA 7-methylguanosine cap binding,” and “RNA cap

binding” from the Molecular Characterization Database (MSigDB,

https://). binding” and “RNA cap binding” (MSigDB, https://

www.gsea-msigdb.org/gsea/msigdb/search.jsp).
2.2.2 Consensus clustering
AML patients from the TCGA database were divided into

groups based on the expression of 29 m7G-related genes using the

“ConsensusClusterPlus” R package. Then the “survival” R package

was used for Kaplan-Meier (KM) complete survival curve analysis

was then performed between the different clusters using the
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“survival” R package. Principal component analysis (PCA) was

applied to evaluate sample clustering.

2.2.3 Collection of subtype trait genes
Weighted gene co-expression network analysis (WGCNA) was

performed by R software. The three clusters obtained by consensus

clustering were used as the basis to run WCGNA to obtain the set of

three subgroup correlation feature genes, firstly to obtain the adjacency

matrix by weighted correlation coefficients. Next, the adjacency matrix

was converted into a topological Topological overlap matrix (TOM).

Then, hierarchical clustering was performed to identify the modules

and to calculate the characteristic genes. Finally, correlations between

different isoforms and each module were evaluated by Pearson

correlation analysis, and each isoform-related module was identified.

The genes in these modules were considered subtype-associated

module genes. KEGG pathway enrichment analysis was performed

for each subtype-associated signature gene using the “clusterProfiler”

package in R software.
2.3 Construction and validation of the
prognostic model

2.3.1 Construction of a prognostic risk score
model based on m7G-related gene
correlation clustering

To select genes associated with prognosis (p < 0.005), we

performed a one-way Cox regression analysis on these co-

expressed genes. Then 80% of the samples were randomly selected

for lasso regression analysis and repeated 1000 times, finally retaining

the genes with a frequency of 500 occurrences or more. The lasso

regression was then applied to remove redundant prognostic genes,

and finally, the characteristic genes were retained to develop a

prognostic assessment model. Survival” and “survminer” R

packages were used to compare the survival differences between the

high-risk and low-risk groups, and the “time-ROC” R package was

used to The 1-, 3- and 5-year ROC curves were analyzed to verify the

model prediction accuracy. The AML data from GEO (GSE71014)

and TARGET database (TARGET-AML) were used as test data sets

for risk score calculation, risk subgroup assessment, survival analysis,

and ROC curve plotting in the same way.

2.3.2 Prognostic analysis of the prognostic risk
score model

Further clinical data such as age, gender, race, category, and risk

score were extracted from the TCGA cohort, and univariate and

multivariate Cox regression analyses were performed to identify

independent prognostic factors.

2.3.3 Creation of column line diagram
Column plots were constructed with the R software packages

“rm” and “regplot” to visualize the relationship between the

variables and the prognostic model. Calibration curves at 1, 3,

and 5 years were applied to differentiate and predict the values of

the line graphs. To better illustrate the role of risk scores in
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developing AML, we analyzed the relationship between risk

scores and different clinical characteristics.

2.3.4 Correlation of immune infiltration
prognostic models

Comparison of immune cell differences between high and low

risk groups using the ssGSVA algorithm. The ssGSVA algorithm

assessed the content of different immune cells between high and

low-risk groups. The anti-cancer immune response can be

conceptualized as a series of stepwise events known as the cancer-

immune cycle. We obtained correlations between prognostic scores

and anti-cancer immune status in a seven-step cancer-immune

cycle through analysis at the TIP online website (http://

biocc.hrbmu.edu.cn/TIP/index.jsp), including cancer antigen

release (step 1), cancer antigen presentation (step 2), initiation

and activation (step 3), immune cell to tumor transport (step 4),

infiltration of immune cells into the tumor (step 5), recognition of

cancer cells by T cells (step 6), and killing of cancer cells (step 7).

2.3.5 Mutation distribution of the
prognostic model

AML mutation data were obtained from the TCGA database,

and the R package “maftools” was used to visualize somatic

mutations between the high-risk and low-risk groups.

2.3.6 Prognostic model for chemotherapy
response prediction

Due to the lack of drug data in the TCGA-LAML dataset, we

used the immunotherapy dataset for bladder cancer (IMvigor210

cohort) to predict chemotherapy response for our prognostic

model. The efficiency of the prognostic model was validated using

the risk score distribution of patients with different drug

response groups.
2.4 Quantitative PCR assay

Total RNA was extracted from peripheral blood mononuclear

cells (PBMCs) with Trizol reagent (TaKaRa, Tokyo, Japan),

according to the manufacturer’s instructions. RNA concentration

was measured via Infinite 200PRO (Science & Technology,

Männedorf, Swiss).Subsequently, cDNA synthesis and quantitative

PCR (qPCR) were performed by a reverse transcriptase kit (Vazyme)

and an SYBR Premix Ex Taq™ II kit (Vazyme), respectively, each

according to the manufacturer’s instructions. All of the primers used

were synthesized by SangonBiotech (China, Guang zhou) and they

are listed in Table 1. Relative expression levels of CBR1, CCDC102A,

LGALS1, SLC29A2, RD3L and TWIST1 were quantified according to

the 2-DDCt.
2.5 Statistical analysis

All experiments were performed in at least three biological

replicates, and each biological replicate contained three technical
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replicates, and the experimental data were analyzed in GraphPad

Prism 9. The Data were presented as mean ± standard deviation

(SD). Statistical details were calculated by Student’s t test (for two

groups, paired comparison for clinical patient data). P values less

than 0.05 were considered statistically significant.
3 Results

3.1 Consensus clustering based on
m7G-related genes

After searching the previous studies, 29 m7G-related genes were

selected, including AGO2, CYFIP1, DCP2, DCPS, EIF3D, EIF4A1,

EIF4E, EIF4E1B, EIF4E2, EIF4E3, EIF4G3, GEMIN5, IFIT5, LARP1,

LSM1, METTL1, NCBP1, NCBP2, NCBP2L, NCBP3, NSUN2,

NUDT10, NUDT11, NUDT16, NUDT3, NUDT4, NUDT4B,

SNUPN,and WDR4. The distribution of these genes on the

chromosomes is shown in Supplementary Figure 1A. Somatic

mutation analysis showed that most genes were not mutated in

AML samples (Supplementary Figure 1B).

Based on the expression similarity of the 29 m7G-related genes,

the TCGA data were clustered by applying consensus clustering.

The 150 AML samples could be well divided into 3 clusters

(Figures 1A, B), namely cluster 1 (n = 51), cluster 2 (n = 60) and

cluster 3 (n = 39). The expression of m7G-related genes was

significantly higher in cluster 2 than in the other two groups

(Figure 1C). Moreover, further application of Kaplan-Meier

survival analysis showed that cluster 1 and cluster 2 had worse

prognosis as compared with cluster 3 in terms of overall survival

(OS) (Figure 1D).

To further understand the underlying reasons for the

differences in survival among the 3 clusters, the immunity,

stromal score and tumor purity of the samples in each cluster

were assessed using the “estimate” package. The differences in the

immune microenvironment among the 3 immune clusters were
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explored using the ssGSEA algorithm. The results of this analysis

showed that cluster 3 had fewer infiltrating immune cells and lower

immune scores than cluster 1 and cluster 2 (Figures 1E, F), and

tumor purity was significantly higher in cluster 3 (Figure 1G, rank

sum test P < 0.001). These findings suggest that patients with less

immune infiltration and lower immune scores have better survival

than those with more immune infiltration and higher immune

scores in the consensus clustering based on the m7G correlation.
3.2 Prognostic assessment model based on
the construction of immune
infiltration differences

Based on the significant differences in immune infiltration and

prognosis between various clusters, we defined cluster 3 as lacking

immune infiltration (IL type) and cluster 1/cluster 2 as the subtype

rich in immune infiltration (IR type). A detailed analysis of mRNA

expression profiles of AML patients from both types was performed

to reveal the potential mechanisms underlying the different

prognosis between IL and IR subtypes. After gene expression

analysis, 265 differential expression genes between IL and IR

subtypes were identified with FDR < 0.05 and |log FC| > 2, of

which 131 were upregulated in IR type, and 134 were

downregulated in IR type (Figure 2A). One-way Cox regression

analysis of the differential genes yielded 129 genes significantly

associated with prognosis, which were further screened by lasso cox

regression analysis to finally retain the prognostic assessment model

based on five genes (Figures 2A, B) and validate the model with

external data (GEO, TARGET data) (Supplementary Figure 2). The

model showed good prediction accuracy in the training set [5-year,

the area under the curve (AUC)= 0.885, 95% CI (0.800-0.971)]

(Figures 2C, D). However, it failed to show the expected results in

both 2 training sets [GEO: 5-year, AUC= 0.539, 95% CI (0.382-

0.697); TARGET: 5-year, AUC= 0.553, 95% CI (0.467-0.639)]

(Supplementary Figure 2). It indicates that a valid prognostic

assessment model could not be obtained using immune

infiltration and differential tumor purity genes as the basis for

constructing the prognostic model.
3.3 Identification of feature gene sets

To further explore the differences between the above 3 clusters

and to establish a prognostic assessment model with better

prognostic assessment, the WGCNA algorithm were used to mine

the set of co-expressed coding genes of each cluster, both the

characteristic genes of each cluster. The samples were first

clustered using hierarchical clustering (Figure 3A); further, the

distance between each gene was calculated using Pearson’s

correlation coefficient, and the R package WGCNA was used to

construct a weighted co-expression network. Firstly, a soft threshold

selection was performed to reduce the noise in the calculation of

gene-gene correlations. 8 was the power with an R-squared greater

than 0.85 and the first stable R-squared value, which should be

selected to filter the co-expression modules (Figure 3A). To ensure
TABLE 1 Primers used for qPCR assays.

Primer name Sequence(5’ to 3’)

CBR1-F AGCTGGACATCGACGATCTGCA

CBR1-R TATGAAAGGGTGTGGGATCAGCA

SLC29A2-F GGATCTTGACCTGGAGAAGGAG

SLC29A2-R GTGAAGACCAACACAAGGCACAG

LGALS1-F AGCAGCGGGAGGCTGTCTTTC

LGALS1-R ATCCATCTGGCAGCTTGACGGT

RD3L-F AAAATGGCACCTAAAGGAGCG

RD3L-R TCTGGTAGTTTCTGAGCCAGTT

TWIST1-F GCCAGGTACATCGACTTCCTCT

TWIST1-R TCCATCCTCCAGACCGAGAAGG

CCDC102A-F AGTCCCAGAAGGTGCTGCTCAA

CCDC102A-R GAGCATCTCCTGCTTGGTCTTG
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the network is scale-free, we choose b= 8 (Figure 3B). In the next

step, the expression matrix is converted into an adjacency matrix,

which is then converted into a topology matrix. Based on the TOM,

the average-linkage hierarchical clustering method were use to

cluster the genes according to the criteria of a hybrid dynamic

shear tree and set the minimum number of genes per gene network
Frontiers in Oncology 05
module 50. After using the dynamic shear method in determining

the gene modules, we calculate each in turn. After using the

dynamic shearing method to determine the gene modules, we

calculate the eigenvector values of each module in turn and then

perform cluster analysis on the modules, and merge the closer

modules into new modules (height=0.25, deepSplit=3,
A B

D

E

F

G

C

FIGURE 1

Consensus Clustering and survival analysis. (A) Consensus clustering heat map; (B) PCA plot; (C) m7G gene expression heat map; (D) Kaplan-Meier
survival analysis between different subgroups; (E) Heat map and differences in immune infiltration and tumor purity between the three groups;
(F) Comparison of immunescore between the three groups; (G) Comparison of tumorpurity between the three groups. **P < 0.01, ***P < 0.001, and
****P < 0.0001.
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minModuleSize=50) to obtain a total of 17 modules (Figure 3C), the

“grey” module shows the genes that could not be aggregated to

other modules. The correlation of each module with subtypes were

further analyzed. The findings showed that the gene sets in “brown”,

“yellow,” and “green-yellow” gene sets were significantly correlated

with Cluster 1, cluster 2, and cluster 3, respectively (Figure 3D).

KEGG pathway analysis of the genes contained in the “brown”

(1039), “yellow” (574), and “green-yellow” (147) modules were

performed, respectively. KEGG pathway analysis revealed that the

genes of the brown module associated with cluster 1 subtype were

enriched in 78 pathways (Figure 3E), mainly in immune-related

pathways such as phagocytic vesicles, neutrophil extracellular trap

formation, and B-cell signaling pathway (Figure 3E). The genes of

the yellow module associated with cluster 2 subtype were enriched

in 6 pathways, mainly in arginine and proline metabolism, mTOR

signaling pathway, TNF signaling pathway and other pathways

(Figure 3F). Cluster 3 isoform-associated green-yellow module

genes were enriched to 15 pathways, mainly in neuroactive
Frontiers in Oncology 06
ligand-receptor interaction, ECM-receptor interactions, citric acid

cycle and other pathways (Figure 3G). Further analysis showed that

the 3 subtypes were jointly enriched to only 3 pathways by network

diagram analysis (Figure 3H), indicating that the 3 subtypes

presented significant functional differences in the related gene

modules. Therefore, the differences in the expression of these

module genes may be the reason for the survival differences

among the 3 subtypes.
3.4 Identification and validation of
prognostic models

Based on the enrichment analysis of 3 clusters of modular

genes, 1754 differential genes between co-expression modules were

obtained. Univariate Cox regression model analysis was performed

on these genes’ expression and survival data in the TCGA training

set samples. 194 differential genes that were significantly associated
A

B

D

C

FIGURE 2

Training set model construction. (A) Lasso coefficient diagram,Model equation = -0.1203*expTWIST1-0.0326*expPRRT4 -0.0202*expHGF

-0.0001*expDLL3 -0.0827*expNDST3; (B) Risk score, survival time, and survival analysis; (C) KM survival curve distribution; (D) ROC curve with AUC.
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with prognosis were obtained (p < 0.005). To further screen the

genes used for model building, 80% of the TCGA training set

samples for lasso regression analysis were randomly selected, using

tenfold cross-validation, thus performed 1000 times of lasso

analysis, finally retained 6 mRNAs with frequencies > 500 as

target genes (Figure 4A). R package glmnet was used for lasso
Frontiers in Oncology 07
regression analysis and finally obtained the optimal model

parameters (Figures 4B, C).

The risk score for each sample was separately calculated

according to the expression level of the samples. The risk score

distribution of the samples was plotted (Figure 4D), from which it can

be seen that samples with high-risk scores exhibit worse OS, which
A B

D

E F

G H

C

FIGURE 3

WGCNA identifies the set of feature genes. (A) Sample clustering analysis; (B) Analysis of network topology for various soft-thresholding powers;
(C) Gene dendrogram and module colors; (D) Correlation results between the 17 modules and individual clinical phenotypes; (E) KEGG pathway
analysis of brown module; (F) KEGG pathway analysis of yellow module; (G) KEGG pathway analysis of green-yellow module; (H) network diagram
analysis of the three modules.
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suggests that samples with high-risk scores have a worse prognosis.

High expression of CBR1, CCDC102A, LGALS1, and SLC29A2 are

associated with high risk as risk factors; high expression of RD3L and

TWIST1 was associated with low risk and were protective factors.

The samples were classified into high and low risk groups based

on the above median risk scores, and a significant difference

between the two groups could be seen from the plotted KM
Frontiers in Oncology 08
curves (log rank p < 0.0001, HR = 5.134), in which 68 samples were

classified as high risk and 71 as low risk (Figure 4E). ROC analysis

for prognostic classification of risk scores were further performed

using the R package timeROC, and the prognostic predictive

classification efficiency at 1, 3, and 5 years was analyzed, as

shown in Figure 4F, from which we can see that the model has a

high AUC, all above 0.87.
A B

D E

F

C

FIGURE 4

Construction of the predictive risk model. (A) Forest plot of 6 model genes; (B) Lasso variable screening process; (C) Lasso regression selection of 6 for
prognostic genes to build a prognostic model. risk score = 0.3595*expCBR1 + 0.1548*expCCDC1 102A + 0.2741*expLGALS1 - 0.3848*expRD3L + 0.2069*
expSLC1 29A2 - 0.2357*expTWIST1; (D) Risk score, survival time, and survival analysis; (E) KM survival curve distribution; (F) ROC curve with AUC.
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The model was further validated in the external validation set

using the same model and coefficients as in the test data set

(Supplementary Figures 3, 4). The KM plots based on risk scores

in the validation set all divided the sample well into significantly

different high and low-risk groups (GSE71014: log-rank p = 0.0271,

HR = 2.345; TARGET-AML: log-rank p = 0.0478, HR = 1.63)

(Supplementary Figures 3A, B, 4A, B). The GSE71014 dataset shows

the model has a high AUC area under the line, with 1-year and 3-

year AUCs above 0.6 (Supplementary Figure 3C). The 1-year AUC

of the model out of TARGET-AML is 0.739, while the 3 and 5-year

AUCs are lower (Supplementary Figure 4C).
3.5 Independent prognostic analysis of risk
scores and clinical and
pathological features

To further explore the clinical value of the prognostic risk score

model, univariate and multivariate Cox regression analyses were

performed on the TCGA cohort. In the univariate Cox analysis, age

and risk score were significantly associated with the prognosis of

AML patients (Figure 5A). In addition, the results of multivariate

Cox regression indicated that age and risk score were independent

risk factors for AML patients’ prognosis (Figure 5B). Next, we

performed a ROC analysis of these factors, and the results of the

AUC values indicated that the risk score had higher accuracy in

predicting OS than the risk factor of age (Figure 5C).

Using age, sex, race, FAB typing, and adjuvant therapy as

characteristics in the TCGA dataset sample for grouped survival

analysis, risk scores with six characteristic genetic markers could

significantly distinguish the young group, old group, male, female,

different races, FAB typing and patients without adjuvant therapy

between the two groups of high and low risk (p < 0.05, Supplementary

Figure 5), which also further indicates that the model has good

predictive power in patients with different clinical characteristics. In

addition, the correlation between risk scores, clinical characteristics,
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and pathological staging were further analyzed. The results showed

that the risk score was significantly correlated with the patient’s age

and FAB typing (p < 0.05, Supplementary Figure 6).
3.6 Creation of predictive column line
graphs for AML patients

Based on the regression analysis described above, a column line

plot we developed that provides clinicians with a quantitative

approach to prediction. A score is obtained for each prognostic

parameter for each patient, and the corresponding survival

prediction can be retrieved in the table using the resulting total

score (Figure 6A). In addition, the calibration plot curve

fragmentation plot also shows that the column line plot has a

better predictive function than the ideal model (Figure 6B). The

samples were further divided into high and low-risk groups based

on the column line plot model scores with median values and

plotted KM curves, from which it can be seen that there was a

significant difference in OS between high and low-risk groups (log-

rank p < 0.0001, HR = 5.99), with 68 samples classified as high risk

and 69 samples as low risk (Figure 6C). The ROC analysis was used

to validate the classification efficiency of the column line plot for

prognostic prediction at 1, 3, and 5 years, from which it can be seen

that the column line plot scoring model has a high area under the

AUC line, with AUC above 0.876 at 1, 3, and 5 years (Figure 6D).
3.7 Correlation between risk model and
cellular characteristics of
immune infiltration

Our previous study showed that the survival differences based on

m7G correlation clustering may correlate with the immune infiltration

and tumor purity of each group. Here, the relationship between the risk

score and the immune cell score was further analyzed by using the R
A

B

C

FIGURE 5

Correlation between clinicopathological characteristics, risk score, and prognostic value in the TCGA cohort. (A) Univariate analysis of
clinicopathological factors and risk scores; (B) Multivariate analysis of clinicopathological factors and risk scores; (C) ROC curve showing the
predictive effect of risk scores and clinicopathological characteristics.
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software “estimate” package. The results showed that both the immune

cell and mechanism scores showed a significant positive correlation

with the risk model, with the correlation coefficients at 0.39 and 0.27,

respectively (Figure 7A). This also indicates that there is a link between

risk model expression and tumor immunity. It also further indicates

the relationship between the risk model and cellular immunity.

The anti-cancer immune response can be conceptualized as a series

of stepwise events known as the cancer-immune cycle, including the

release of cancer cell antigens (Step1), cancer antigen presentation

(Step2), initiation and activation (Step3), transport of immune cells to

the tumor (Step4), infiltration of immune cells into the tumor (Step5),

recognition of cancer cells by T cells (Step6), and killing of cancer cells

(Step7). Here, the 7-step outcome matrix was obtained through the

Tracking Tumor Immunophenotype (TIP) website analysis, and

similarly analyzed the risk model correlation with the 7-step anti-

cancer immune response. The results showed that Step2, Step4 T-cell

recruitment, Step4 CD4 T-cell recruitment, Step4 CD8 T-cell

recruitment, Step4 Th1 cell recruitment, Step4 Th22 cell recruitment,

Step4 NK cell recruitment, and Step5 immune cell infiltration into the

tumor showed a positive correlation with the risk model, while Step4
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monocyte recruitment showed negative correlation (Figure 7C).

ssGSEA algorithm was further used to identify 28 TIL

subpopulations, including the main types associated with adaptive

immunity: activated T cells, Tcm, TemCD4+ and CD8+ T cells, Tgd
cells, Th1, Th2, Th17, regulatory T cells, follicular T cells, activated B

cells, immature B cells, and memory B cells; and cells associated with

innate immunity types, such as macrophages, monocytes, mast cells,

eosinophils, neutrophils, activated DCs, plasma cell-like and immature

DCs, NK cells, NKT cells and MDSC (Figure 7B, Supplementary

Figure 7). The results revealed that the risk model showed a significant

positive correlation with the vast majority of the 28 TIL

subpopulations (Figure 7D).
3.8 Mutation analysis of risk score models
and prognostic models for
immunotherapy response

Subsequently, mutation patterns between the two risk groups

were compared. The results showed that higher samples mutated in
A B

DC

FIGURE 6

Column line diagram of TCGA-LAML. (A) Columnar line graph predicting 1-, 3-, and 5-year OS in AML patients; (B) Calibration curve of the columnar
line graph; (C) KM curve of the columnar line graph model; (D) AUC curve of the columnar line graph model at 1, 3, and 5 years. *P < 0.05, **P <
0.01, and ***P < 0.001.
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the high-risk group than in the low-risk group and with

significantly more known AML high-risk molecular mutations in

the high-risk group (Figure 8).

Due to the lack of drug information for AML patients, the

bladder cancer immunotherapy cohort (IMvigor210) was used to

predict the efficacy of chemotherapy for both risk groups. The risk

score was first calculated for each sample according to the model,

and then the best cut-off value (3.537524) was found by the R

software survminer package to divide the two high and low-risk

groups (Supplementary Figure 8A), log-rank p = 0.0328; the

treatment response rate was higher in the low-risk group

compared to the high-risk group (26.32% vs. 21.99%,

Supplementary Figure 8B). Unfortunately, the differences in the

distribution of risk scores among the four groups of patients with

different treatment responses were not observed (p = 0.27,

Supplementary Figure 8C).
3.9 Verification of key risk genes in
AML patients

Finally, six key risk genes with CBR1, CCDC102A, LGALS1,

SLC29A2, RD3L and TWIST1 were examined for expression levels

using qPCR in 10 AML patients and 10 healthy donors. There was

no significant difference in the expression levels of CBR1,

CCDC102A, LGALS1, SLC29A2, RD3L and TWIST1 genes

between AML patients and healthy donors (Supplementary

Figure 9). The reason for the differences between these validation

results and the above results is related to the small sample

size included.
4 Discussion

AML is the most common acute leukemia in adults, with a high

mortality rate and poor prognosis. Chemotherapy remains the main

option for most AML patients. Recent studies have shown that

m7G-related regulators are highly expressed in AML and can affect

the proliferation of leukemic stem cells; also, m7G mRNA

modification levels are significantly elevated in drug-resistant

AML cell lines (17, 18). However, there is still a lack of studies of

specific mechanisms by which m7G affects AML development and

treatment, and its relevance to AML prognosis still needs

further investigation.

In this study, AML patients were divided into 3 clusters based

on 29 genes associated with m7G and aimed to screen between the 3

clusters for m7G-associated candidate genes with potential

predictive value. However, deviating from our starting point, we

could not find any genes associated with any initial 29 genes as

signature genes during the screening process. This may be related to

how m7G-related regulators mainly achieve biological functions by

affecting the methylation levels of substrates. Even so, the clustering

based on m7G-related genes has given us new hints on tumor purity

and immune scoring, based on which we developed a prognostic

assessment model featuring 6 genes. A validated line graph

including prognostic features and clinical factors was also
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developed, and correlations between risk profiles and tumor

immunity and immunotherapy were also analyzed.

The prognostic scoring model involves 6 characteristic genes, of

which high expression of CBR1, CCDC102A, LGALS1, and

SLC29A2 are risk factors; high expression of RD3L and TWIST1

are protective factors. Among all these genes, TWIST1 is a vital

transcription factor mediating the progression of epithelial-

mesenchymal transition and tumor metastasis. Overexpression of

TWIST1 can improve the prognosis of AML patients by affecting

the cell cycle and enhancing sensitivity to chemotherapeutic agents

(19). LGALS1 is mainly involved in the induction of a tolerance

program, prompting immune evasion of tumor cells (20). Current

studies suggest that LGALS1 exerts tumor-promoting effects by

blocking tumor suppressors such as p53 and promoting drug

resistance in AML (21, 22). CBR1 single gene polymorphism is

significantly associated with Ara-C chemotherapy toxicity (23).

CBR1 overexpression can also protect leukemic cells from As O23

by regulating reactive oxygen species production while inhibiting

CBR1 expression enhances the effect of As O23 on therapeutic

sensitivity in a variety of leukemia cell lines (24). SLC29A2

primarily encodes the energy non-dependent equilibrium

nucleoside transporter protein (ENT2), which transports a wide

range of purine and pyrimidine nucleosides (25). In contradiction

to our study, TMK-1 cells, a gastric cancer cell line expressing

hENT2, were significantly more chemosensitive to Ara-C (26).

CCDC102A and RD3L currently lack studies related to AML.

CCDC102A belongs to the coiled-coil domain-containing

(CCDC) gene. CCDC has many essential biological functions and

is thought to be involved in biological behaviors such as

proliferation, invasion, and metastasis of malignant tumor cells

(27–30). In summary, half of the genes characterized in this model

have not been able to fully clarify their functions and mechanisms

in AML in the available studies. Therefore, we need more studies to

clarify the roles and mechanisms of genes such as CCDC102A,

RD3L, and SLC29A2 in AML, which can provide a more reliable

theoretical basis for prognostic assessment as screening new

therapeutic targets for AML treatment.

In this study, 6 genetic characteristics could predict AML

patients’ prognosis compared with traditional AML risk

categories (age, etc.). According to the risk score, AML patients

could be divided into high-risk and low-risk groups, and a

significant difference in survival between the two risk groups were

found. In the ROC analysis, the AUC values of 1-year, 3-year, and

5-year survival rates for AML patients in the TCGA cohort were

more outstanding than 0.8, indicating a more substantial predictive

power than previous studies (3-year AUC of 0.706 and 0.711,

respectively). Moreover, after univariate and multivariate analysis,

the risk score was identified as an independent prognostic factor

for AML. Among all clinical factors, the risk score had the

most significant effect on the survival of AML patients and

could effectively guide prognostic prediction. Ultimately, a

comprehensive prognostic column line graph was constructed

combining risk characteristics with clinical parameters. Compared

with earlier studies (31), our prognostic assessment system has a

better predictive effect with wider applicability. Compared to a

recent column-line graph prognostic scoring system based on 18
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characterized genes (32), because WGCNA was used to screen

subclasses for clusters of characterized genes, our scoring system

achieved good predictive results with fewer characterized genes.

However, the results verified by qPCR showed that the expression of

6 key genes in AML patients was not different from that of healthy

donor, which may be related to the small sample size included, but it

does not indicate that it is not related to disease prognosis. From the

validation results, there are individual differences in these genes in

AML patients, with high expression in some patients and low
Frontiers in Oncology 12
expression in others. Therefore, it is still necessary to expand the

sample size and extend follow-up time for AML to verify the

relationship between the expression of these key genes and

disease prognosis.

Currently, evasion of antitumor immune response is considered a

fundamental cause of AML progression or relapse (33), therefore,

immunotherapy is widely studied in the clinical treatment of AML. In

the immune evasion mechanism, multiple immune cells are involved.

For example, AML plasma may block the effector functions of T and
A

B

D

C

FIGURE 7

Level of immune infiltration for prognostic features. (A) Correlation between risk model and different immune infiltrating cell types; (B) correlation
between risk model and immune cell infiltration scores; (C) Correlation between risk model and cancer immune cycle steps, where different colors
of connecting lines represent different p-values, dashed and solid lines represent negative and positive correlations, respectively, and the thickness
of the lines represents the size of correlation coefficients, the thicker the correlation coefficients are, the more significant the correlation coefficients
are, and different colors in the same table represent the magnitude of correlation coefficients; (D) Correlation between risk scores and 28 types of
TIL subgroups. *P < 0.05, **P < 0.01, and ***P < 0.001.
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NK cells, increase immunosuppressive cells such as macrophages M2

and monocytes, and decrease immunoreactive cells such as naive B

cells and resting mast cells (34). In our study, LGALS1, one of the

scoring model signature genes, was closely related to immune

infiltrating cells. As a critical regulator of tumor immune evasion,

high LGALS1 expression in AML patients is associated with higher

macrophage M2 monocyte infiltration (35). Our study also showed a

significant correlation between risk score and immune cell

infiltration. The risk score was negatively correlated with mast cells,

activated CD4+ T cells, and positively correlated with 26 other TIL

subpopulations. Activated CD4+ T cells possess specific effector

functions and play an essential role in tumor immunity (36).

Resting mast cells are immunoreactive and associated with better

survival (37). Thus, the negative correlation of risk score with

activated CD4+ T cells and mast cells and the positive correlation

with other immune cells, suggesting that the 6-characteristic genetic

risk score model is closely related to the immune activation status in

the tumor microenvironment. Moreover, these findings require more

in-depth studies in combination with clinical samples to elucidate the
Frontiers in Oncology 13
specific relationship between risk scores and the immune

microenvironment in AML.

Genetic mutations are another critical cause of tumorigenesis

and drug resistance. In our study, we found that KRAS mutations

were higher in high-risk patients compared to low-risk patients.

Previous studies have demonstrated that clonal mutations in KRAS

are associated with treatment resistance (38). Therefore, poor

survival in high-risk patients may also be associated with KRAS

mutations, which may lead to chemoresistance. Also, high-risk

patients have a higher frequency of mutations in genes such as

RUNX1, TP53, and ASXL1, which are molecular genetic markers of

high risk for AML, which confirms the prognostic reliability of the

risk score assessment.

Finally, this study examines the validity of risk scores in

predicting response to immunotherapy. Analysis of bladder

cancer immunotherapy data showed that patients with prognostic

scores distinguished as high risk had lower treatment response rates

than low-risk patients. These results suggest that the model can

predict immunotherapy response to some extent.
A B

DC

FIGURE 8

Mutation state analysis of the prognostic model. (A, B) Mutation status of high-risk and low-risk groups; (C, D) Summary of detailed mutation
information of high-risk and low-risk groups.
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5 Conclusion

In this study, a new prognostic scoring model with CBR1,

CCDC102A, LGALS1, SLC29A2, RD3L and TWIST1 as the feature

genes was developed to predict the prognosis of patients with AML based

on their characteristic set of genes for m7G-related clustering. And, there

was a significant correlation between this model and tumor immunity.

These findings suggested that this scoringmodel and key risk genes could

be used as potential prognostic biomarkers for AML patients.
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SUPPLEMENTARY FIGURE 1

Distribution of related genes and mutations. (A) distribution of m7G-related
genes on chromosomes; (B) Gene mutations.

SUPPLEMENTARY FIGURE 2

GEO and TARGET external data validation results. (A) Risk score, survival time,
and survival analysis of GEO external data; (B) KM survival curve distribution of

GEO external data; (C) ROC curve with AUC of GEO external data. (D) Risk
score, survival time, and survival analysis of TARGET external data; (E) KM
survival curve distribution of TARGET external data; (F) ROC curve with AUC

of TARGET external data.

SUPPLEMENTARY FIGURE 3

GEO external data validation results. (A) Risk score, survival time, and survival

analysis of GEO external data; (B) KM survival curve distribution of GEO

external data; (C) ROC curve with AUC of GEO external data.

SUPPLEMENTARY FIGURE 4

TARGET external data validation results. (A) Risk score, survival time, and

survival analysis of TARGET external data; (B) KM survival curve distribution of
TARGET external data; (C) ROC curve with AUC of TARGET external data.

SUPPLEMENTARY FIGURE 5

Correlation analysis of clinical characteristics. (A) Prognostic KM curves in

young samples (Age ≤ 55) and old samples (Age > 55); (B) Prognostic KM
curves in female and male samples; (C) Prognostic KM curves in samples of

White or other races; (D) Prognostic KM curves in FAB M0~M2 samples or
M3~M7 samples; (E) Prognosis KM curves in samples with adjuvant treatment.

SUPPLEMENTARY FIGURE 6

Correlation analysis between risk scores and clinical characteristics and

pathological typing. (A) Correlation analysis between risk scores and age;
(B) Correlation analysis between risk scores and gender; (C) Correlation

analysis between risk scores and race; (D) Correlation analysis between risk
scores and adjuvant therapy; (E) Correlation analysis between risk scores and

FAB typing.

SUPPLEMENTARY FIGURE 7

Correlation between risk model and different immune infiltrating cell types.

SUPPLEMENTARY FIGURE 8

Immunotherapy Response in prognostic models. (A) KM curves for high- and

low-risk groups; (B) Proportion of patients with different drug responses in
the high- and low-risk groups. Cr, complete response; pr, partial response;

sd, stable.

SUPPLEMENTARY FIGURE 9

The mRNA expression of six key risk genes in healthy donors (normal, n=10)

and AML patients (n=10).
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