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Impact of intrafraction motion in
pancreatic cancer treatments
with MR-guided adaptive
radiation therapy

Doris N. Rusu1,2, Justine M. Cunningham2*, Jacob V. Arch2,
Indrin J. Chetty2,3, Parag J. Parikh2 and Jennifer L. Dolan2

1Department of Radiation Oncology, Wayne State University, Detroit, MI, United States, 2Department
of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States, 3Department of
Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, United States
Purpose: The total time of radiation treatment delivery for pancreatic cancer

patients with daily online adaptive radiation therapy (ART) on an MR-Linac can

range from 50 to 90 min. During this period, the target and normal tissues

undergo changes due to respiration and physiologic organmotion. We evaluated

the dosimetric impact of the intrafraction physiological organ changes.

Methods: Ten locally advanced pancreatic cancer patients were treated with 50

Gy in five fractions with intensity-modulated respiratory-gated radiation therapy

on a 0.35-T MR-Linac. Patients received both pre- and post-treatment

volumetric MRIs for each fraction. Gastrointestinal organs at risk (GI-OARs)

were delineated on the pre-treatment MRI during the online ART process and

retrospectively on the post-treatment MRI. The treated dose distribution for each

adaptive plan was assessed on the post-treatment anatomy. Prescribed dose

volume histogrammetrics for the scheduled plan on the pre-treatment anatomy,

the adapted plan on the pre-treatment anatomy, and the adapted plan on post-

treatment anatomy were compared to the OAR-defined criteria for adaptation:

the volume of the GI-OAR receiving greater than 33 Gy (V33Gy) should be ≤1

cubic centimeter.

Results: Across the 50 adapted plans for the 10 patients studied, 70% were

adapted to meet the duodenum constraint, 74% for the stomach, 12% for the

colon, and 48% for the small bowel. Owing to intrafraction organ motion, at the

time of post-treatment imaging, the adaptive criteria were exceeded for

the duodenum in 62% of fractions, the stomach in 36%, the colon in 10%, and

the small bowel in 48%. Compared to the scheduled plan, the post-treatment

plans showed a decrease in the V33Gy, demonstrating the benefit of plan

adaptation for 66% of the fractions for the duodenum, 95% for the stomach,

100% for the colon, and 79% for the small bowel.

Conclusion: Post-treatment images demonstrated that over the course of the

adaptive plan generation and delivery, the GI-OARs moved from their isotoxic

low-dose region and nearer to the dose-escalated high-dose region, exceeding
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dose-volume constraints. Intrafraction motion can have a significant dosimetric

impact; therefore, measures to mitigate this motion are needed. Despite

consistent intrafract ion motion, plan adaptat ion st i l l provides a

dosimetric benefit.
KEYWORDS

intrafraction motion, gastrointestinal motion, respiratory-gated radiation therapy,
stereotactic body radiation therapy (SBRT), MR-linac, MR-guided radiation therapy,
online adaptive radiation therapy, pancreatic cancer
1 Introduction

The superior soft tissue contrast of magnetic resonance imaging

(MRI) has long enabled better delineation of targets and normal

tissues in the radiotherapy planning workflow (1). Recent

significant advances in physics and engineering technology have

led to the capability of integrating MRI systems in the radiation

treatment room (2–6). It has been argued that such MRI Linear

accelerators (MR-Linac) or MR-guided-radiotherapy (MRgRT)

machines offer “next generation” image-guided radiotherapy

given their ability to provide enhanced soft-tissue, non-ionizing

imaging of tumors and surrounding healthy tissues in real time (7–

10). MRgRT has now been applied to treatment of tumors in several

different anatomic sites (11–24), where it has demonstrated

superior imaging of tumors and surrounding healthy tissues and,

consequently, reduction of planning margins for facilitating hypo-

fractionated RT. Moreover, volumetric MRIs at the time of

treatment have permitted workflows to assess and account for

daily anatomical variation in the context of online adaptive

radiotherapy (ART) (5, 11, 25, 26).

One of the most compelling arguments for MRgRT is for the

safe, hypo-fractionated treatment of tumors undergoing motion

due to respiration or other physiologic processes during treatment.

An example of such an indication is the targeting of locally

advanced pancreatic cancer (LAPC) tumors, often impacted by

both respiratory and gastrointestinal motion, and limited in

visibility using x-ray imaging due to lack of soft-tissue contrast—

making a convincing case for MRgRT. Investigators have argued

that significant potential exists to improve progression-free survival

(PFS) and overall survival (OS) at even higher doses, but that safe

delivery of higher doses (>40 Gy) should be accompanied by smaller

planning margins and real-time imaging afforded by MRgRT (11,

24, 27–35). Related to MRgRT, a meta-analysis showed that LAPC

patients treated with concurrent chemotherapy and radiation

therapy at high doses (BED10 >70 Gy) had statistically significant

improvement in 2-year OS (49% vs 30%, p = 0.03) and trended

towards significance for 2-year freedom from local failure (77% vs

57%, p = 0.15) compared to standard-dose patients (BED10 ≤70)

(33). The treatment was also well tolerated with grade 3+ GI toxicity

occurring in 3 out of 20 patients in the standard-dose group and

none of the 24 patients in the high-dose arm (33). Online treatment

adaptation occurred more frequently in the high dose (83%) vs. the
02
standard dose groups (15%). These promising safety results were

confirmed in a large prospective multi-institutional study where

treatment of 136 patients to 50 Gy over five fractions resulted in 0

definitely related gastrointestinal toxicities at 90 days (36).

Planning and delivery of online ART involves several

procedures, such as segmentation on daily image datasets, plan

re-optimization and evaluation, and physics QA, as outlined in

Figure 1, resulting in overall treatment times for patients with LAPC

ranging from 50 to 90 min. Therefore, there can be significant time

lapse between the time the patient is first imaged until the time the

patient is treated (latent period). It is well known that peristaltic

changes of the gastrointestinal tract happen in a stochastic method,

but the frequency and severity of changes that could occur during

adaptive radiation delivery are not clear. A recent report from Tyagi

et al. looked at this for 10 patients treated with MRgRT with

abdominal compression during a free breathing treatment, and

found that there was a significant amount of patients who had post-

treatment imaging that showed dosimetrically significant organ

motion for their dosimetry constraints and planning techniques

(35). We wanted to investigate the dosimetric impact of

intrafraction organ motion in our population, who are treated

using breath hold with real-time imaging-based gating

during treatment.
2 Materials and methods

2.1 Patient population and plan generation

The treatment technique for stereotactic MR-guided adaptive

radiation therapy (SMART) for pancreas cancer using a low-field

MRgRT has been previously described (36). In brief, 10 patients

were treated with 50 Gy in five fractions on a 0.35-T MR-Linac

(MRIdian, ViewRay Inc, Oakwood Village, OH). A summary of

clinical characteristics of this patient cohort can be found in Table 1.

In short, nine tumors were located in the head of the pancreas, and

1 in the body. Of the 50 treated fractions, 100% of the fractions have

one or more organs at risk (OARs) within a 3-mm radius of the

clinical target volume (CTV). Patients were instructed not to eat

anything 2 h prior to treatment, with no instructions with regard to

water and medication consumption. Patients were simulated

utilizing a BlueBAG BodyFIX system (BodyFix, Elekta AB,
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Stockholm, Sweden) in the supine, head-first position with their

arms at their sides. Treatment planning CTs were acquired on a big

bore radiation therapy CT simulation scanner (Brilliance Big Bore,

Philips Health Care, Cleveland, OH), with a 3-mm slice thickness at

end exhale with intravenous contrast. Treatment planning MRIs

were acquired at end exhale using a true fast imaging and steady

precession (TrueFISP) sequence acquired in 17 s with a 45 (left to

right) × 45 (anterior to posterior) × 24 (superior to inferior) cm3

field of view, a 0.3-cm slice thickness, and a 0.16 × 0.16 cm2 in-plane

resolution. The CT-simulation image (CT-sim) was rigidly

registered to the primary MRI simulation (MR-sim) for target

contour delineation; it was then deformably registered to the MR-

sim. The MRI was used as the primary image set for treatment

planning, with the CT used for assistance in target volume

definition and for electron density correction. Plans were

generated with 19–22 6X-FFF step-and-shoot static IMRT beams

avoiding treatment through the patient arms. Contoured OARs

included the duodenum, stomach, colon, small bowel, liver,

kidneys, and spinal cord. An integrated Monte Carlo dose

optimization and calculation platform was used to produce
Frontiers in Oncology 03
isotoxic dose distributions by sculpting dose around the limiting

gastrointestinal organs at risk (GI-OARs) while escalating dose to

the target volumes (37).
2.2 Online adaptive radiation therapy
treatment workflow

Treatment localization was performed at end exhale utilizing the

same volumetric MRI parameters from simulation. Three-

dimensional couch translations were applied based on a target-

focused soft-tissue rigid registration. The GI-OARs (duodenum,

stomach, colon, and small bowel) were manually segmented and

approved by the attending physician. Optimization structures (e.g.,

CTV_OPT) were created by cropping the target volumes 3 mm away

from the GI-OARs. Plans were then reoptimized to escalate dose to

these structures while prioritizing GI-OAR sparing. Adaptation was

prompted when the scheduled plan OAR prescription constraints

were violated or a 10% increase in planning target volume coverage

was feasible. The OAR-defined criteria for plan adaptation were that

the volume of the GI-OAR receiving greater than 33 Gy (V33Gy)

should be kept to less than or equal to 1 cubic centimeter (cc). The

adaptation was done while generally maintaining target volume

coverage. A summary of target volume coverage (volume that

received 100% of the prescription) for the scheduled and adapted

plans can be found in the Supplementary Material.
2.3 Image guidance

During treatment delivery, real-time intrafraction gating was

performed utilizing a single sagittal plane MR-Cine image. Cine

images were acquired at four frames per second with an in-plane

resolution of 0.35 cm × 0.35 cm and a slice thickness of 0.7 cm. The

two gating requirements include the gating margin to generate

the gating boundary and percentage of the structure allowed outside

the gating boundary. The gated beam was triggered on when the

tracked tumor volume was within a boundary expansion equivalent

to the clinical target volume to planning target volume margin of

0.3 cm and with a 5% tracking volume excursion allowance.
TABLE 1 Patient characteristics.

Number of Patients 10

Gender (N)

Female 3

Male 7

Pancreas Tumor Location

Head 9

Body 1

Tail 0

CTV Size
(cc, median, range)

86 (36-145)

OARS within 3 mm of CTV (% of fractions)

Yes 100

No 0
FIGURE 1

Time frame of MR-guided adaptive radiotherapy as performed at Henry Ford Health. The table shows the average times for each step.
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2.4 Post-treatment imaging and
offline evaluation

Patients underwent a post-treatment volumetric MRI at end exhale

to enable the assessment of the dosimetric impact of gastrointestinal

anatomical changes during the described latency period. Under an

IRB-approved retrospective study, post-treatment MRIs were rigidly

registered to pre-treatment MRIs focusing on the alignment of the

target volume. This registration was done to adjust for differences in

respiratory motion between the pre- and post-treatment breath hold.

Since treatment was delivered with real-time imaging of the CTV, and

shifts were made during treatment based on CTV movement, this step

permits the assumption that any OAR changes seen will be due to

peristalsis alone. GI-OAR structures were retrospectively delineated on

the post-treatment MRI by a therapist and verified by a physician. The

treated dose distribution for each adaptive plan was then overlaid and

assessed on the post-treatment anatomy. Prescribed dose volume

histogram (DVH) metrics for the (1) scheduled treatment plan on

the pre-treatment anatomy, (2) adapted treatment plan on the pre-

treatment anatomy, and (3) adapted treatment plan on the post-

treatment anatomy were compared to the OAR-defined criteria for

plan adaptation: the V33Gy ≤ 1 cc.

To understand the dosimetric impact of intrafraction motion,

the V33Gy of the GI-OARs were tabulated for each fraction of the

10 patients at the three time points described above; the full dataset

of V33Gy values for each patient can be found in the Supplementary

Material. The percentage of the 50 treated fractions that exceeded

the 1 cc constraint was calculated for each structure; this was

determined for both scheduled and post-treatment plans. For

each patient, the V33Gy of each GI-OAR was averaged across the

five treated fractions for the scheduled and post-treatment plans.

The percentage of fractions that had a greater V33Gy at post-

treatment than the adapted plan at pre-treatment were tabulated.

To study the benefit of plan adaptation despite intrafraction

motion, the number of fractions that had a smaller V33Gy at

post-treatment as opposed to the scheduled plan was tabulated.

Then, the percentage of fractions that had smaller V33Gy than

scheduled was calculated out of the number of fractions in which

each OAR initially exceeded the constraint. For example, the

duodenum had V33Gy > 1 cc in 35 fractions; of these, 23

fractions had a smaller V33Gy in the post-treatment evaluation;

therefore, 66% of fractions were still less than scheduled.
3 Results

3.1 Post-treatment evaluation

Of the 50 treated fractions, 100% of the scheduled treatment

plans were adapted. The GI-OARs exceeded the adaptive criteria for

the duodenum in 70% of fractions, the stomach in 74%, the colon in

12%, and the small bowel in 48%. After treatment plan adaptation,

the V33Gy constraint was met by all GI-OARs for all fractions.

Analyzing the adapted plan on the post-treatment anatomy, the

V33Gy constraint was exceeded for the duodenum in 62% of
Frontiers in Oncology 04
fractions, the stomach in 36%, the colon in 10%, and the small

bowel in 48%. The distribution of the V33Gy DVH metrics for all

fractions at the scheduled, adapted, and post-treatment time points

can be seen in Figure 2.

When averaging the scheduled plan V33Gy for each GI-OAR

across a patient’s five-fraction course: nine patients exceeded the

duodenum constraint, nine patients exceeded the stomach, two

patients exceeded the colon, and five patients exceeded the small

bowel constraint. When averaging the post-treatment evaluation

plan V33Gy for each GI-OAR across a patient’s five-fraction course:
B

C

A

FIGURE 2

Volume of the GI-OAR within a 3-cm ring of the target volume
receiving 33 Gy or more of dose, shown for all fractions for the
scheduled plan on pre-treatment anatomy (A), for the adapted plan
on pre-treatment anatomy (B), and for the adapted plan on post-
treatment anatomy (C).
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eight patients exceeded the duodenum, five patients exceeded the

stomach, one patient exceeded the colon, and five patients exceeded

the small bowel. These results are tabulated in Table 2. Post-

treatment images demonstrated that during a single treatment

fraction, over the duration of the adaptive plan generation and

treatment delivery, the GI-OARs tended to move from their

modulated low-dose regions established during the re-

optimization and therefore into high-dose or dose gradient

regions. Figure 3 visually represents one patient’s pre- and post-

treatment anatomy and isotoxic dose distribution at different time

points in their treatment (fractions 1, 3, and 5).
3.2 Benefit of adaptation

The post-treatment evaluation plans showed an increase in the

V33Gy value relative to the adapted plan in 94% of the fractions for

the duodenum, 68% for the stomach, and 86% for both the colon

and small bowel. The post-treatment evaluation plans showed a

decrease in the V33Gy value relative to the scheduled plan in 66% of

the fractions for the duodenum, 95% for the stomach, 100% for the

colon, and 79% for the small bowel. Table 2 includes the median

and range doses for the GI-OARs of all patients and fractions.

While the V33Gy for the post-treatment evaluation tended to

remain below the V33Gy of the initial scheduled plan, the

percentage of fractions that exceed the constraint at the end of

treatment is still meaningful. To better understand the benefits of

plan adaptation, the performance of the scheduled, adapted pre-

treatment, and post-treatment plans were compared at various

V33Gy cutoff points. It is important to note that the adapted

plans were re-optimized to meet the 1 cc constraint, and this

analysis does not consider the performance of plans that have

been optimized to meet various V33Gy constraints. For each OAR

and each evaluation time point, the percentage of fractions that had

a V33Gy of at least 0.035, 0.5, 1, 2, 3, 4, and 5 cc were tabulated. For

example, the percentage of fractions that had a V33Gy of 2 cc or

more was calculated for each OAR for the scheduled, adapted, and

post-treatment plans. The results are visually represented

in Figure 4.
Frontiers in Oncology 05
4 Discussion

This is the first study to report on the impact of intrafraction

motion in the respiratory-gated breath-hold treatment setting for

patients with LAPC being treated with SBRT (50 Gy in 5 fractions)

and online ART on a 0.35-T MRgRT system. We found that

intrafraction gastrointestinal motion causes violations of dose

volume constraints in most fractions, signaling that additional

intrafraction motion management is necessary to fully realize the

potential of MR-guided online ART. The impact of gastrointestinal

motion occurs on a slower and less predictable time scale than

respiratory motion. While MRgRT has developed solutions for

respiratory motion management, further tools are necessary to

minimize the impact of other sources of intrafraction motion,

such as gastrointestinal motion. Artificial intelligence (AI) has the

potential to bridge this gap in the management of intrafraction

motion. Primarily, AI tools can speed up the plan adaptation

process, decreasing the time the GI-OARs have to move out of

their low-dose regions. AI could also be used during treatment

delivery to adapt treatment plans in real time by predicting/

anticipating future OAR motion. This application has been

broached by Buchanan et al. (38). The data collected within this

study can be a useful launching pad for the development of such

AI tools.

Within this study, we found that there is a dosimetric difference

between the adapted dose to the GI-OARs and the post-treatment

dose to the GI-OARs. The post-treatment imaging showed that

organs exceeded the dose volume constraints, with consistent

increased V33Gy values when compared with the adapted plan.

The number of patients with GI-OAR V33Gy averages that

exceeded the “criteria to adapt” constraints was similar between

the scheduled and post-treatment plans, as seen in Table 2. The

wide range of V33Gy values within Table 2 corresponded to two

patients in particular, which had associated large deviations within

the scheduled and post-treatment plans; this would indicate that

these patients had generally larger OAR variations when compared

to the rest of the cohort. A more detailed per-patient comparison of

V33Gy for scheduled versus post-treatment anatomy for each OAR

can be found in the Supplementary Material. However, the similar
TABLE 2 Comparison of median and range of V33Gy for all fractions and all patients for each GI-OAR, for the scheduled, adapted, and posttreatment
plans. Comparison of the number of patients, out of 10, with average V33Gy (over five fractions) for each GI-OAR that exceeded the constraint, for
predicted and post-treatment plans.

Organ at risk

Median V33Gy (cc)
(range)

Constraint: V33Gy ≤ 1.0 cc

No. of patients on average exceeding
constraint

N=10

Scheduled Adapted Post-Tx Scheduled Post-Tx

Duodenum 2.1 (0–10.3) 0.4 (0–.9) 1.3 (0–7.9) 9 8

Stomach 2.4 (0–22.8) 0.4 (0–1.0) 0.6 (0–10.9) 9 5

Colon 0.0 (0–7.5) 0.0 (0–1.0) 0.0 (0–9.7) 2 1

Small bowel 0.7 (0–17.2) 0.3 (0–0.9) 1.0 (0–7.8) 5 5
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median values do prompt concerns over the benefit of plan

adaptation. Therefore, the post-treatment dose-volume results

were compared with the scheduled plan in the absence of

adaptation, and the post-treatment V33Gy was found to be

smaller for most fractions. This can be seen in Figures 2, 4, where

the post-treatment V33Gy is less than the scheduled, especially for

the stomach and duodenum. In Figure 4, the scheduled plan

consistently had a larger percentage of fractions that had at least

33 Gy at each volume (from 0.035 cc to 5 cc). Although the post-

treatment values at 1 cc receiving 33 Gy were close to the scheduled,

the post-treatment values were significantly lower at absolute

volume constraints greater than 1 cc. This indicates that the
Frontiers in Oncology 06
adapted plans gave a dose of 33 Gy to less OAR volume overall as

compared to the initial plans; therefore, plan adaptation is

meaningful. This could be an indicator of why MR-guided ART

has demonstrated success in GI-OAR organ sparing in the SMART

trial (36).

These findings align with the findings of Tyagi et al. (35) who

studied intrafraction motion for 10 LAPC patients treated with

daily, online ART on a 1.5-T MR-Linac (Unity, Elekta AB,

Stockholm, Sweden). Tyagi et al. performed imaging prior to plan

adaptation, immediately before treatment, and after treatment.

Patients were treated with abdominal compression in a free-

breathing state, with no beam gating. The median total treatment
B

C D

A

FIGURE 4

Percent of all treated fractions that received 33 Gy or more to the specified volume of each organ: (A) duodenum, (B) stomach, (C) colon, and
(D) small bowel. The red line (squares) shows the performance of the scheduled plan on the pre-treatment anatomy; the blue line (triangles) shows
the adapted plan optimized based on the pre-treatment anatomy, and the green (circles) shows the adapted plan on the post-treatment anatomy.
FIGURE 3

Intrafraction motion seen between pre-treatment (top) and post-treatment (bottom) MRIs, over the course of treatment (Fractions 1, 3, and 5). The
duodenum is orange; stomach, yellow; colon, pink; and small bowel, brown. Yellow arrows highlight 33 Gy or higher spilling into the GI OARs.
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time per fraction was 75 min. They used GI-OAR constraints of

D0.035cc ≤ 33 Gy and D5cc ≤ 25 Gy, with a planning risk volume

constraint of D2cc ≤ 33 Gy. The planning risk volume was a 1-mm

expansion of the OAR. Plans were optimized to meet all OAR

constraints while maximizing target coverage. Plans were verified

immediately before treatment, and in eight fractions, the plans were

re-adapted at this time point to account for significant

volume changes.

Tyagi et al. found that intrafraction motion is critical and varies

greatly between patients, which can result in OARs moving into high-

dose areas. Contours were adjusted and dose was recalculated on

verification and post-treatment images prior to the next fraction to

allow for discussion with the physician and modification of plan of

action. This resulted in improved performance in later fractions. The

percentage of fractions that exceeded their D0.035cc dose constraints

for stomach_duodneum and small bowel, at verification and post-

treatment, ranged from 42% to 52% and from 52% to 54%, respectively

(35). This is comparable to our finding that showed post-treatment

metrics exceeding our V33Gy constraint in 48%–62% of fractions for

the duodenum, stomach, and small bowel. For comparison, they

retrospectively evaluated their dosimetric data with the V33Gy < 1 cc

constraint, and their results showed that ~10% of their fractions did not

meet the V33Gy < 1 cc constraint (as opposed to 74% in our findings).

Adapting their plans tomeetmore stringent constraints (D0.035cc ≤ 33

Gy), re-planning at the verification time point and implementing the

inter-fractional feedback loop are probable factors for the difference

in results.

Limitations to this study include that the images and data

collected were performed prior to a system upgrade designed

around patient throughput, now reducing treatment time to less

than 60 min for a majority of patients. Further limitations include the

small sample size and the lack of breath-hold repeatability without

user and patient feedback for the pre- and post-treatment MRIs.

Although the rigid registration between pre- and post-treatment

images was done to account for these changes, it may still

introduce uncertainty. Additionally, as the pre-treatment contours

were developed as part of the patient’s treatment workflow,

interobserver contouring variations are present. Another limitation

is that the dose was analyzed at two time points, demonstrating a

worst-case scenario of assuming the anatomy was at its final position

for the entirety of treatment, as opposed to actively deforming and

accumulating dose with actively changing OARs during treatment. A

larger sample size could be used to achieve more conclusive results.

Further developments of accurate, real-time dose accumulation

would be needed to form a complete understanding of the

dosimetric impact of intrafraction motion. Real-time dose

accumulation and AI-driven real-time plan adaptation would be a

promising combination to manage intrafraction motion.
5 Conclusion

In summary, pre-treatment and post-treatment GI-OAR

contours were compared to quantitatively determine the

adherence of the dynamic abdominal anatomy to the prescribed

constraints over the duration of a single treated fraction. In most
Frontiers in Oncology 07
cases, one or more of the GI-OARs moved from its designated low-

dose region to a high-dose region and resulted in DVH metrics that

would trigger a re-optimization in the adaptive planning workflow.

While the V33Gy value did increase in the majority of the post-

treatment evaluation plans, especially for the duodenum and small

bowel, it remained less than the scheduled plan value that triggered

the adaptive workflow in the better part of the adapted fractions.

We found that intrafraction motion can have a significant

dosimetric impact and measures to mitigate intrafraction motion

are needed. However, despite consistent intrafraction motion, we

found that plan adaptation still provided a dosimetric benefit to our

locally advanced pancreatic cancer patient population.
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