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Numerous studies in various cancer models have demonstrated that ingredients

of cannabis can influence tumor growth through the endocannabinoid system

(ECS), a network of molecules (mediators, receptors, transporters, enzymes) that

maintains homeostasis and protection in many tissues. The main constituents of

the ECS are the classical cannabinoid (CB) receptors, such as CB1 and CB2, their

endogenous ligands (endocannabinoids), and the endocannabinoids ’

synthesizing and degrading enzymes. The role of the ECS in cancer is still

unclear and its effects often depend on the tumor entity and the expression

levels of CB receptors. Many studies have highlighted the tumor cell-killing

potential of CB1 agonists. However, cannabis is also known as an

immunosuppressant and some data suggest that the use of cannabis during

immunotherapy worsens treatment outcomes in cancer patients. CB receptors

are widely present in immune cells, and together with monoacylglycerol lipase,

the 2-arachidonoylglycerol degrading enzyme, they could be critically involved

in the regulation of the immune cell profile of the tumor microenvironment

(TME), and hence in tumor progression. So far, data on the impact of the ECS in

the immune-TME are still vague. In this review, we discuss the current

understanding of the ECS on immunoregulation during tumor growth, and

how it might affect the outcome of cancer immunotherapy.

KEYWORDS

cannabis, cannabinoid receptors, tumor microenvironment, endocannabinoid system,
immune checkpoint inhibitor
Introduction

In ancient medicine, Chinese and Indian cultures widely used cannabis (derived from

the plant Cannabis sativa L., mostly known as “marijuana”) for the treatment of various

ailments (1). In the 1850s, cannabis was introduced into Western medicine by William B.

O’Shaughnessy and Jacques-Joseph Moreau, who described its beneficial effects in treating

rheumatism, convulsions, muscular spasms during tetanus and rabies, mental illnesses and

cholera (2, 3). At the beginning of the 20th century, the therapeutic use of cannabis
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1296906/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1296906/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1296906/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1296906/full
http://orcid.org/0000-0001-9793-0789
http://orcid.org/0000-0002-5726-4731
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1296906&domain=pdf&date_stamp=2023-11-22
mailto:rudolf.schicho@medunigraz.at
https://doi.org/10.3389/fonc.2023.1296906
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1296906
https://www.frontiersin.org/journals/oncology


Sarsembayeva and Schicho 10.3389/fonc.2023.1296906
considerably declined due to its abuse potential and the variability

in the herbal material’s quality. At the same time, its use as a

recreational drug increased. Thus, legal restrictions on the use of

cannabis were imposed that delayed exploring its medical potential

for more than 50 years (4–6). Only after the discovery of

cannabinoid (CB) receptors in the early 1990s, attention was

payed to this new field of research leading to the introduction of

the endocannabinoid system (ECS). Since then, a huge number of

studies have been conducted pertaining to the (patho)physiological

roles of the ECS (7, 8).

The main constituents of the ECS are the classical CB receptors,

CB1 and CB2, their endogenous ligands (endocannabinoids), such

as anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and the

endocannabinoids’ synthesizing (diacylglycerol lipase (DAGL), N-

acylphosphatidyl-ethanolamine phospholipase D (NAPE-PLD))

and degrading enzymes (fatty acid amide hydrolase (FAAH) and

monoacylglycerol lipase (MAGL, also known as MGL)) (9, 10). CB1
is expressed throughout the body systems, predominantly in the

central nervous system (abundant expression), but can be also

found in the immune system (low expression) (9, 11). Factors

that influence the expression of CB1 in immune cells are the type

and activation status of the cells, the immune stimulus, and the

presence of endocannabinoids (11, 12). CB2 is highly abundant in

cells of the immune system, and its expression level is 10-100-fold

higher than that of CB1 (11). B cells show the highest expression of

the CB2 mRNA, followed by natural killer (NK) cells, monocytes,

neutrophils, CD8+ T and CD4+ T cells (11). Many studies

demonstrate that CB1 and CB2 expression may be either

increased or decreased under pathological conditions, like in

cancer, whereby the level of expression substantially influences

tumor progression (13–17). Currently, the main indications for

medical cannabis in cancer therapy are for palliative care to manage

refractory nausea and pain, and to improve appetite (reviewed in

(18)). The synthetic analogue of tetrahydrocannabinol (THC),

nabilone (Cesamet), was licensed to suppress nausea and

vomiting induced by chemotherapy. Moreover, dronabinol

(Marinol), which is a synthetic THC, entered the clinic in 1985 as

an anti-emetic, and in 1992 as an appetite stimulant (19).
Importance of the ECS within the
tumor microenvironment

The majority of in vitro studies on the ECS and cancer have

focused on the direct activation or inhibition of CB receptors

expressed in cancer cells, and the subsequent outcome on growth

behavior (13–17). However, many questions about the impact of

cannabinoids on immune cells in tumors, and hence on tumor

progression, still remain unanswered.

Next to malignant cells, tumors consist of a heterogenous group

of infiltrated and resident host cells, secreted factors and

extracellular matrix, collectively called tumor microenvironment

(TME). The composition of the TME changes between tumor

entities, but distinctive characteristics of immune and stromal

cells, blood vessels, and of the extracellular matrix remain. It is
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well established that TME cells actively participate in the regulation

of cancer progression (20). Adaptive and innate immune cells are

important components of the TME that either suppress or promote

tumor growth. Within the TME, the adaptive immune response

includes actions of T-, B-, and NK cells while the innate immune

response works via the actions of myeloid cells like macrophages,

neutrophils, eosinophils, dendritic cells (DCs), and other immune

cells (20).
Cannabinoids and the ECS: effect on
the TME

Components of the ECS are virtually expressed in all cells of the

tumor mass, including host cells of the TME as well as cancer cells,

which makes it challenging to delineate their exact role in tumor

development, and to use them as therapeutic targets. To date, only a

handful of studies has looked at the influence of endo-/

cannabinoids and ECS components on the TME, and their role in

tumor development (reviewed in (21)). A summary of these studies

and their outcomes are shown in Table 1. Recently, we reported that

TME cell-derived CB2 promotes tumor growth in an experimental

model of non-small cell lung cancer (NSCLC) by reducing

accumulation and cytotoxic activity of CD8+ T and NK cells. We

additionally observed, that deficiency of CB2 on host cells enhanced

the expression of programmed death-1 (PD-1) and its ligand PD-L1

on lymphoid and myeloid cells, respectively (22). In the same

NSCLC model, our group earlier identified that MGL expressed

in TME cells was responsible for a pro-tumorigenic environment

and modulated the immune cell profile (23). CD8+ T cells were

increased in tumors of MGL knockout mice, and showed increased

expression of granzyme-B, interferon-g, and PD-1, signifying

enhanced tumoricidal and immune activity (23). Since 2-AG also

promotes the migration in these cells (23), MGL could be a major

tumor driver in NSCLC. In a pancreatic cancer model, Qiu et al.

showed that proliferation of tumors was compromised in the

presence of 2-AG via activation of CB1, but not of CB2 (25). In

this type of cancer, 2-AG promoted the maturation of DC

phenotypes and the production of pro-inflammatory cytokines

through up-regulation of the signal transducer and activator of

transcription 6 (p-STAT6) (25). In a different study, THC had no

direct effect on the growth of melanoma cells, but indirectly affected

tumor growth via cells of the TME in a CB receptor-dependent

manner (29). In particular, the infiltration of pro-tumorigenic

myeloid immune cells was inhibited by THC, demonstrating that

the ECS can interact with the TME in modulating tumor growth

(29). In contrast to these studies, Xiang et al. demonstrated that

MGL in macrophages inhibited CB2 receptor-dependent tumor

progression. They described that MGL deficiency enhanced

macrophage activation in a CB2/TLR4-dependent manner

affecting the exhaustion status of CD8+ T cells in models of colon

and breast cancer (26). In murine melanoma, absence of CB2
increased tumor growth and accumulation of immature B cells,

reducing infiltration of CD8+ T cells into the TME (24).

Altogether, these reports suggest that components of the ECS

like MGL and CB2 are able to affect tumor progression via immune
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cell activity and immune checkpoints of the TME. However, pro- or

anti-tumorigenic effects of the ECS are likely dependent on the type

of cancer.
Immunotherapy and the ECS

CD8+ T cells work together with other immune cells of the TME

to eradicate tumors. However, at some point during tumor

development, immune cells, mainly cytotoxic CD8+ T cells, start

losing their cytotoxic ability. Fortunately, targeted therapy has

revolutionized the approach to treat cancer through the

introduction of immunotherapy, which removes the brake from

immune cells to eliminate tumors. Active (vaccines) and passive

(monoclonal antibodies and adoptive cell therapy) therapies

represent two subcategories of immunotherapy (32). Here, we

briefly discuss how the ECS may interfere with the response to

treatment with monoclonal antibodies, known as immune

checkpoint inhibitors (ICIs).

In various types of tumors, the ECS has been shown to influence

the immune cell composition of the TME and to subsequently affect

immune cell activity and tumor growth (22–26, 29, 32). The

activation and exhaustion status of immune cells, particularly of

cytotoxic CD8+ T cells, are determined by the expression of

immune checkpoint proteins, such as PD-1, cytotoxic T-

lymphocyte antigen-4 (CTLA-4, aka CD152), and others like T

cell immunoglobulin and ITIM domain (TIGIT), T-cell

immunoglobulin and mucin-domain containing 3 (TIM-3),

lymphocyte-activation gene 3 (LAG-3), and B- and T-lymphocyte
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attenuator (BTLA) (33). The main targets of current ICI therapies

are PD-1/PD-L1 and the CTLA-4 receptor (34, 35). In 2011, a

CTLA-4 blocking antibody (ipilimumab) was approved to treat

melanoma. This was followed by the development of monoclonal

antibodies targeting PD-1 (pembrolizumab and nivolumab) and

PD-L1 (atezolizumab, durvalumab and avelumab). Furthermore,

biomarkers to predict the efficacy of ICIs such as PD-L1 levels in

tumor tissue, tumor mutation burden (TMB) and microsatellite

instability (MSI) were introduced (36). PD-1/PD-L1 blocking

antibodies have become standard treatment of various cancer

types, including melanoma, NSCLC, mismatch repair-deficient

and/or microsatellite-instable colorectal cancer, triple-negative

breast cancer, head and neck squamous cell carcinoma,

hepatocellular carcinoma, and several other cancers (37). The rate

for effective treatment with anti-PD-1/PD-L1 antibodies varies with

the type of tumor and lies around 80% in lymphoma, 60% in high

MSI cancers, and approximately 10-30% in other common solid

tumors (38). Owing to their reduced toxicity and their lower high-

grade immune-related adverse events (irAEs), anti-PD-1/PD-L1

antibodies are used more often than anti-CTLA-4 antibodies

(39–41).

Apart of the biomarkers that predict responsiveness to ICI

therapy (36), other factors can cause resistance to immunotherapy,

which must be taken into consideration before and during therapy.

These include genomic factors, tumor heterogeneity, factors related

to immune cells and the TME, factors emerging from host cell-

cancer cell interactions, and other vital factors, such as advanced

age, biological sex, diet, hormones, existing comorbidities, drugs,

and the gut microbiome (42).
TABLE 1 Influence of the ECS components and endocannabinoids and cannabinoids on the TME.

Cancer entity,
year

ECS
cannabinoid/
endocannabinoid

Affected cells of
the TME

Outcome Ref.

NSCLC, 2023 CB2 CD8+ T and NK cells CB2 plays a pro-tumorigenic role (22)

NSCLC, 2021 MGL and 2-AG Eosinophils, CD8+ T
cells

MGL has a pro-tumorigenic role (23)

Melanoma, 2021 CB2 B cells, CD8+ T cells CB2 reduces tumor growth (24)

Pancreatic cancer,
2019

2-AG and CB1 DCs and
proinflammatory
cytokines

2-AG inhibits proliferation of cancer cells via CB1 (25)

Colon and breast
cancer, 2018

MGL and CB2 TAMs, CD8+ T cells MGL influences cancer progression (26)

Colitis-associated
colon cancer, 2020

THC, CB2 DCs, macrophages,
Tregs

THC attenuates colitis-associated cancer (27)

Lung cancer, 2016 JWH-015 TAMs CB2 agonist JWH-015 reduces tumor growth and decreases macrophage
recruitment to tumor sites, decreases EMT of tumor cells

(28)

Melanoma, 2015 CB1 and CB2 CD45+ cells, Gr-1- or
Gr-1+ CD11b+ cells

THC reduces tumor growth in a CB receptor-dependent manner (29)

Breast cancer, 2015 CBD macrophages CBD inhibits tumor growth and metastasis through inhibition of
macrophage recruitment to tumor sites

(30)

Glioma (C6), 2003 JWH-133 and CB2 endothelial cells CB2 agonist JWH-133 reduces tumor angiogenesis (31)
frontier
2-AG, 2-arachidonoylglycerol; CB1, cannabinoid receptor 1; CB2, cannabinoid receptor 2; CBD, cannabidiol; DCs, dendritic cells; EMT, epithelial to mesenchymal transition; MGL,
monoacylglycerol lipase; NK, natural killer; NSCLC, non-small cell lung cancer; TAMs, tumor-associated macrophages; THC, tetrahydrocannabinol; TME, tumor microenvironment. Tregs,
regulatory T cells, JWH-015 and JWH-133, CB2 agonists.
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Influence of cannabinoids and the ECS
on immunotherapy

Immuno-oncologic studies aim to find ways to circumvent the

development of resistance to immunotherapy and to determine

adjuvant targets to increase patient survival. Because of its

immunomodulatory effects, the ECS may hold such targets, but

up to now, only few experimental or clinical studies have

investigated the role of the ECS on the immune-TME and the

impact of cannabis or cannabinoids in immunotherapy (shown in

Table 2). Xiong and colleagues identified that exogenous (THC) as

well as endogenous (AEA) cannabinoids negatively affect antitumor

immunity by impairing the function of tumor-specific T cells via

CB2. They also observed that THC reduces the therapeutic effect of

anti-PD-1 therapy (43). In our NSCLC model, the response to anti-

PD-1 treatment was improved in CB2 knockout mice suggesting

that CB2 may act as an immunosuppressor in NSCLC. Additionally,

anti-PD-1 antibody treatment increased the accumulation of

cytotoxic immune cells (CD8+ T and NK cells) in CB2 knockout

mice, suggesting that the presence of CB2 in the TME interferes with

the response to PD-1/PD-L1 blockade (22). Targeting CB2 during

immunotherapy could, therefore, have an additional benefit for

NSCLC patients, and increase the response rate (22).

Our experimental data largely fit with a clinical study, in which

Taha et al. retrospectively demonstrated the effect of cannabis

during immunotherapy (nivolumab) and evaluated the response

rates (RR), progression-free survival (PFS), and overall survival

(OS) of cancer patients. The group found that cannabis use during

nivolumab therapy reduced RR without affecting PFS or OS (44). In

a recent prospective observational clinical study, Bar-Sela et al.

enrolled 102 advanced cancer patients (68 cannabis non-users and

34 cannabis users) who started ICI treatment. The findings showed

that cannabis users had a significant decrease in time to treatment

progression (TTP) and OS vs. cannabis non-users. The
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consumption of cannabis, however, reduced irAEs. The authors

suggested to use cannabis with attentiveness before and during ICI

immunotherapy of advanced malignances (45, 47). In contrast, a

recent study byWaissengrin et al. described that concomitant use of

medical cannabis with pembrolizumab had no harmful effect in

advanced NSCLC. TTP of cannabis users did not differ from

cannabis non-users. However, the median OS was numerically

higher for cannabis non-users vs. cannabis users, but did not

reach statistical difference (p = 0.08) (46).

Low response to ICI during cannabis use may be, therefore,

linked to the fact that cannabinoids exert immunosuppressive

effects (48). These effects may involve CB2 activity in immune or

other TME cells.
Discussion

Inflammation promotes tumorigenesis, but an active immune

system is also a powerful weapon to combat tumor development.

The fact that cells of the immune system are present in a shared

microenvironment with cancer cells has been known since the 19th

century (49). However, not until recently, immune cells began to be

used as tools against cancer, as Jennifer Couzin-Frankel wrote in

Science magazine: “Immunotherapy marks an entirely different way

of treating cancer- by targeting the immune system, not the tumor

itself” (50). Today, many effective antibodies against checkpoint

proteins are already at hand for antitumor treatment (37).

Downsides of immunotherapy include the development of

resistance and a low responder rate (like in NSCLC) (51).

Molecules other than checkpoint proteins like CB2 and MGL

may, therefore, act as targets to aid the response to

immunotherapy (22, 24–26, 29). CB2 is abundantly expressed in

immune cells (52) and upon activation, it has the ability to influence

immune functions, such as cytokine production, proliferation/
TABLE 2 The ECS and cannabinoids during immunotherapy.

Type of study Cancer entity ECS ICIs Outcome Ref.

Experimental mouse model Skin, colon, and lung cancers AEA,
CB2,
THC

Anti-PD-1 THC reduces the therapeutic effect (43)

Experimental mouse model NSCLC CB2 Anti-PD-1 The absence of CB2 favors a positive response (22)

Retrospective observational
clinical study

Advanced melanoma, NSCLC,
and renal clear cell carcinoma

Cannabis Anti-PD-1
(nivolumab)

The consumption of cannabis reduced RR,
without influencing PFS and OS

(44)

Prospective observational
clinical study

Melanoma, NSCLC, renal cell
carcinoma, and other types of
cancer

Cannabis Anti-PD-1
(nivolumab,
pembrolizumab)
anti-CTLA-4
(ipilimumab),
anti-PD-L1
(durvalumab,
atezolizumab)

The consumption of cannabis before or during
ICI immunotherapy associates with worsened
clinical outcomes

(45)

Experimental mouse model and
retrospective non-randomized
study

Colorectal carcinoma (murine
model, CT26 cell line), NSCLC
(clinical study)

Cannabis Anti-PD-1
(pembrolizumab)
anti-PD-L1

No harmful effect of cannabis on the activity of
pembrolizumab

(46)
frontier
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differentiation, migration, apoptosis, and antibody production

(reviewed in (12, 53). These functions are all amenable to CB2
receptor agonism/antagonism. Also MGL has been implicated as a

driver in many types of tumors (23, 54, 55). A MGL inhibitor (ABX-

1431) (56) has been already tested in the clinics (clinicaltrials.gov:

NCT03625453). However, tumor type, the TME, or both seem to

influence the behavior of CB2 and MGL towards tumors. This

introduces an obstacle to the universal use of CB2 or MGL blockers

for the treatment of cancer without prior knowledge of the ECS

component’s role. Genetic modification of CB receptors in immune

cells and adoptive cell therapy (e.g., CD8+ T and NK cells, known to

express CB receptors (21)) could be one possible way of application.

Investigating other members of the ECS, like DAGL, the 2-AG

producing enzyme, and proteins involved in CB2 receptor signaling

pathways would also be a step towards identifying new targets that

could support ICI treatment.

It is known that co-medications such as proton pump

inhibitors, glucocorticoids, antibiotics, psychotropic drugs and

opioids must be carefully assessed at the time of ICI treatment

initiation, as they may significantly change the antitumoral

response (57–59) Likewise, the use of medical cannabis or

cannabis-derived products during immunotherapy should be

reconsidered as they might interfere with the ICIs’ mechanism.

As cannabis use is widespread in cancer patients, ICI treatment may

be unsuccessful if cannabis consumption is continued.

Further efforts are required to unravel the exact role of the ECS

within the TME and to understand the importance of the ECS in

tumor development and immunotherapy.
Frontiers in Oncology 05
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