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prognostic network model

Jie Hu1, Qilong Liu2, Bi Feng1, Yanling Lu1 and Kai Chen1*

1Department of Medical Oncology of The Eastern Hospital, The First Affiliated Hospital, Sun Yat-Sen
University, Guangzhou, China, 2Department of Gastroenterology of The Eastern Hospital, The First
Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
Introduction: The rapid progress and poor prognosis of the exercise of

esophageal squamous cell carcinoma (ESCA) bring great challenges to the

treatment. Hypoxia in the tumor microenvironment has become a key factor

in the pathogenesis of tumors. However, due to the lack of clear therapeutic

targets, hypoxia targeted therapy of ESCA is still in the exploratory stage.

Methods: To bridge this critical gap, we mined a large number of gene

expression profiles and clinical data on ESCA from public databases. First,

weighted gene co-expression network analysis (WGCNA) and functional

enrichment analysis were performed. We next delved into the relationship

between hypoxia and apoptotic cell interactions. Meanwhile, using LASAS-Cox

regression, we designed a robust prognostic risk score, which was subsequently

validated in the GSE53625 cohort. In addition, we performed a comprehensive

analysis of immune cell infiltration and tumor microenvironment using cutting-

edge computational tools.

Results: Hypoxia-related genes were identified and classified by WGCNA.

Functional enrichment analysis further elucidated the mechanism by which

hypoxia affected the ESCA landscape. The results of the interaction analysis of

hypoxia and apoptotic cells revealed their important roles in driving tumor

progression. The validation results of the prognostic risk score model in the

GSE53625 cohort obtained a good area under the receiver operating

characteristic (ROC) curve, and the risk score was independently verified as a

significant predictor of ESCA outcome. The results of immune cell infiltration and

tumor microenvironment analysis reveal the profound impact of immune cell

dynamics on tumor evolution.

Conclusion: Overall, our study presents a pioneering hypoxiacentered gene

signature for prognostication in ESCA, providing valuable prognostic insights that

could potentially revolutionize patient stratification and therapeutic

management in clinical practice.

KEYWORDS

esophageal squamous cell carcinoma (ESCA), hypoxia, weighted gene co-expression
network analysis (WGCNA), immune infiltration, prognostic biomarkers
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1 Introduction

Esophageal squamous cell carcinoma (ESCA), an aggressive

malignancy characterized by its late diagnosis and poor prognosis,

has become a major health concern globally. The incidence and

mortality rates of ESCA are a reflection of an evolving public health

landscape, shaped by socio-economic and lifestyle changes that

have altered dietary patterns and risk factor exposures (1). ESCA

stands as the eighth most commonly diagnosed cancer and the sixth

leading cause of cancer-related mortality worldwide, making it a

disease of significant epidemiological weight (2). The latest global

cancer statistics reveal a sobering picture: in 2018, ESCA accounted

for over half a million new cases and an almost equal number of

deaths, representing 3.2% of all cancer cases and 5.3% of cancer

deaths respectively (2). Notably, China bears a disproportionate

burden of ESCA, with nearly 70% of the world’s cases reported

there, bringing into focus the regional disparities in cancer

epidemiology (3, 4).

The high fatality rates associated with ESCA can largely be

attributed to its typically asymptomatic nature in early stages,

leading to delayed diagnoses when surgical interventions are less

viable due to advanced metastasis. The five-year survival rate

languishes below 20%, a statistic that has seen little improvement

over the years, highlighting the critical need for innovative treatment

strategies and more effective management approaches (5, 6).

The tumor microenvironment of ESCA, particularly under

hypoxic conditions, is a critical determinant of tumor progression

and treatment resistance. Within this niche, apoptotic cells—those

undergoing programmed cell death—can significantly alter tumor

behavior and response to treatment, presenting a potential target for

therapeutic intervention. Despite the nascent stage of immunotherapy

in the ESCA treatment arsenal, there are promising signs that

immunomodulatory approaches could enhance outcomes, especially

for patients exhibiting certain biomarkers such as PD-L1 (7, 8). This

optimism is bolstered by clinical trials showing favorable responses to

immunotherapy in subsets of ESCA patients, suggesting a new frontier

in personalized cancer care (9).

The role of the tumor microenvironment extends beyond the

confines of tumor cells, encompassing a complex network of cellular

and extracellular components that support and enable tumor

survival, growth, and metastasis (10, 11). Hypoxia is a hallmark of

the tumor microenvironment that significantly contributes to this

network. It arises when rapidly proliferating tumor cells outstrip their

blood supply, resulting in a low-oxygen environment that activates a

cascade of molecular events through hypoxia-inducible factors

(HIFs). These factors are pivotal in orchestrating a range of cellular

adaptations that not only facilitate tumor survival and progression

but also contribute to genetic instability and resistance to

conventional therapies (12, 13). The adverse impact of hypoxia on

treatment outcomes has been well-documented, solidifying its status

as a key prognostic factor in ESCA and other solid tumors (14).

In parallel, the immune landscape within the tumor

microenvironment has emerged as a critical influencer of tumor
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evolution, with hypoxia exerting a profound effect on both innate and

adaptive immune responses. These interactions offer new insights

into potential immunotherapeutic targets and necessitate a deeper

understanding of the hypoxia-immune interface in ESCA (15, 16).

This study aims to bridge this knowledge gap by leveraging

bioinformatics tools to construct a robust hypoxia-related gene

model that can predict prognosis and guide therapeutic

interventions for ESCA. Utilizing comprehensive datasets from

TCGA and hypoxia gene sets from MSigDB, we applied WGCNA

to identify key hypoxia-associated genes and performed functional

enrichment analysis to decipher the underlying biological

mechanisms. The prognostic significance of these genes was

evaluated using LASSO-Cox regression to create a risk scoring

system, which was externally validated in the GSE53625 cohort.

Our exploration also extended to the analysis of immune cell

infiltration and the immune microenvironment using advanced

algorithms such as ESTIMATE, xCell, CIBERSORT, and TIMER,

providing a panoramic view of the immune dynamics in ESCA and

their implications for patient survival and therapy optimization.
2 Materials and methods

2.1 Data collection

Data was collected from the TCGA repository (https://

portal.gdc.cancer.gov/), This dataset consisted of RNA sequencing

data from 162 ESCA samples and 11 normal paracancerous tissues,

accompanied by clinical information pertaining to ESCA patients (17).

Hypoxia-related genes were retrieved from the msigdb.org website.

Through our search, we identified gene sets M5891, M10508, and

M641, comprising 311 hypoxia genes in total (18). Additionally, we

established a validation cohort (GSE53625), which included the RNA

sequencing of 358 patients and corresponding survival data from the

GEO repository (https://www.ncbi.nlm.nih.gov/geo/) (19).
2.2 Co-expression network construction

The WGCNA method was used to investigate gene set

expression. The WGCNA R package was utilized to develop and

modularize various gene networks. This was done through several

main phases: identifying significant outliers through sample

clustering, establishing co-expression networks using automated

networks, and detecting modules through hierarchical clustering

and dynamic tree cutting functions. Module Membership (MM)

and Gene Significance (GS) were calculated to establish associations

between modules and clinical features. Hub modules were identified

based on the highest Pearson MM correlation, with an absolute P-

value of 0.05. An MM value greater than 0.8 and a GS value

exceeding 0.2 were considered indicators of strong module

connectivity and clinical relevance, respectively. The gene data of

the relevant module underwent further scrutiny.
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2.3 Consensus clustering

We implemented consensus clustering to discern unique

pyroptosis-related trends associated with hypoxia-related gene

expression utilizing the k-means approach. Through the consensus

clustering algorithm and “ConsensusClusterPlus” package, the cluster

count and corresponding robustness were determined. To ensure the

classification’s solidity, we executed 1,000 iterations.
2.4 GO and KEGG pathway
enrichment analysis

To delineate the functional significance of differentially expressed

genes in esophageal squamous cell carcinoma (DEOSG), we

employed Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analyses util izing the

“clusterProfiler” (20), “ggplot2” (21), and “enrichplot” (22) R

packages. This approach illuminated the biological processes,

molecular functions, and pathways the DEOSGs are implicated in.

Visual representations were crafted for clarity using “ggplot2” and

“enrichplot”, with a statistical significance threshold set at a P-value

of less than 0.05.
2.5 Identification of hypoxia-related gene
prognostic markers

Univariate Cox regression analysis was used to identify

prognosis-associated genes. Furthermore, we used LASSO Cox

regression to select robust independent prognostic indicators for

ESCA, considering a p-value < 0.05 to be significant. We calculated

risk scores using the following equation: Risk scores are calculated

by summing the product of coefficients [Coef(i)] and mRNA

expression levels [X(i)] for each gene in the module. Where ‘n’ is

the number of genes in the module. If the coefficient [Coef(i)] is

negative, it indicates a protective effect of the gene on patient

survival. Conversely, if the coefficient [Coef(i)] is positive, it

indicates an adverse survival pattern associated with the gene.

The TCGA-ESCA tumor samples were divided into two

categories based on their risk level: high-risk and low-risk. This

classification was determined using the median cut-off value. The

Kaplan-Meier (K-M) method was used to analyze and evaluate the

prognostic significance of these two groups. In addition, the receiver

operating characteristic (ROC) curve was used to evaluate the

accuracy and precision of the classification, specifically measuring

sensitivity and specificity.
2.6 Evaluation of immune cell
infiltration and generation of tumor
microenvironment scores

We used the established method of immune cell estimation

analysis, CIBERSORT, to determine the ratios of 22 types of
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immune cell subtypes based on the TCGA cohort. We used

TIMER to assess the abundance of six immune cell types. To

understand the level of immune cell infiltration in different risk

categories, we used xCell and ESTIMATE algorithms to generate

estimation scores, immune scores, and stromal scores to examine

additional tumor microenvironment. Results with a P value < 0.05

were advanced for further study. We used Spearman correlation to

verify the correlation of risk scores with tumor microenvironment

scores. A 2-way ANOVA analysis was performed to check the

association of risk scores with immune infiltration subtypes.
2.7 Cell culture

The EC109 ESCA cell line and the HEEC normal esophageal

cell line obtained from the American Type Culture Collection

(Manassas, USA) were cultured in RPMI-1640 medium

supplemented with 10% fetal bovine serum. Additionally, a

mixture of penicillin-streptomycin was added to confer dual

resistance. All cell cultivation was performed under moist

conditions at a temperature of 37°C and 5% CO2.
2.8 Western blot

The total protein treated with RIPA buffer was quantified using

BCA (Thermo, PA, USA). After this step, proteins were separated

using a 12% SDS-PAGE technique, subsequently transferred onto a

PVDF membrane. Then, the membrane was blocked using milk

powder and left overnight to be immunostained with primary

antibodies against CD59 (ab133707, 1:1000), IGFBP2 (ab188200,

1:1000), KRT15 (ab262484, 1:10000), BIK (ab52182, 1:500), SDC4

(ab74139, 1:500), ARPC4 (ab217065, 1:2000), TPD52 (ab181260,

1:1000), GAS2L1 (ab246924, 1:1000), RANGAP1 (ab92360, 1:5000)

and GAPDH (ab8245, 1:1000) at 4°C. Following incubation with

the secondary antibody, we captured fluorescent signals using a

chemiluminescence system (Pierce, Thermo, PA, USA).
2.9 RNA purification and qRT-PCR

We used TRIzol reagent to extract total RNA from the collected

samples (cells). The concentration, purity, and integrity of the

collected total RNA were evaluated by a UV spectrophotometer

and agarose gel electrophoresis. Subsequently, reverse transcription

of cDNA was performed using a high capacity cDNA kit (Applied

Biosystems, USA). The RNA sample of 1 µg was used together with

random primers during the synthesis process. The amplification

process was performed using a one-step SYBR PrimeScript RT-PCR

kit and an ABI 7500 PCR system. The amplification protocol and

conditions were followed according to the instructions provided

with the kit. PCR amplification was performed for 40 cycles, with

each sample repeated in three wells, and the entire experiment was

replicated three times. In this study, GAPDH was used as the

internal mRNA reference. We used the 2-△△ct method for data

analysis. The primer sequences are shown in Table 1.
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2.10 Statistical analysis

All data processing and analysis was performed in R Studio

(version 4.1.1). We used independent samples t-tests and Mann-

Whitney U-tests to compare the two groups of continuous

variables, chi-square or Fisher exact tests to analyze the statistical

significance between the two groups of categorical variables, and

Pearson correlation analyses to estimate correlation coefficients

between different genes. All statistical p-values were two-sided

and we considered statistically significant when p < 0.05.
3 Results

3.1 A weighted co-expression network was
created, and through an appropriate
method, key modules were identified

Upon exploring the MSigDB database for hypoxia gene sets, we

identified three sets: M5891, M10508, and M641. Integration of

these sets resulted in a total of 311 hypoxia-related genes

(Supplementary Table 1). These genes were then integrated with

161 TCGA-ESCA samples, creating a matrix for WGCNA analysis.

The analysis yielded three modules (Figures 1A, B). To examine the

correlation between these modules and clinical parameters, we

conducted Pearson’s test, which revealed significant correlations

between the blue and turquoise modules and T stage, N stage, as

well as the clinical stage of ESCA patients (Figure 1C). In order to

gain a better understanding of the functions of genes within these

two modules, we performed GO and KEGG analyses. The KEGG

enrichment analysis showed significant associations between these

genes and key biological pathways, including proteasomes, the HIF-

1 signaling pathway, and the glycolysis/gluconeogenesis pathway

(Figure 1D). Additionally, the GO enrichment analysis indicated

that genes within both modules are involved in important biological

processes such as RNA polymerase II promoter transcriptional

regulation in response to hypoxia and response to reduced

oxygen levels (Figure 1E).
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3.2 Consensus clustering identifies two
ESCA clusters with different hypoxic status

To determine the hypoxic status of 161 TCGA-ESCA tumor

samples, consensus clustering was performed according to the

expression similarity of 205 hypoxia-associated gene features.

With K=3, the CDF curve had a flatter mid-section (Figures 2A-

D). Consequently, two subgroups, named cluster1 (n=64), cluster2

(n=69), and cluster3 (n=28), were determined. The OS rate was

notably higher in the C3 group in contrast to the C1

group (Figure 2E).
3.3 Impact of hypoxic states on immune
cell infiltration in ESCA

In order to understand the role of hypoxia in tumor progression

and its impact on the immune response, we utilized the xCell

algorithm in the R platform to analyze immune cell subtypes. We

observed variations in the abundance of several cell types, including

B cells naive, resting memory CD4 T cells, Tregs, resting NK cells,

M0 Macrophages, resting dendritic cells, activated dendritic cells,

resting mast cells, activated mast cells, and neutrophils among the

three groups (Figures 3A, B). Out of the 22 immune cell types

evaluated, these specific cell types showed differential abundance.

Additionally, our K-M analysis revealed that high expression of T

cells CD4 memory resting, Macrophages M0, activated dendritic

cells, and activated mast cells, as well as low expression of resting

ma s t c e l l s , w e r e a s s o c i a t e d w i t h a n un f a v o r a b l e

prognosis (Figure 4).
3.4 Developing and validating prognostic
features of hypoxia-associated genes

In our retrospective study, we delved into the prognostic

significance of hypoxia-related genes in ESCA by conducting

univariate Cox regression and LASSO regression analyses on a
TABLE 1 Primer sequences.

ID Upstream primer (5’ -3’) Downstream primer set (5’ -3’)

CD59 CGTCAGGTGTGTATTGGGCT GGGCACACAGTAGGTTCTCC

IGFBP2 TGCAGACAATGGCGATGACC GGTGCTGCTCAGTGACCTTC

KRT15 AGAAATCTGAATTCCTATTGCAGGAGA CCCTGAAAGCTTAGACCGAGGGACCCT

BIK GACCATGGAGGTTCTTGGCA AGGCTCACGTCCATCTCGTC

SDC4 CAAGGTGTCAATGTCCAGCA AGAGGATGCCCACGATGC

ARPC4 GAAAGGGGTCCAAGCAGTGT TGGTGGTGCAATACACGGAA

TPD52 GGAAGAGGAGCAGGAAGAGC GATGACTGAGCCAACAGAG

GAS2L1 CATCTGGTGGGAAAGGGGTC GGAGGACTTACGCCATGCAA

RANGAP1 CAGGCTTTCGCTGTCAACC GCAGCATCCCTCTTGATTTCAC

GAPDH GCTGGCGCTGAGTATGGAGT CACAGTCTCTTGGTGATGG
frontiersin.org

https://doi.org/10.3389/fonc.2023.1296814
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2023.1296814
A B

D E

C

FIGURE 2

Consensus Clustering and Survival Analysis for ESCA. (A) Cumulative distribution function (CDF) for consensus clustering. (B) Delta area plot
determining the optimal number of clusters. (C) Consensus matrix heatmap for k=2 clusters. (D) Item-consensus tracking plot for varying cluster
numbers (k=2 to k=10). (E) Kaplan-Meier curves comparing overall survival rates among identified ESCA subgroups.
A B

D

E

C

FIGURE 1

Network Construction and Gene Module Associations. (A) Soft-threshold power analysis illustrating the influence on network connectivity.
(B) Dendrogram of all genes clustered based on a dissimilarity measure (1-TOM) with assigned module colors. (C) Heatmap depicting the correlation
between module eigengenes and clinical traits of ESCA. (D) KEGG pathway enrichment for key genes in the blue and turquoise modules highlighting
involved biological pathways. (E) GO term enrichment for blue and turquoise module hub genes, categorized into biological processes (BP), cellular
components (CC), and molecular functions (MF).
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refined cohort of 205 pivotal genes identified within the blue and

turquoise modules. The meticulous analytical process culminated in

the recognition of nine hypoxia-associated genes significantly

correlated with patient outcomes, namely CD59, IGFBP2, KRT15,

BIK, SDC4, ARPC4, TPD52, GAS2L1, and RANGAP1. Leveraging

the coefficients derived from LASSO regression, we established a

risk score formula and subsequently stratified patients into high-

risk or low-risk categories, with the median risk score serving as the
Frontiers in Oncology 06
demarcation (Figures 5A–C). The Kaplan-Meier survival analysis

underscored a markedly improved overall survival (OS) in the low-

risk group (P<0.001) (Figure 5D). Additionally, the efficacy of our

risk model in prognosticating OS was substantiated through ROC

curve analysis, yielding robust AUC metrics at 1-year (0.72), 3-year

(0.80), and 5-year (0.90) intervals, thus highlighting the model’s

discernment capabilities (Figure 5E). To extend the model’s validity,

an external dataset (GSE53625) was employed. Concordance with
FIGURE 4

Immune Expression-Survival Correlation. A graphical representation correlating immune cell expression with patient survival rates in ESCA.
A B

FIGURE 3

Immune Landscape Profiling in ESCA Subgroups. (A) Bar chart comparing the relative levels of immune cell infiltration across three ESCA patient
clusters. (B) Profile of immune cell infiltration delineated into 10 immune cell types.
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TCGA-ESCA data was affirmed via Kaplan-Meier analysis, where

the survival disparity predicated on the risk score reaffirmed the

model’s consistency and predictive prowess (Figure 5F). In the

external cohort, the low-risk group notably outpaced the high-risk

group in survival outcomes (P<0.05), and the model’s predictive

accuracy was echoed with AUCs of 0.73, 0.77, and 0.83 for 1-year, 3-

year, and 5-year survival rates, respectively (Figures 5G, H). These

findings assert the model’s applicability and reliability across

diverse datasets, thus reinforcing its potential utility in clinical

prognostication for ESCA.
3.5 Correlation of risk score, clinical
features, and immune score in
ESCA patients

To investigate the relationship between risk score, clinical

characteristics, and cluster subgroups, researchers conducted a

heatmap analysis. The analysis revealed that ARPC4, BIK,

IGFBP2, SDC4, and TPD52 were present at lower levels in the

high-risk group, suggesting their protective role for ESCA patients.

On the other hand, KRT15 showed higher expression in the low-

risk cohort, indicating its association with increased risk for ESCA

patients. Notable differences were observed between the high-risk

and low-risk groups in terms of ESCC cluster subtypes (P < 0.001)

and T staging (P < 0.05) (Figure 6A). Risk scores varied significantly

among different groups, with groups C1 and C2 having notably
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higher risk scores compared to group C3 (P < 0.001, Figure 6B),

indicating distinct risk profiles within ESCC subtypes. Furthermore,

the risk score for T1 stage patients was lower compared to T3 stage

patients (P < 0.01, Figure 6C). Interestingly, no significant

differences were found between the Immune Score, ESTIMATE

Score, and risk score (Figures 6D, E). These findings emphasize the

significant impact of risk scores on the clinical outcomes of

ESCC patients.
3.6 Correlation between risk score and
immune cell infiltration and apoptosis

To assess the impact of the 9 central genes on the immune

microenvironment of ESCA, we examined the correlation between

the risk score and the infiltration levels of 22 types of immune cells

(Figure 7A). The results indicate a positive association between the

risk score and the infiltration levels of T cells CD8, T cells gamma

delta, Macrophages M1, Dendritic cells resting, and Mast cells

resting (Figures S1A, B, S1D, E). Conversely, there is a negative

correlation between the risk score and the infiltration levels of

Macrophages M0 (Figure S1C). Furthermore, the levels of CD8 and

mast cells were significantly lower in the high-risk score patients

compared to the low-risk group (Figure 7B). Additionally, we

observed that among the 64 immune cells calculated by xcell, the

hepatocytes level was the most significant in the high-risk group

compared to the low-risk group (Figure 7C). Finally, we also
A B

D E

F G H

C

FIGURE 5

Prognostic Marker Construction and Validation. (A, B). LASSO Cox regression for identification of optimal prognostic gene markers. (C). Risk
score distribution, patient survival status, and expression heatmaps for key hypoxia-associated genes from TCGA. (D). Kaplan-Meier survival
analysis correlated with risk scores from TCGA data. (E). ROC curves validating the prognostic accuracy for 1-, 3-, and 5-year outcomes in TCGA.
(F–H). Corresponding analysis for GEO dataset, mirroring the structure and content of panels (C–E).
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compared the expression of apoptotic genes between the high-risk

and low-risk groups, which showed a significant increase in the

expression of proapoptotic genes and a decrease in the expression of

apoptotic genes in the high-risk group (Figure 7D). These findings

confirm the association between the risk features of the 9 central

genes and the immune microenvironment of ESCA.
3.7 In vitro validation of hub genes

In the end of our study, we used qRT-PCR andWB to detect the

expression of KRT15, BIK, SDC4, ARPC4, TPD52, RANGAP1,

IGFBP2, CD59, and GAS2L1 in ESCA cells. The qRT-PCR and WB

results showed that KRT15, BIK, SDC4, ARPC4, TPD52, and

RANGAP1 are highly expressed in ESCA cells (P <0.05), while

IGFBP2 is expressed at a lower level (P <0.01). No difference was

found in the expression of CD59 and GAS2L1 between ESCA and

normal cells (P>0.05, Figure 8).
4 Discussion

ESCC, a common malignancy of the digestive tract, is

characterized by an unfavorable prognosis (23). It is a common

subtype in our country with poor treatment outcomes and a low

survival rate (24). Despite the widespread use of the TNM staging

system as a risk stratification tool for ESCC patients (25), it does not

always accurately predict patient outcomes. As molecular biology
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has advanced and our understanding of the immune

microenvironment has grown, certain genes have been identified

as prognostic markers for ESCC patients (26). In addition, the role

of apoptotic cells in the tumor microenvironment has gained

a t t ent ion . Apopto t i c ce l l s can influence the tumor

microenvironment, especially in the context of hypoxia, by

releasing various factors that can modulate immune responses,

promote tumor growth, and influence treatment outcomes.

However, the immune microenvironment is incredibly complex

and varies significantly between tumor types (20). Therefore, we’ve

chosen tumor purity as a criterion for evaluating the immune

microenvironment. Given the variability in tumor purity and

hypoxic conditions between different tumor types, the question

remains as to how best to use gene expression profiles to more

effectively predict ESCC prognosis.

In recent decades, there have been tremendous advances in

molecular research and bioinformatics technology. Molecular

biology allows a detailed examination of how variations and co-

expression in genes can affect protein functionality and disease

progression. This is achieved through enrichment analysis, a

process in which genes are classified into groups based on their

molecular functions, the biological processes in which they are

involved, and the cellular components with which they are

associated (21). This analysis helps to understand the roles these

genes play in different biological contexts, providing a clearer

picture of their significance in the disease process. At the same

time, WGCNA has proven to be a valuable tool for exploring

relationships between diseases and related phenotypes and highly
A

B D EC

FIGURE 6

Integrative Analysis of Risk Scores and Clinical Immune Scores. (A) Correlation analysis of risk scores, patient clinical attributes, and expression
patterns of significant genes. (B–E). Visualization of risk scores in relation to patient clusters, tumor stages (T), Immune Scores, and
ESTIMATE Scores.
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correlated gene clusters (modules) (22). Numerous studies have

used WGCNA to uncover the functions and potential molecular

mechanisms of hub genes (27, 28). In our research, we were able to

identify 205 hypoxia-related genes using WGCNA. These genes

were functionally associated with hypoxia response in GO and

KEGG enrichment analyses, including transcriptional regulation of

RNA polymerase II promoters in response to hypoxia, response to

reduced oxygen levels, and critical biological pathways, including

the HIF-1 signaling pathway and the glycolysis/gluconeogenesis

pathway. In addition, we performed an assessment of immune cell

infiltration, which revealed the significant influence of hypoxia on

the immune microenvironment within tumors. Furthermore, the

interplay between hypoxia and apoptosis was evident, suggesting

that the balance between cell survival and programmed cell death
Frontiers in Oncology 09
under low oxygen conditions may significantly impact tumor

progression and treatment outcomes. Our analysis revealed that

there were 10 distinct immune cell subtypes that showed differential

expression. Significantly, some of these Subtypes such as memory

resting CD4 T cells, activated M0 macrophages, activated dendritic

cells and activated mast cells showed high expression levels. In

contrast, resting mast cells showed low expression levels. These

findings underscore the importance of immune infiltration in the

development of ESCC and suggest that hypoxia may influence

patient prognosis by affecting immune infiltration.

To validate our hypothesis, we performed Lasso regression and

identified nine hypoxia-related genes associated with ESCC

prognosis. The results showed that CD59, IGFBP2, KRT15, BIK,

SDC4, ARPC4, TPD52, GAS2L1, and RANGAP1 were correlated
A

B

D

C

FIGURE 7

Risk Score and Immune Cell Infiltration Correlation Study. (A) Scatter plot examining the relationship between risk scores and 22 types of immune
cell infiltrations. (B) Comparative analysis of the immune cell infiltration levels between high and low-risk groups. (C) Heatmaps depicting the
infiltration of 64 immune cell types across risk groups. (D) Comparative gene expression analysis of apoptosis-related genes in high versus low-risk
groups. * P<0.05, ** P<0.01, *** P<0.001 and **** P<0.0001.
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with ESCC prognosis. CD59 is a cell surface expressed protein that

helps protect cells from complement-mediated lysis. Wang et al.

(29) found that CD59 expression on red and white blood cells

increased significantly after a combination of hypoxia

preconditioning and high-altitude training. This suggests a role

for CD59 in the regulation of hypoxic conditions. IGFBP2 is one of

the major regulators of insulin-like growth factors (IGFs) and can

modulate the biological activity of IGFs (30). Studies have shown

that IGFBP2 can ameliorate tumor hypoxic conditions by

promoting vascular neovascular izat ion in the tumor

microenvironment (31). BIK, a member of the BCL-2 protein

family, is a pro-apoptotic protein responsible for regulating cell

apoptosis. It plays a critical role in many physiological processes

and diseases such as cancer and neurodegenerative disorders (32).

Research has shown that tumor cells can adapt to hypoxic

conditions and resist hypoxia-induced cell death by altering their

metabolism and physiological characteristics through the regulation

of BIK expression, highlighting the intricate relationship between

hypoxia and apoptosis (33). SDC4 belongs to the syndecan protein

family and is a cell surface-anchored transmembrane protein. It can

interact with many bioactive molecules such as growth factors,

chemokines, and cell adhesion molecules, thereby regulating

various cellular behaviors and physiological processes (34). Due

to its role in cell adhesion and migration, SDC4 can undergo

changes under hypoxic conditions. It can upregulate its

expression to enhance migration ability and escape the hypoxic
Frontiers in Oncology 10
environment (35). However, there is a lack of research on the

association between KRT15, ARPC4, TPD52, GAS2L1, RANGAP1

and hypoxic conditions. We hope to conduct experimental studies

in future research to validate the changes in these genes under

hypoxic conditions.

Researchers have developed a hypoxia analysis model to better

understand the relationship between hypoxia-associated gene

expression and patient prognosis. This model successfully stratified

the population into two risk categories, allowing for a more

comprehensive assessment of patient outcomes. The study revealed

a striking contrast in prognosis between the high-risk and low-risk

cohorts. Specifically, individuals in the low-risk cohort had

significantly higher survival rates for both ESCC and EAC

compared to their counterparts in the high-risk cohort. In addition,

the validity of this model was confirmed using external data, further

supporting its predictive ability in estimating 3-year and 5-year

patient survival. The involvement of hypoxia in the progression of

ESCC has been highlighted, as it promotes tumor glycolysis,

angiogenesis, cell proliferation, metastasis, and confers resistance to

radiation and chemotherapy (36). Hypoxia or hypoxic stress has

emerged as a marker of the immune microenvironment. Rapidly

proliferating tumors require a substantial supply of nutrients and

oxygen, leading to tumor angiogenesis (37). However, this process is

typically abnormal and inefficient. Oxygenation of tumor regions

close to blood vessels relies on the diffusion gradient relative to

intravascular oxygen tension, resulting in hypoxia in more distant
A

B

FIGURE 8

Validation of Hub Gene Expression via qRT-PCR and Western Blot. (A) qRT-PCR results showing the mRNA levels of hub genes in ESCA cell lines.
(B) B. Western blot analysis visualizing the protein expression levels of hub genes in ESCA cell lines. Statistical significance denoted as ns (P > 0.05), *
(P < 0.05), **(P < 0.01), ***(P < 0.001), and ****(P < 0.0001). ESCA: Esophageal Squamous Cell Carcinoma. This optimized version focuses on clarity
and consistency, ensuring each figure is described succinctly while maintaining all necessary scientific detail and referencing the impact on
ESCA research.
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regions (38). The presence of tumor hypoxia in ESCC has been

validated by studies, and it’s considered a significant risk factor for

adverse prognosis in ESCC patients (39). In addition, hypoxia can

promote and maintain an immunosuppressive microenvironment

(37). It primarily mediates immune suppression by inhibiting T-cell

migration into tumor tissue or accelerating T-cell apoptosis (40). In

addition, hypoxia can also induce apoptosis in tumor cells, leading to

the release of various factors that can modulate immune responses.

The balance between hypoxia-induced apoptosis and immune

responses can significantly affect tumor progression and treatment

outcome. In-depth analysis revealed a correlation between risk scores,

clinical characteristics and immune scores, highlighting the impact of

the immune microenvironment on ESCA progression. This

underscores the potential of the risk score model to assess both

patient immune status and prognosis, further highlighting the

importance of immune factors in ESCA development and

treatment outcomes. The final part of the study involved basic

experimental analysis using qRT-PCR and WB detection. It

revealed high expression levels of KRT15, BIK, SDC4, ARPC4,

TPD52 and RANGAP1 in ESCA cells, with IGFBP2 expressed at

low levels. ESCA and normal cells did not differ in the expression of

CD59 and GAS2L1. These findings suggest that high expression of

KRT15, BIK, SDC4, ARPC4, TPD52, and RANGAP1 and low

expression of IGFBP2 may be associated with the initiation and

progression of ESCA. The expression patterns of these genes may be

useful in diagnosing, predicting, and monitoring treatment response

in ESCA and may provide potential therapeutic targets for ESCC.

Despite the significance of these findings, our study has several

limitations. First, our prognostic model needs further validation in

more cohorts to demonstrate its applicability in different

populations. Second, although our study proposes the hypothesis

that hypoxia may influence immune infiltration and elucidates its

potential mechanism, further experiments are needed to investigate

the exact effects and mechanisms. In addition, the role of apoptosis

in the context of hypoxia and its impact on the immune

microenvironment needs to be further investigated. Finally, our

study is based on the analysis of gene expression levels, and further

investigation is required to determine the specific functions of these

genes and their roles in ESCA.

In conclusion, our study provides a novel perspective and tool

for the therapy and prognostic assessment of ESCA, and it has

important implications for understanding the pathological

mechanisms of ESCA, including the interplay between hypoxia,

apoptosis, and the immune microenvironment.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://www.ncbi.nlm.nih.gov/,

GSE53625.
Frontiers in Oncology 11
Ethics statement

Ethical approval was not required for the studies on humans in

accordance with the local legislation and institutional requirements

because only commercially available established cell lines were used.

Ethical approval was not required for the studies on animals in

accordance with the local legislation and institutional requirements

because only commercially available established cell lines were used.
Author contributions

JH: Conceptualization, Formal analysis, Writing – original

draft. QL: Methodology, Writing – original draft. BF: Software,

Validation, Writing – original draft. YL: Visualization, Writing –

original draft. KC: Supervision, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1296814/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Evaluating the correlation between risk score and the presence of 22 immune
infiltrating cells (A–F). Analyzing the relationship between risk score and the

infiltration of distinct immune cell categories, encompassing CD8 T cells,
gamma delta T cells, M0 Macrophages, M1 Macrophages, resting Dendritic

cells, and also resting Mast cells.
frontiersin.org

https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/articles/10.3389/fonc.2023.1296814/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1296814/full#supplementary-material
https://doi.org/10.3389/fonc.2023.1296814
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2023.1296814
References
1. Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, et al.
The global landscape of esophageal squamous cell carcinoma and esophageal
adenocarcinoma incidence and mortality in 2020 and projections to 2040: new
estimates from GLOBOCAN 2020. Gastroenterology (2022) 163(3):649–58.e2. doi:
10.1053/j.gastro.2022.05.054

2. Lim RZM, Mahendran HAMalaysian Upper Gastrointestinal Surgical S.
Esophageal squamous cell carcinoma and adenocarcinoma in Malaysia - Pooled data
from upper gastrointestinal centers in a multiethnic Asian population. Cancer
Epidemiol (2022) 80:102211. doi: 10.1016/j.canep.2022.102211

3. Jiang Z, Wang J, Shen Z, Zhang Z, Wang S. Characterization of esophageal
microbiota in patients with esophagitis and esophageal squamous cell carcinoma. Front
Cell Infect Microbiol (2021) 11:774330. doi: 10.3389/fcimb.2021.774330

4. Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, et al. High fat diet, gut microbiome and
gastrointestinal cancer. Theranostics (2021) 11(12):5889–910. doi: 10.7150/thno.56157

5. He H, Chen N, Hou Y, Wang Z, Zhang Y, Zhang G, et al. Trends in the incidence
and survival of patients with esophageal cancer: A SEER database analysis. Thorac
Cancer (2020) 11(5):1121–8. doi: 10.1111/1759-7714.13311

6. Waters JK, Reznik SI. Update on management of squamous cell esophageal
cancer. Curr Oncol Rep (2022) 24(3):375–85. doi: 10.1007/s11912-021-01153-4

7. Sun JM, Shen L, Shah MA, Enzinger P, Adenis A, Doi T, et al. Pembrolizumab
plus chemotherapy versus chemotherapy alone for first-line treatment of advanced
oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3
study. Lancet (2021) 398(10302):759–71. doi: 10.1016/S0140-6736(21)01234-4

8. Zheng Y, Chen Z, Han Y, Han L, Zou X, Zhou B, et al. Immune suppressive
landscape in the human esophageal squamous cell carcinoma microenvironment. Nat
Commun (2020) 11(1):6268. doi: 10.1038/s41467-020-20019-0

9. Shah MA, Hofstetter WL, Kennedy EBLocally Advanced Esophageal Carcinoma
Guideline Expert P. Immunotherapy in patients with locally advanced esophageal
carcinoma: ASCO treatment of locally advanced esophageal carcinoma guideline rapid
recommendation update. J Clin Oncol (2021) 39(28):3182–4. doi: 10.1200/
JCO.21.01831

10. Arneth B. Tumor microenvironment. Medicina (Kaunas) (2019) 56(1):15. doi:
10.3390/medicina56010015

11. Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer.
Pharmacol Ther (2021) 221:107753. doi: 10.1016/j.pharmthera.2020.107753

12. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer
therapy by regulating the tumor microenvironment. Mol Cancer (2019) 18(1):157. doi:
10.1186/s12943-019-1089-9

13. Yuan CS, Deng ZW, Qin D, Mu YZ, Chen XG, Liu Y. Hypoxia-modulatory
nanomaterials to relieve tumor hypoxic microenvironment and enhance
immunotherapy: Where do we stand? Acta Biomater (2021) 125:1–28. doi: 10.1016/
j.actbio.2021.02.030

14. Jing SW, Wang YD, Kuroda M, Su JW, Sun GG, Liu Q, et al. HIF-1alpha
contributes to hypoxia-induced invasion and metastasis of esophageal carcinoma via
inhibiting E-cadherin and promoting MMP-2 expression. Acta Med Okayama (2012)
66(5):399–407. doi: 10.18926/AMO/48964

15. Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk
between tumor and tumor-associated macrophages: mechanisms and clinical treatment
strategies. Mol Cancer (2022) 21(1):177. doi: 10.1186/s12943-022-01645-2

16. Ray SK, Mukherjee S. Imitating hypoxia and tumor microenvironment with
immune evasion by employing three dimensional in vitro cellular models: impressive
tool in drug discovery. Recent Pat Anticancer Drug Discovery (2022) 17(1):80–91.
doi: 10.2174/1574892816666210728115605

17. Li Y, Gu J, Xu F, Zhu Q, Ge D, Lu C. Transcriptomic and functional network
features of lung squamous cell carcinoma through integrative analysis of GEO and
TCGA data. Sci Rep (2018) 8(1):15834. doi: 10.1038/s41598-018-34160-w

18. Gu X, Lai D, Liu S, Chen K, Zhang P, Chen B, et al. Hub genes, diagnostic model,
and predicted drugs related to iron metabolism in Alzheimer's disease. Front Aging
Neurosci (2022) 14:949083. doi: 10.3389/fnagi.2022.949083

19. Ren N, Liang B, Li Y. Identification of prognosis-related genes in the tumor
microenvironment of stomach adenocarcinoma by TCGA and GEO datasets. Biosci
Rep (2020) 40(10):BSR20200980. doi: 10.1042/BSR20200980

20. Baba Y, Nomoto D, Okadome K, Ishimoto T, Iwatsuki M, Miyamoto Y, et al.
Tumor immune microenvironment and immune checkpoint inhibitors in esophageal
squamous cell carcinoma. Cancer Sci (2020) 111(9):3132–41. doi: 10.1111/cas.14541

21. Zhang X, Cui Y, Ding X, Liu S, Han B, Duan X, et al. Analysis of mRNA-lncRNA
and mRNA-lncRNA-pathway co-expression networks based on WGCNA in
Frontiers in Oncology 12
developing pediatric sepsis. Bioengineered (2021) 12(1):1457–70. doi: 10.1080/
21655979.2021.1908029

22. Lin W, Wang Y, Chen Y, Wang Q, Gu Z, Zhu Y. Role of calcium signaling
pathway-related gene regulatory networks in ischemic stroke based on multiple
WGCNA and single-cell analysis. Oxid Med Cell Longev (2021) 2021:8060477. doi:
10.1155/2021/8060477

23. Mai Z, Yuan J, Yang H, Fang S, Xie X, Wang X, et al. Inactivation of Hippo
pathway characterizes a poor-prognosis subtype of esophageal cancer. JCI Insight
(2022) 7(16):e155218. doi: 10.1172/jci.insight.155218

24. Xu L, Chen XK, Xie HN, Wang Z, Qin JJ, Li Y. Treatment and prognosis of
resectable cervical esophageal cancer: A population-based study. Ann Thorac Surg
(2022) 113(6):1873–81. doi: 10.1016/j.athoracsur.2021.06.059

25. Li D, Zhang L, Liu Y, Sun H, Onwuka JU, Zhao Z, et al. Specific DNA
methylation markers in the diagnosis and prognosis of esophageal cancer. Aging
(Albany NY) (2019) 11(23):11640–58. doi: 10.18632/aging.102569

26. Dinh HQ, Pan F, Wang G, Huang QF, Olingy CE, Wu ZY, et al. Integrated
single-cell transcriptome analysis reveals heterogeneity of esophageal squamous cell
carcinoma microenvironment. Nat Commun (2021) 12(1):7335. doi: 10.1038/s41467-
021-27599-5

27. Tian Z, He W, Tang J, Liao X, Yang Q, Wu Y, et al. Identification of important
modules and biomarkers in breast cancer based onWGCNA. Onco Targets Ther (2020)
13:6805–17. doi: 10.2147/OTT.S258439

28. Liu K, Chen S, Lu R. Identification of important genes related to ferroptosis and
hypoxia in acute myocardial infarction based on WGCNA. Bioengineered (2021) 12
(1):7950–63. doi: 10.1080/21655979.2021.1984004

29. Wang X, Huang L, Gao H. Effects of hypoxic preconditioning combined with
altitude training on CD55, CD59 and the immune function of swimmers. Ann Palliat
Med (2021) 10(1):509–17. doi: 10.21037/apm-20-2379

30. Li T, Forbes ME, Fuller GN, Li J, Yang X, Zhang W. IGFBP2: integrative hub of
developmental and oncogenic signaling network.Oncogene (2020) 39(11):2243–57. doi:
10.1038/s41388-020-1154-2

31. Kalya M, Kel A, Wlochowitz D, Wingender E, Beissbarth T. IGFBP2 is a
potential master regulator driving the dysregulated gene network responsible for short
survival in glioblastoma multiforme. Front Genet (2021) 12:670240. doi: 10.3389/
fgene.2021.670240

32. Gao J, Kang M, Han Y, Zhang T, Jin H, Kang C. RETRACTED: Ginkgolides B
alleviates hypoxia-induced PC-12 cell injury by up-regulation of PLK1. BioMed
Pharmacother (2019) 115:108885. doi: 10.1016/j.biopha.2019.108885

33. Pandya V, Githaka JM, Patel N, Veldhoen R, Hugh J, Damaraju S, et al. BIK
drives an aggressive breast cancer phenotype through sublethal apoptosis and predicts
poor prognosis of ER-positive breast cancer. Cell Death Dis (2020) 11(6):448. doi:
10.1038/s41419-020-2654-2

34. Yang H, Liu Y, Zhao MM, Guo Q, Zheng XK, Liu D, et al. Therapeutic potential
of targeting membrane-spanning proteoglycan SDC4 in hepatocellular carcinoma. Cell
Death Dis (2021) 12(5):492. doi: 10.1038/s41419-021-03780-y

35. Zhu Y, Zheng D, Lei L, Cai K, Xie H, Zheng J, et al. High expression of syndecan-
4 is related to clinicopathological features and poor prognosis of pancreatic
adenocarcinoma. BMC Cancer (2022) 22(1):1042. doi: 10.1186/s12885-022-10128-y

36. Chen X, Luo C, Bai Y, Yao L, Shanzhou Q, Xie Y, et al. Analysis of hypoxia
inducible factor-1alpha expression and its effects on glycolysis of esophageal
carcinoma. Crit Rev Eukaryot Gene Expr (2022) 32(7):47–66. doi: 10.1615/
CritRevEukaryotGeneExpr.2022043444

37. Lian L, Teng SB, Xia YY, Shen XM, Zheng Y, Han SG, et al. Development and
verification of a hypoxia- and immune-associated prognosis signature for esophageal
squamous cell carcinoma. J Gastrointest Oncol (2022) 13(2):462–77. doi: 10.21037/jgo-
22-69

38. Zhou X, You M, Wang F, Wang Z, Gao X, Jing C, et al. Multifunctional
graphdiyne-cerium oxide nanozymes facilitate microRNA delivery and attenuate
tumor hypoxia for highly efficient radiotherapy of esophageal cancer. Adv Mater
(2021) 33(24):e2100556. doi: 10.1002/adma.202100556

39. Zhang Q, Zhang J, Fu Z, Dong L, Tang Y, Xu C, et al. Hypoxia-induced
microRNA-10b-3p promotes esophageal squamous cell carcinoma growth and
metastasis by targeting TSGA10. Aging (Albany NY) (2019) 11(22):10374–84. doi:
10.18632/aging.102462

40. Tan L, Cheng D, Wen J, Huang K, Zhang Q. Identification of prognostic
hypoxia-related genes signature on the tumor microenvironment in esophageal cancer.
Math Biosci Eng (2021) 18(6):7743–58. doi: 10.3934/mbe.2021384
frontiersin.org

https://doi.org/10.1053/j.gastro.2022.05.054
https://doi.org/10.1016/j.canep.2022.102211
https://doi.org/10.3389/fcimb.2021.774330
https://doi.org/10.7150/thno.56157
https://doi.org/10.1111/1759-7714.13311
https://doi.org/10.1007/s11912-021-01153-4
https://doi.org/10.1016/S0140-6736(21)01234-4
https://doi.org/10.1038/s41467-020-20019-0
https://doi.org/10.1200/JCO.21.01831
https://doi.org/10.1200/JCO.21.01831
https://doi.org/10.3390/medicina56010015
https://doi.org/10.1016/j.pharmthera.2020.107753
https://doi.org/10.1186/s12943-019-1089-9
https://doi.org/10.1016/j.actbio.2021.02.030
https://doi.org/10.1016/j.actbio.2021.02.030
https://doi.org/10.18926/AMO/48964
https://doi.org/10.1186/s12943-022-01645-2
https://doi.org/10.2174/1574892816666210728115605
https://doi.org/10.1038/s41598-018-34160-w
https://doi.org/10.3389/fnagi.2022.949083
https://doi.org/10.1042/BSR20200980
https://doi.org/10.1111/cas.14541
https://doi.org/10.1080/21655979.2021.1908029
https://doi.org/10.1080/21655979.2021.1908029
https://doi.org/10.1155/2021/8060477
https://doi.org/10.1172/jci.insight.155218
https://doi.org/10.1016/j.athoracsur.2021.06.059
https://doi.org/10.18632/aging.102569
https://doi.org/10.1038/s41467-021-27599-5
https://doi.org/10.1038/s41467-021-27599-5
https://doi.org/10.2147/OTT.S258439
https://doi.org/10.1080/21655979.2021.1984004
https://doi.org/10.21037/apm-20-2379
https://doi.org/10.1038/s41388-020-1154-2
https://doi.org/10.3389/fgene.2021.670240
https://doi.org/10.3389/fgene.2021.670240
https://doi.org/10.1016/j.biopha.2019.108885
https://doi.org/10.1038/s41419-020-2654-2
https://doi.org/10.1038/s41419-021-03780-y
https://doi.org/10.1186/s12885-022-10128-y
https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022043444
https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022043444
https://doi.org/10.21037/jgo-22-69
https://doi.org/10.21037/jgo-22-69
https://doi.org/10.1002/adma.202100556
https://doi.org/10.18632/aging.102462
https://doi.org/10.3934/mbe.2021384
https://doi.org/10.3389/fonc.2023.1296814
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Deciphering the Hypoxia-immune interface in esophageal squamous carcinoma: a prognostic network model
	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 Co-expression network construction
	2.3 Consensus clustering
	2.4 GO and KEGG pathway enrichment analysis
	2.5 Identification of hypoxia-related gene prognostic markers
	2.6 Evaluation of immune cell infiltration and generation of tumor microenvironment scores
	2.7 Cell culture
	2.8 Western blot
	2.9 RNA purification and qRT-PCR
	2.10 Statistical analysis

	3 Results
	3.1 A weighted co-expression network was created, and through an appropriate method, key modules were identified
	3.2 Consensus clustering identifies two ESCA clusters with different hypoxic status
	3.3 Impact of hypoxic states on immune cell infiltration in ESCA
	3.4 Developing and validating prognostic features of hypoxia-associated genes
	3.5 Correlation of risk score, clinical features, and immune score in ESCA patients
	3.6 Correlation between risk score and immune cell infiltration and apoptosis
	3.7 In vitro validation of hub genes

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


