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Development of an interpretable
machine learning model for
Ki-67 prediction in breast cancer
using intratumoral and
peritumoral ultrasound
radiomics features

Jing Wang †, Weiwei Gao †, Min Lu, Xiaohua Yao
and Debin Yang *

Departments of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine
& Health Sciences, Shanghai, China
Background: Traditional immunohistochemistry assessment of Ki-67 in breast

cancer (BC) via core needle biopsy is invasive, inaccurate, and nonrepeatable.

While machine learning (ML) provides a promising alternative, its effectiveness

depends on extensive data. Although the current mainstream MRI-centered

radiomics offers sufficient data, its unsuitability for repeated examinations, along

with limited accessibility and an intratumoral focus, constrain the application of

predictive models in evaluating Ki-67 levels.

Objective: This study aims to explore ultrasound (US) image-based radiomics,

incorporating both intra- and peritumoral features, to develop an interpretable

ML model for predicting Ki-67 expression in BC patients.

Methods: A retrospective analysis was conducted on 263 BC patients, divided

into training and external validation cohorts. From intratumoral and peritumoral

regions of interest (ROIs) in US images, 849 distinctive radiomics features per ROI

were derived. These features underwent systematic selection to analyze Ki-67

expression relationships. Four ML models-logistic regression, random forests,

support vector machine (SVM), and extreme gradient boosting-were formulated

and internally validated to identify the optimal predictive model. External

validation was executed to ascertain the robustness of the optimal model,

followed by employing Shapley Additive Explanations (SHAP) to reveal the

significant features of the model.

Results: Among 231 selected BC patients, 67.5% exhibited high Ki-67 expression,

with consistency observed across both training and validation cohorts as well as

other clinical characteristics. Of the 1698 radiomics features identified, 15 were

significantly correlated with Ki-67 expression. The SVM model, utilizing

combined ROI, demonstrated the highest accuracy [area under the receiver

operating characteristic curve (AUROC): 0.88], making it the most suitable for

predicting Ki-67 expression. External validation sustained an AUROC of 0.82,

affirming the model’s robustness above a 40% threshold. SHAP analysis identified
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five influential features from intra- and peritumoral ROIs, offering insight into

individual prediction.

Conclusion: This study emphasized the potential of SVM model using radiomics

features from both intra- and peritumoral US images, for predicting elevated Ki-

67 levels in BC patients. The model exhibited strong performance in validations,

indicating its promise as a noninvasive tool to enable personalized decision-

making in BC care.
KEYWORDS

breast cancer, Ki-67 levels, radiomics, peritumoral ultrasound segmentation, machine
learning, support vector machine
Introduction

The Ki-67 antigen is a well-established marker in cell

proliferation, essential in categorizing luminal subtypes of tumors

and predicting therapeutic outcomes in breast cancer (BC) (1, 2).

Higher expression levels signify increased aggressiveness, risk of

recurrence, and poor prognosis (3). The traditional approach to

preoperative assessment of Ki-67 involves immunohistochemistry,

requiring tissue samples usually extracted by core needle biopsy

(CNB), and subsequent visual analysis by a pathologist (4).

However, this primary method is invasive, time-consuming, and

nonrepeatable. The inherent heterogeneity of BC results in a

concordance rate between CNB and excision specimen, with a

substantial variation ranging from 59-88% (5, 6). Additionally,

the inability of the traditional approach to dynamically evaluate

Ki-67 changes during neoadjuvant therapy highlights its limitations

(7). Therefore, a method that is noninvasive and capable of

continuous monitoring is urgently needed for the clinical

evaluation of Ki-67 status.

With the accelerated advancement of artificial intelligence (AI)

techniques, machine learning (ML) has marked remarkable

progress in image processing and feature mining, particularly in

classification tasks for benchmark images (8). This technology has

been transformative; however, its efficacy relies heavily on large

sample sizes, making it challenging in medical applications where

extensive data extraction from individual patient images is needed

(9). Addressing this challenge, radiomics emerged as a solution.

This field involves the high-throughput extraction and analysis of
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vast quantities of quantitative features from digital images,

transcending the limitations of human visual perception (10, 11).

By identifying correlations between these imaging features and

underlying tissue information, radiomics can enhance

performance in evaluating the biological characteristics and

prognosis of tumors, thus contributing to the optimization of

complex clinical decision-making processes (12).

Building upon the significant advancements in the field of

radiomics, research has predominantly centered on utilizing

magnetic resonance imaging (MRI) to predict Ki-67 levels within

BC tissues (13–15). In contrast, ultrasound (US)-based radiomics

for the prognostication of Ki-67 remains relatively unexplored. US

imaging offers notable advantages over MRI, including wider

accessibility, cost-effectiveness, suitability for repeated

examinations, superior spatial resolution, real-time availability,

and the absence of contraindications for specific patient

conditions. In the last few years, a limited number of studies have

explored the application of US radiomics in predicting Ki-67 levels.

While these investigations represent an encouraging development,

they have typically demonstrated a modest predictive efficacy, with

the area under the receiver operating characteristic curve (AUROC)

usually ranging between 0.7 to 0.8 (16–18). The underlying reason

may be the prevalent focus on intratumoral features, neglecting

critical biological insights available in the peritumoral area and thus

potentially constraining the predictive accuracy of radiomics

models. Interactions within the peritumoral area can influence

tumor evolution and progression (19), such as inducing cytokine

release that fosters an immunosuppressive microenvironment (20).

Additionally, peritumoral factors like edema and angiogenesis have

been correlated with tumor malignancy (21, 22), indicating that

integrating intra- and peritumoral regions in radiomics analysis

may enhance predictive capabilities.

In light of these considerations, the present study aims to

investigate the potential of US-based radiomics, utilizing both

intratumoral and peritumoral regions, in establishing an

interpretable ML model for predicting Ki-67 expression in BC

patients, thereby contributing to individualized treatment

strategies and prognosis assessments.
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Materials and methods

This study was conducted in accordance with the ethical

guidelines of the Declaration of Helsinki and received approval

from the Institutional Review Board of Jiading District Central

Hospital Affiliated Shanghai University of Medicine & Health

Sciences (2023K29). Due to the retrospective nature, the

requirement for informed consent was waived, and all patient

data were carefully anonymized.
Patient selection

The study incorporated a comprehensive review of medical

records from January 2018 to July 2023, resulting in the

identification of 263 female BC patients who met specific criteria.

Inclusion in the study required candidates to satisfy the following:

1) a surgical resection-confirmed diagnosis of invasive ductal

carcinoma; 2) the presence of a singular and mass-formed breast

tumor; 3) Ki-67 status verification through both CNB and excision

specimen; 4) US evaluations performed within two weeks before

surgery. Additionally, exclusion criteria encompassed: 1)

inadequate US imagery or incomplete lesion display; 2) a history

of preoperative treatments such as radiotherapy, chemotherapy, or

neoadjuvant therapy; 3) an absence of comprehensive clinical

details. After rigorous screening, the selected BC patients were

divided into training and external validation cohorts in a 7:3

ratio, ensuring the credibility of the predictive model. Clinical and

histopathological data, including key aspects such as Ki-67

expression, tumor diameter, and breast imaging-reporting and

data system (BI-RADS), were retrieved from medical records. The

Ki-67 expression was quantified using the St. Gallen International

Expert Consensus guidelines (23). A threshold was set, classifying

samples with Ki-67 values of ≥14% as high expression level and

those below this value as low expression level.
Image acquisition and segmentation

Bilateral breast US examinations were conducted following the

standard scanning protocol with a Samsung RS80A ultrasound

system (Samsung Medison, Co. Ltd., South Korea), employing an

L3-12A linear array probe. Both longitudinal and transverse

sections were captured and saved in the Digital Imaging and

Communications in Medicine (DICOM) format for subsequent

evaluation. For the region of interest (ROI) segmentation in the

radiomics analysis, two senior sonographers, each with over 15

years of expertise in BC ultrasonography, were assigned to use the

system’s built-in S-Detect mammary gland mode to automatically

recognize the tumor boundaries, ensuring segmentation reliability.

The image displaying the lesion at its maximum diameter was

selected as the input. Upon centering the lesion, the system

autonomously delineated the lesion’s boundary, defining it as the

ROI. If the automatically drawn border failed to align with the solid

edge of the mass, the operator made manual adjustments to achieve

the correct contour. After finalizing the most accurate boundary,
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the radiomics intratumoral ROI was segmented through the use of

the open-source imaging platform 3D Slicer software (v5.0.2). In

assessing the peritumoral areas, the intratumoral ROI was expanded

radially by 3 mm from the tumor boundary to form a dilated ROI,

with segments extending beyond the skin excised. This

methodology was adopted in accordance with the insights from

Ding et al. (24) regarding the optimal sizing of the peritumoral

regions in radiomics analysis. The intratumoral ROI was then

subtracted from the dilated ROI to derive the peritumoral ROI.

Consequently, three distinct ROIs (intratumoral, peritumoral, and

combined ROI) were identified for each patient, as illustrated

in Figure 1.
Radiomics feature extraction and selection

Subsequent to the precise segmentation of intra- and

peritumoral ROIs, the radiomics features were systematically

extracted utilizing the 3D Slicer radiomics extension. For both

intra- and peritumoral ROIs, a total of 849 distinctive features

were extracted for each modality. The original features were

categorized into three main groups: 12 shape-based attributes, 18

first-order statistics, and 75 texture features. The texture features

were further delineated into five specific matrices, comprising 24

gray-level co-occurrence matrix (GLCM) features, 14 gray-level

dependence matrix (GLDM) features, 16 gray-level run length

matrix (GLRLM) features, 16 gray-level size zone matrix

(GLSZM) features, and 5 neighbouring grey tone difference

matrix (NGTDM) features. Additionally, 744 filtered features

were derived using wavelet transformations applied to the original

first-order and texture attributes, enhancing the depth and

complexity of the feature set.

Prior to feature selection, a crucial data preprocessing step was

conducted to standardize features using Z-score normalization,

aligning them to a mean of zero and a standard deviation of one.

The predictive feature selection was carried out through a

systematic three-step approach. Initially, interobserver

reproducibility for each feature was evaluated by employing

intraclass correlation coefficient (ICC) analysis, and a threshold of

0.85 was established for acceptable agreement, minimizing

del ineat ion discrepancies between the sonographers .

Subsequently, the Student’s t-test was utilized to retain features

manifesting false discovery rate-corrected P values below 0.05,

identifying them as potential predictors. Lastly, the feature

selection was further refined through the application of the least

absolute shrinkage and selection operator (LASSO) logistic

regression, focusing on the variables that were most

representative of Ki-67 expression relationships.
Development and internal verification of
ML models

In the pursuit of predicting high Ki-67 expression, the

study engaged in the creation of distinct ML models founded on

intratumoral ROI, peritumoral ROI, and a synergistic combination
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of both. Utilizing logistic regression (Logit), random forests (RF),

support vector machine (SVM), and extreme gradient boosting

(XGBoost), the study applied a triply-repeated five-fold cross-

validation strategy to each data subset during the model training

phase. This method ensured a rigorous allocation of the data into

designated training and testing segments, facilitating optimal model

construction. Following the formulation of these models, an

internal verification process was conducted to assess the models’

discrimination, calibration, and clinical applicability. The selection

of the optimal predictive model was determined by its superior

discriminative performance, robust calibration, and alignment with

clinical utility.
External verification and interpretability of
the optimal model

The complete evaluation of the selected model commenced with

external verification, focusing on the discriminative function,

calibration, and applicability in an independent sample. This was

followed by an interpretative analysis using the SHAP (shapley

additive explanation) methodology to dissect the contributions of

individual variables to the prediction (25). Stemming from

cooperative game theory, SHAP facilitates the quantification of

each feature’s individual impact on the model’s prediction by

computing the average marginal contribution, thereby addressing

the inherent ‘black box’ nature of ML models (26). By analyzing the

significance of each feature and ranking them according to their
Frontiers in Oncology 04
respective SHAP values in descending order, the study identified

key predictors, thereby enhancing the comprehension of the

intricate relationships that influence Ki-67 expression within the

examined patient cohort.
Statistical analysis

A comprehensive statistical approach was adopted in line with

the data characteristics. Comparisons between the training and

external validation cohorts were made using chi-square tests,

Mann-Whitney U tests, and independent-sample t-tests.

Univariate and multivariate Logit analyses were used to identify

clinical predictors associated with increased Ki-67 expression, and

their joint predictive accuracy was assessed using the AUROC. In

evaluating the ML model, the AUROC was used for discrimination,

calibration curve analysis for model fit, and decision curve analysis

(DCA) for net benefits. All statistical analyses were performed using

IBM SPSS Statistics (v 22.0, SPSS Inc.) and Python (v 3.7.1).
Result

Patient information

The selection process yielded 231 BC patients meeting the

inclusion and exclusion criteria, with high Ki-67 expression levels

identified in 67.5% of the cases. These patients were divided into a
FIGURE 1

Illustration of three ROIs in BC ultrasound imaging: intratumoral, defined via S-Detect mode; peritumoral, derived from the intratumoral ROI by 3mm
radial expansion and subtraction; and combined, an integration of both intratumoral and peritumoral ROIs.
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training cohort (n=162) and an external validation cohort (n=69).

High Ki-67 expression was identified in 67.9% and 66.6% of the

patients, respectively, with no statistically significant difference

(c2 = 0.034, P = 0.854). Figure 2 illustrates the selection process,

model establishment, and model evaluation, while Table 1 confirms

an even distribution between cohorts without significant disparities

in clinical characteristics (all P-values > 0.05).
Identification of independent predictors for
high Ki-67 expression

Table 2 describes the association between clinical characteristics

and high Ki-67 expression through both univariate and multivariate

Logit analyses. Age, tumor size, and US-reported positive lymph

node (US-reported positive LN) were identified as the independent

predictors (all P-values < 0.05). By applying these predictors in a

Logit model, the ability to predict Ki-67 expression was found to be

moderate, evidenced by an AUROC of 0.709 (Figure 3).
Radiomics feature analysis

Through the process of segmenting intra- and peritumoral ROI

in grayscale US from each patient in the training cohort, 1698

radiomics features were identified. Following normalization, 1158

features (68.2%) with intra-observer ICC of 0.85 or higher were

retained for stability in subsequent analysis. The application of

Student t-test identified 107 features potentially correlated with

elevated Ki-67 levels. Final selection, utilizing LASSO regression,

isolated 15 significant features associated with Ki-67 expression: 7

intratumoral and 8 peritumoral. These feature distributions are

delineated in Figure 4.
Frontiers in Oncology 05
ML model establishment and selection

To identify the optimal predictive model for elevated Ki-67

expression in BC patients, four ML classifiers (SVM, Logit, RF, and

XGBoost) were examined. These were systematically applied to

intratumoral ROI, peritumoral ROI, and their combination. The

respective ROC, calibration, and DCA curves are delineated in

Figure 5. It indicated that classifiers employing peritumoral ROI

demonstrated superior discrimination ability in contrast to those

utilizing intratumoral ROI (AUC: 0.76-0.82 vs. 0.61-0.75, Delong

test P < 0.05). Moreover, ML models utilizing combined ROI

exhibited the highest discrimination (AUC: 0.75-0.88), with Logit

and SVM achieving AUCs of 0.83 and 0.88, respectively. However,

the SVM model exhibited better calibration, whereas the Logit

model tended to over-approximate probabilities in proximity to

the 50% threshold. With comparable performance on DCA curves,

the SVM classifier was thus recommended as the most efficacious

model for anticipating the likelihood of heightened Ki-

67 expression.
External verification

In evaluating the predictive capability of the SVM model, the

external validation cohort was utilized. By integrating the selected

intra- and peritumoral radiomics features, the model enabled the

automatic calculation of high Ki-67 likelihood for individual

patients. Subsequent analysis of these computed probabilities

against the actual Ki-67 expression status was performed using

ROC, calibration, and DCA curves, as shown in Figure 6. Although

exhibiting a slight reduction in performance compared to the

training cohort, the SVM model continued to demonstrate

significant discriminative abilities, attaining an AUC of 0.82
FIGURE 2

Flow diagram of patient selection process and model establishment & evaluation in BC patients.
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(Figure 6A). The calibration curve indicated alignment between

predicted and actual occurrences when the probability was above

40% (Figure 6B). The DCA added confirmation of the model’s

robustness, exhibiting significant net benefits when threshold

probability was greater than 40% (Figure 6C). These findings

enhanced the potential of the SVM model for high Ki-67

expression prediction.
Model interpretation

The interpretation of the SVM model was conducted using

SHAP analysis, quantifying the individual contributions of features

within the model. The calculation of absolute mean SHAP values

led to the ranking of features, highlighting four radiomics features

from peritumoral ROI and one from the intratumoral ROI as the

five most influential determinants. A summary plot, integrating

these SHAP values, was devised for visual representation (Figure 7),

thereby providing a comprehensive insight into the role each

feature assumed in predicting patient outcomes. Furthermore, to

elucidate the implications of each feature, detailed descriptions of

each feature in SHAP analysis are provided in Supplementary Table

S1. Concurrently, the collinearity among these influential radiomics

features, and their associations with selected independent clinical

predictors, was analyzed and illustrated in a heatmap, as presented

in Figure 8. This analysis revealed minimal mutual correlation, with

the highest correlation coefficient not exceeding 0.4, indicating a

low degree of collinearity among the selected radiomics features and

clinical predictors.
Discussion

The precise and dynamic determination of Ki-67 status is

crucial for optimizing treatment strategies in BC patients.

Elevated Ki-67 expression often correlates with adverse prognosis

but may enhance responsiveness to chemotherapy (27, 28). While

many studies have used radiomics to predict Ki-67 levels, they have

largely focused on the tumor extent, overlooking essential

information in the immediate peritumoral environment (29–31).

Moreover, existing research, primarily focused onMRI of intra- and

peritumoral regions, has failed to incorporate US-based radiomics,

thereby limiting the wider applicability and repeatability of these
TABLE 1 Clinical characteristics comparison between training and
validation cohorts.

Characteristics
Training
cohort
(n=162)

Validation
cohort (n=69)

P-
value

Age (years) 56.26 ± 7.09 56.46 ± 7.37 0.846a

Menopausal status 0.878b

Premenopausal 67 (41.36%) 30 (43.48%)

Postmenopausal 95 (58.64%) 39 (56.52%)

Family history 0.956b

Absent 153 (94.44%) 66 (95.65%)

Present 9 (5.56%) 3 (4.35%)

Tumor diameter
(mm)

20.60 ± 6.13 22.27 ± 5.35 0.050a

Location 0.116b

Left 95 (58.64%) 32 (46.38%)

Right 67 (41.36%) 37 (53.62%)

US-reported LN
status

0.409b

Negative 132 (81.48%) 60 (86.96%)

Positive 30 (18.52%) 9 (13.04%)

High Ki-67
expression

110 (67.90%) 46 (66.67%) 0.976b

Molecular subtypes 0.850b

Luminal A 53 (32.72%) 24 (34.78%)

Luminal B 62 (38.27%) 23 (33.33%)

HER-2 positive 29 (17.90%) 15 (21.74%)

Triple negative 18 (11.11%) 7 (10.14%)

BI-RADS 0.628c

3 2 (1.23%) 1 (1.45%)

4A 8 (4.94%) 3 (4.35%)

4B 33 (20.37%) 15 (21.74%)

4C 60 (37.04%) 28 (40.58%)

5 59 (36.42%) 22 (31.88%)
afor independent sample t-test, bfor chi-square test, and cfor Mann-Whitney U test.
TABLE 2 Univariate and multivariate Logit analysis of clinical characteristics associated with high Ki-67 expression.

Characteristics
Univariate analysis Multivariate analysis

P-value OR 95% CI P-value OR 95% CI

Age 0.003 1.089 1.028-1.153 0.010 1.081 1.019-1.147

Menopausal status 0.863 0.942 0.482-1.844

Family history 0.935 0.942 0.226-3.925

(Continued)
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studies (32–34). The current study addressed this gap by developing

an ML prediction model using US radiomics features. An SVM

model utilizing combined intra- and peritumoral radiomics features

finally proved superior for predicting Ki-67 levels. This

methodology may pave the way for a widely applicable,

repeatable, and non-invasive evaluation process in personalized

BC diagnosis and treatment.

To the best of our understanding, this study marked a first in

employing ML models to predict Ki-67 levels using US-based intra-

and peritumoral radiomics features. The incorporation of the S-

Detect auxiliary diagnostic system, based on a deep convolutional

neural network, ensured accurate differentiation of tumor

boundaries without manual human input, and overcame

challenges such as ultrasonic artifacts and speckles, thereby

enhancing the precision and efficiency in clinical applications of

radiomics (35, 36). Through careful evaluation and comparison, the

optimal ML model selected in this study may mitigate the necessity

for frequent CNBs for Ki-67 assessment, serving as a valuable

Supplemental Tool. Importantly, it acknowledges the variations in

Ki-67 expression across different tumor areas in BC, and thus is not

affected by significant cellular proliferation heterogeneity (37).
Frontiers in Oncology 07
When integrated with core needle tissue sampling, this approach

may provide clinicians with a more precise instrument for

individualized decision-making, underscoring the potential of this

methodology in clinical practice.

Utilizing the SHAP interpretation methodology, the critical

elements of our chosen SVM model were identified, comprising

four peritumoral and one intratumoral radiomics feature. Briefly,

the SHAP methodology allocates a value to each feature, signifying

the influence of that feature on the model’s prediction relative to a

baseline, thus enhancing model interpretability (38). The insights

obtained from the SHAP analysis revealed a robust association

between elevated Ki-67 levels and the heterogeneity surrounding

the tumor, a finding in line with earlier research (33, 39). The

prominence of peritumoral features in our model supports the

notion that regions adjacent to the tumor may offer enhanced

predictive insight into Ki-67 expression (33, 39). Specifically, these

peritumoral regions often exhibit complex cellular interactions and

microenvironment changes that may reflect the aggressiveness of

the tumor, thereby serving as significant indicators for predicting

Ki-67 levels (40). This suggests that peritumoral features are not

merely supplementary but hold intrinsic predictive value, offering a

broader perspective on Ki-67 expression. Together with

intratumoral features, they form a complementary framework

that may lead to more accurate and individualized predictions

(41, 42). However, it is notable that although we can identify

some radiomics features with statistical relevance to clinical

outcomes from a variety of categories, many of these belong to

texture and higher-order statistical features. These features are

fundamentally abstract, being mathematical descriptions derived

from imaging data. The data-driven nature of radiomics may not

directly reflect the underlying biological processes, making the

elucidation of the biological mechanisms linking these features to

clinical outcomes challenging at present (43).

Our study confirmed correlations between elevated Ki-67 levels

in BC cases and associated clinical factors such as advanced age,

larger lesion size, and susceptibility to axillary lymph node

metastases, aligning with previous findings (18, 44, 45). Despite

these insights, the predictive accuracy of these clinical features

remained limited, evidenced by an AUC of merely 0.709. This

was notably inferior to the AUC of 0.82 achieved through US-based

radiomics features, highlighting the challenge of relying solely on

traditional clinical parameters for precise Ki-67 level prediction. In

studies focusing on intra- and peritumoral radiomics features, Li

et al. (32) and Jiang et al. (33) demonstrated predictive accuracies of

0.749 and 0.838 based on MRI images, respectively. This underlines
FIGURE 3

ROC analysis for the prediction of high Ki-67 expression based on
age, tumor diameter, and US-reported positive LN, demonstrating
moderate prediction accuracy with an AUC of 0.709.
TABLE 2 Continued

Characteristics
Univariate analysis Multivariate analysis

P-value OR 95% CI P-value OR 95% CI

Tumor diameter 0.005 1.088 1.025-1.154 0.020 1.076 1.012-1.145

Location 0.61 0.841 0.431-1.638

US-reported positive LN 0.025 3.210 1.161-8.874 0.048 2.902 1.012-8.313

BI-RADS 0.959 1.009 0.71-1.435
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FIGURE 5

Evaluation of ML classifiers using various ROIs. (A–C) depict the performance characteristics (ROC, calibration, and DCA curves) of four ML classifiers
(SVM, Logit, RF, and XGBoost) in the context of intratumoral ROI, achieving respective AUCs of 0.75, 0.63, 0.62, and 0.61. (D–F) present the same
classifiers’ efficacy as applied to peritumoral ROI, with corresponding AUCs of 0.82, 0.80, 0.76, and 0.77. (G–I) illustrate the performance when
utilizing combined ROI, where AUCs ascend to 0.88, 0.83, 0.75, and 0.81. Among the classifiers, SVM is highlighted for its superior discrimination,
calibration, and comparable DCA curve, endorsing it as the predominant model.
B

A

FIGURE 4

Distribution of selected features associated with Ki-67 expression: (A) Intratumoral segmentation and (B) Peritumoral segmentation using LASSO
regression.
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FIGURE 6

Performance analysis of the optimal ML model using external validation cohort. (A) displays the ROC curve, achieving an AUC of 0.82, which marks
the substantial discriminatory power of the model. (B) highlights the calibration curve, revealing alignment between predicted likelihoods and
observed events for predictions over 40%. (C) outlines the DCA, highlighting the clinical advantage when the threshold probability is above 40%.
FIGURE 7

Illustration of the radiomics features associated with Ki-67 expression in the SVM model using SHAP analysis. This summary plot blends SHAP values
to visually show how individual features together affect the model’s predictions. Each dot stands for a patient, with color change from blue to red
indicating the feature values: red for higher and blue for lower values. The horizontal position of the dots explains the SHAP value, where a positive
value suggests a higher chance of increased Ki-67 expression, while a negative value suggests the opposite. The x-axis placement of each dot
reflects the impact of the respective feature on a particular patient’s prediction, thereby highlighting the correlation between higher values of the top
five key features and a greater likelihood of elevated Ki-67 expression.
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that our model, centered on intra- and peritumoral US radiomics

features, also possesses strong predictive power, warranting further

clinical exploration.

Despite the promising findings, our study acknowledges several

limitations that require attention. The single-center, retrospective

design, along with a restricted patient cohort, could inhibit the

wider application of our conclusions. Additionally, inconsistencies

in US settings among different institutions might negatively affect

the performance of the models. This challenge is further

compounded by the decision to restrict the inclusion criteria to

lesions with a singular visible mass on US, precluding the extension

of our findings to non-mass and multi-focal lesions. Another

limitation lay in the lack of evaluation of other prevalent US

modalities, such as elastography or contrast-enhanced US,

representing an additional limitation and a field for future

investigation. A significant aspect of our methodology that called

for further investigation was our choice of a 3 mm radial extension

from the tumor margin to expand the initial ROI. This decision

aimed at balancing the optimal accuracy of a 2-4mm peritumoral

region size as recommended by Ding et al. (24), while minimizing

the occurrence of segments extending beyond the skin. Future

studies should probe into the predictive value of peritumoral

regions with varying dilation distances in relation to Ki-67 levels

to better understand the implications of this parameter. Lastly, our

ML model lacked external validation from additional centers,
Frontiers in Oncology 10
indicating a necessity for further validation. Despite these

barriers, the study does highlight the potential utility of

radiomics-based ML models in predicting Ki-67 levels of BC

patients. This insight emphasizes the need for future research,

specifically through multi-center, prospective studies to enhance

the reliability and practicality of the model.
Conclusion

The present study highlighted the capability of ML models,

notably the SVM model utilizing radiomics features from both

intra- and peritumoral US images, to predict elevated Ki-67 levels in

BC patients. The model demonstrated consistent and reliable

performance in both internal and external verifications, indicating

its promise as a noninvasive preoperative prediction method.

Serving as a valuable supplement to CNB, this approach is

anticipated to guide treatment strategies and contribute to

personalized clinical decision-making for BC patients.
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FIGURE 8

Heatmap illustrating the collinearity among the influential radiomics features in SVM model, and their associations with selected independent clinical
predictors of Ki-67 expression. It reveals minimal mutual correlation, with the highest correlation coefficient not exceeding 0.4.
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