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for estimating radiotherapy
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immunity for individual breast
cancer patients
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Objective: Radiotherapy is a cornerstone of breast cancer therapy, but radiotherapy

resistance is a major clinical challenge. Herein, we show a molecular classification

approach for estimating individual responses to radiotherapy

Methods: Consensus clustering was adopted to classify radiotherapy-sensitive

and -resistant clusters in the TCGA-BRCA cohort based upon prognostic

differentially expressed radiotherapy response-related genes (DERRGs). The

stability of the classification was proven in the GSE58812 cohort via NTP

method and the reliability was further verified by quantitative RT-PCR analyses

of DERRGs. A Riskscore system was generated through Least absolute shrinkage

and selection operator (LASSO) analysis, and verified in the GSE58812 and

GSE17705. Treatment response and anticancer immunity were evaluated via

multiple well-established computational approaches.

Results: We classified breast cancer patients as radiotherapy-sensitive and -resistant

clusters, namely C1 and C2, also verified by quantitative RT-PCR analyses of DERRGs.

Two clusters presented heterogeneous clinical traits, with poorer prognosis, older

age, more advanced T, and more dead status in the C2. The C1 tumors had higher

activity of reactive oxygen species and response to X-ray, proving better

radiotherapeutic response. Stronger anticancer immunity was found in the C1

tumors that had rich immune cell infiltration, similar expression profiling to patients

who responded to anti-PD-1, and activated immunogenic cell death and ferroptosis.

The Riskscore was proposed for improving patient prognosis. High Riskscore samples

had lower radiotherapeutic response and stronger DNA damage repair aswell as poor

anticancer immunity, while low Riskscore samples were more sensitive to docetaxel,

doxorubicin, and paclitaxel.
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Conclusion: Our findings propose a novel radiotherapy response classification

system based upon molecular profiles for estimating radiosensitivity for

individual breast cancer patients, and elucidate a methodological advancement

for synergy of radiotherapy with ICB.
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Introduction

Breast cancer is a significant global health concern, accounting

for a substantial number of cancer-related deaths among women

worldwide. The latest global cancer burden data released by the

World Health Organization’s International Agency for Research on

Cancer (IARC) for 2020 shows that there are 2.26 million new

breast cancer cases worldwide (1). About 13% of women are likely

to be diagnosed with breast cancer in their lifetime, and the rate of

increase is 0.3% per year, which seriously endangers the health of

patients (2).

Despite advancements in early detection and treatment

strategies, a considerable proportion of breast cancer patients

experience disease recurrence and metastasis, leading to poor

clinical outcomes. As a fundamental component of breast cancer

therapy, 75% of breast cancer patients will receive radiation therapy,

which is employed to eradicate subclinical tumor lesions and reduce

the risk of local recurrence (3). Research data suggest that

radiotherapy can improve the local control of breast cancer by

60% to 70%, and increase the absolute survival rate by 10% (3).

However, radiotherapy resistance remains a major clinical

challenge, limiting its efficacy and compromising patient

outcomes (4).

In recent years, molecular profiling techniques have

revolutionized cancer research by providing a comprehensive

view of the molecular landscape of tumors (5). According to the

status of estrogen receptor (ER), progesterone receptor (PR), ki-67,

and HER-2 expression, breast cancer can be classified into four

molecular subtypes: Luminal A, Luminal B, HER-2 over-expression,

and triple-negative breast cancer. This has become a model for the

precision treatment of breast cancer (6). Although this molecular

subtyping has been extensively studied in the context of prognosis

and treatment selection, there is a paucity of research focusing

specifically on molecular classification for estimating radiotherapy

response in early breast cancer patients (7).

Insight of the molecular mechanisms underlying radiotherapy

response in breast cancer is crucial for improving treatment

outcomes and personalizing patient management. Traditionally,

clinical factors such as tumor stage, histological grade, and

hormone receptor status have been used to guide treatment

decisions. However, these factors often fail to accurately predict

individual responses to radiotherapy. With the progress of
02
molecular medicine radiotherapy technology, the radiotherapy of

breast cancer is also developing towards the direction of

individualization. Revealing the radioresistance of breast cancer

by molecular mechanism has become a hot topic in radiotherapy

research. Radioresistance is a complex process that is generally

associated with radiation-induced DNA damage repair, cell cycle

dysregulation, cancer stem cell properties, and epithelial-

mesenchymal transition (8). Therefore, there is an increasing

interest in identifying molecular markers and developing

molecular classification systems that can better evaluate

radiotherapy response in breast cancer patients. The ability to

accurately predict individual responses to radiotherapy would

help identify patients who are likely to benefit from this

treatment modality and exclude others from potential side effects

of radiotherapy.

In recent years, immunotherapy has become a hot research

topic for scholars at home and abroad as a new treatment. Clinical

trials have shown that PD-1/PD-L1 inhibitors can improve the anti-

tumor efficacy in triple-negative breast cancer (9). Radiotherapy

may lead to the overexpression of PD-L1 on tumor cells by

activating PI3K/AKT, signal transduction, and transcription

factor activation. Moreover, PD-L1 stimulates cell migration and

promotes the process of epithelial-mesenchymal transition, thereby

inducing radioresistance (10). In the basic research of breast cancer,

it has been found that PD-1/PD-L1 inhibitors combined with

radiotherapy have a stronger anti-tumor effect than single-mode

treatment, and the survival time of mice is significantly higher than

that of the control group (11, 12).

The objectives of this study are to classify breast cancer patients

into radiotherapy-sensitive and -resistant clusters and assess the

clinical and molecular characteristics of these clusters. In this study,

we employed consensus clustering analysis to identify distinct

clusters of patients based on the expression profiles of

radiotherapy response-related genes. The stability of the

classification was validated in independent patient cohorts.

Furthermore, we developed a Riskscore system using LASSO

analysis to improve patient prognosis. Additionally, we evaluated

treatment response and anticancer immunity using well-established

computational approaches. Our findings provide a methodological

advancement for the synergy of radiotherapy with immune

checkpoint blockade (ICB), potentially enhancing treatment

outcomes for breast cancer patients.
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Materials and methods

Data acquisition and processing

A total of 3693 radiotherapy response-related genes (RRGs) were

acquired from previously published literature (13). Supplementary

Table 1 summarizes the RRG list. RNA sequencing data of The

Cancer Genome Atlas (TCGA) Breast Cancer (TCGA-BRCA) were

gathered from the Genomic Data Commons (https://

portal.gdc.cancer.gov/) utilizing the TCGAbiolinks package (14).

Following the removal of samples without complete prognostic

information, 995 samples were included. The raw read count data

were transformed to transcripts per kilobase million, with further log-

2 conversion. From the Gene Expression Omnibus (https://

www.ncbi.nlm.nih.gov/geo/), two independent breast cancer

cohorts: GSE58812 (n=107) (15) and GSE17705 (n=298) (16) were

utilized for external verification. The two microarray cohorts were

based on the Affymetrix platform, and background correction and

standardization were implemented via a robust multiarray averaging

approach utilizing the affy package (17). Basic information and

demographic data of TCGA-BRCA, GSE58812, and GSE17705

datasets were summarized in Supplementary Table 2.
Selection of differentially expressed RRGs

Differential expression analysis on RRGs was conducted by

comparing breast cancer patients who received radiotherapy and

those who did not receive radiotherapy. This analysis was achieved

via limma package (18). DERRGs were identified with adjusted

p-value<0.05.
Genomic variation analysis

Copy number variation (CNV) data were gathered from the

Fire Browse (http://firebrowse.org/). The GISTIC2.0 computational

method was adopted for the estimation of gene gains and losses

(19). Somatic mutation profiling was obtained from cBioPortal

(https://www.cbioportal.org/) and was analyzed based on the

matfools package (20).
Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were achieved utilizing

clusterProfiler (21). The gene sets of reactive oxygen species

(ROS), response to X-ray and DNA damage repair pathways were

gathered from the Molecular Signatures Database (22). The

enrichment score was quantified via single-sample gene set

enrichment analysis (ssGSEA) (23).
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Consensus clustering analysis

Univariate-cox regression analysis on DERRGs with prognosis

was carried out. DERRGs with p-value<0.05 were employed for

consensus clustering analysis via the ConsensusClusterPlus package

(24). The optimal number of clusters and stability were determined

based on the consensus matrix heatmap, the proportion of

ambiguous clustering (PAC), and principal component analysis

(PCA). The repeatability and accuracy of the classification were

validated via nearest template prediction (NTP) analysis (25). This

analysis was conducted based on the top 100 upregulated markers

of each cluster in the GSE58812 cohort using the CMScaller

package (26).
Estimation of immune cell infiltration

Eight computational approaches: ssGSEA (23), TIMER (27),

CIBERSORT (28), CIBERSORT-ABS (29), QUANTISEQ (30),

MCPCOUNTER (31), XCELL (32), and EPIC (33) were utilized

for estimation of the abundance of diverse immune cell types.
Anticancer immunity analysis

Tumor Immune Dysfunction and Exclusion (TIDE) was

employed for estimating immune-checkpoint blockade (ICB)

response based upon immune evasion mechanisms (34).

Response to PD-1 or CTLA4 antibody (35, 36) was inferred via

subclass mapping (Submap) approach (37). Immunogenic cell

death, ferroptosis, and immune checkpoint molecules were also

measured to reveal anticancer immunity.
Least absolute shrinkage and selection
operator analysis

Using the glmnet package (38), LASSO analysis was

implemented based on prognostic DERRGs. After identifying the

minimum lambda, DERRGs with coefficient ≠0 were further

selected through predict.cv.glmnet function. Riskscore was

subsequently defined through a combination of expressions of the

selected DERRGs with given coefficients. Patients were stratified

into low- and high-Riskscore groups with the median Riskscore.

The reliability and stability of the model were proven in the

GSE58812 and GSE17705 datasets.
Nomogram establishment

Uni- and multivariate-cox regression analyses on RiskScore,

and clinical variables with TCGA-BRCA prognosis were
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implemented. Based upon independent prognostic variables, a

nomogram was generated utilizing the rms package. Additionally,

calibration curves were plotted for comparing the nomogram-

estimated and actual outcomes.
Prediction of transcription factors

By adopting the NetworkAnalyst online tool (http://

www.networkanalyst.ca) (39), a transcription factor-gene

interaction network was visualized.
Drug sensitivity analysis

Half-maximal inhibitory concentration (IC50) of chemotherapy

agents was computed via pRRophetic analysis (40) based upon the

Genomics of Drug Sensitivity data (41).
Drug-gene interaction analysis

Drugs that potentially targeted the DERRGs from the Riskscore

were estimated based on the Drug-Gene Interaction Database

(www.dgidb.org) (42), and a drug-gene interaction network was

generated utilizing the Cytoscape tool (43).
Reverse transcription and quantitative
RT-PCR analyses

Total RNA was isolated from tissues using Trizol (Invitrogen,

Carlsbad, CA, USA) following the manufacturer’s protocol. Total

RNAs of 0.5 to 1 mg were used as templates for reverse transcription

using poly-(T)20 primers and M-MLV reverse transcriptase

(Promega, Madison, WI, USA). Quantitative RT-PCR (RT-qPCR)

was conducted using SYBR Green Mix according to the

manufacturer’s protocol (BioRad, Hercules, CA, USA). The

primers for cDNA detection are as follows: CIITA, 5’-

TGAGGCTGTGTGCTTCTGAG-3’ and 5’-ACACTGTGAGCTG

CCTTGG-3’; IL27RA,5’-AGGGAGGAATTAGCACCCCT-3’ and

5’-TGCACACAAGGTGTAGTGGG-3’; ZFP41, 5’-TACCTGGAT

GGACTTGGGACA-3’ and 5’-GGATGTCCTGCCCTGAATG-3’;

N4BP3,5’-GCCTTGCAGGAGGGTTCAAA-3’ and 5’-AGGCAG

CTGCTTCATGGTG-3’; GAPDH,5’-GATTCCACCCATGGC

AAATTC-3’ and 5’-AGCATCGCCCCACTTGATT-3’.

The breast cancer samples were classified into the resistant and

sensitive groups based on their response to radiotherapy, where

patients with complete response (CR), partial response (PR), and

stable disease (SD) comprised the radiotherapy sensitive group (Rad-

S, n=10) and progressive disease (PD) belonged to the radiotherapy

resistant group (Rad-R, n=8). The clinical pathological characteristics

of the patients are listed in Supplementary Table 3.
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The tissues were obtained from breast cancer patients

participating in a previous clinical study in Tongji Hospital. The

ethics approval was not required by the Ethics Committee of Tongji

Hospital Affiliated with Tongji Medical College of Huazhong

University of Science and Technology, because the clinical study

was previously approved by the Ethics Committee.
Statistical analysis

Data were analyzed via appropriate R packages (version 3.6.1).

Continuous variables between two groups were analyzed with

Student’s t-test or Wilcoxon test, while categorical data were

evaluated via the chi-square test. Pearson’s test was used for

correlation analysis. Survival analysis was executed through

Kaplan–Meier curves and log-rank test utilizing the survival

package. The specificity and sensitivity were appraised via receiver

operating characteristic curves (ROCs), and the area under the

curve (AUC) was quantified utilizing the pROC package. P-

value<0.05 was statistically significant.
Results

Multi-omics analysis of DERRGs in
breast cancer

The study firstly determined 125 down-regulated RRGs and up-

regulated 341 RRGs in patients with radiotherapy versus those without

radiotherapy (p-value<0.05) (Figures 1A, B) (Supplementary Table 4).

These RRGs were considered as DERRGs in breast cancer. Genetic

alterations of the DERRGs were subsequently evaluated. Widespread

somatic mutations were detected, e.g., SAMD9 (10.8%), BACH2

(9.4%), IGSF10 (9.4%), PLCL2 (8.6%), SAMD9L (8.6%), and STAT4

(8.6%) (Figure 1C). Gene gains and losses also frequently occurred such

as LCP1, CLMP, GRAP2, PTPRC, HHIPL2, and EFNA3 (Figure 1D).

The genetic alterations potentially affected the expression of the

DERRGs. Prognostic implications of the DERRGs were also

observed. Among them, 73 were significantly connected to patient

survival (Figure 1E). Furthermore, we probed the molecular

mechanisms underlying the prognostic DERRGs. Consequently,

anticancer immunity and immune response were notably enriched

(Figures 1F–I), proving their imperative roles.
Classification of breast cancer patients into
radiotherapy-sensitive and -resistant
consensus clusters

TCGA-BRCA samples were classified as two consensus clusters

based on the transcriptome values of the prognostic DERRGs

(Figure 2A). PAC score was relatively small at cluster number k=2

(Figure 2B). This demonstrated that the optimal k value was 2. PCA
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also unveiled the diverse transcriptome profiling in two clusters

(Figure 2C). Many radiotherapy-sensitive genes were up-regulated

in the C1 tumors, while radiotherapy-resistant genes were up-

regulated in another cluster (Figure 2D). Thus, we inferred the C1

tumors were regarded as radiotherapy-sensitive clusters, while the C2

tumors were regarded as radiotherapy-resistant clusters. Worse

survival was detected in the C2 versus C1 patients (Figure 2E). The

GSE58812 dataset was adopted to prove the classification. The top

100 up-regulated marker genes in each consensus cluster were

selected (Figure 2F; Supplementary Table 5), and samples with p-

value<0.05 were extracted for quantification and assessment of

prediction confidence (Figure 2G). Consistently, the C2 posessed a

less favorable prognosis than the C1 (Figure 2H). In addition, the

mRNA levels of CIITA and IL27RA are significantly downregulated,

while the mRNA levels of ZFP41 and N4BP3 are significantly

increased in radiotherapy-sensitive tumors, rather than

radiotherapy-resistant tumors (Figure 2I). The detection results are

consistent with the predictions of this system. Hence, the

classification was reliable and repeatable.
Frontiers in Oncology 05
Two consensus clusters are characterized
by different clinical traits and
radiotherapy responses

The C2 had more cases with age ≥65, more advanced T, and

dead status in comparison to the C1, but without difference in N, M,

and stage (Figures 3A–F). Radiotherapy results in DNA damage

directly through ionization or indirectly through generating ROS,

thus destroying tumor cells (44). The C1 tumors posessed stronger

ROS activity and responses to X-ray (Figures 3G, H), further

demonstrating that patients in this cluster better responded

to radiotherapy.
Two consensus clusters show diverse
genomic mutation features

Genomic mutation profiles in two clusters were investigated. In

the C1 tumors, 2102 and 4776 genes experienced copy number
B C

D E F

G H I

A

FIGURE 1

Multi-omics analysis of DERRGs in breast cancer. (A, B) Identification of DERRGs through comparing patients with radiotherapy with those without
radiotherapy. (C) Somatically mutated DERRGs across breast cancer. Mutation forms are marked by unique colors, while DERRGs are ranked by
mutated frequency. (D) Copy number gains and losses of DERR© (E) Univariate-cox regression results on DERRGs with patient survival. (F–I) GO and
KEGG pathways enriched by DERRGs.
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gains and losses, respectively (Figures 4A, B). Meanwhile, in the C2

tumors, 2656 and 5552 genes had copy number gains and losses,

respectively (Figures 4C, D). Overall, CNVs were more frequent in

the C2. Somatic mutations were found to be more frequent in the

C1 versus C2 tumors, e.g., TP53: 42.4% versus 34.2%, PIK3CA:

40.5% versus 36.7%, TTN: 25.2% versus 19.4% (Figures 4E, F).
Two consensus clusters present
heterogeneous anticancer immunity and
immune escape

Most immune cell populations (e.g., natural killer cells, natural

killer T cells, activated dendritic cells, activated CD4 and CD8 T

cells) displayed more infiltration in the C1 versus another cluster,

demonstrating stronger anticancer immunity in C1 tumors

(Figure 5A). Lower exclusion, dysfunction, IFNG, and TIDE
Frontiers in Oncology 06
scores were found in C2 tumors, inferring patients in the cluster

potentially responded to ICB (Figures 5B–E). In addition, the C1

exhibited a similar expression profile to that of samples responding

to the PD-1 antibody (Figure 5F), further proving stronger

anticancer immunity in C1 tumors. Immunogenic cell death that

can be induced by radiotherapy exerts a crucial role in evoking

systemic immune response against tumors (45). Many

immunogenic cell death molecules, e.g., TLR2/3/4/7/9, CALR,

CGAS, CLEC4E, CLEC7A, DDX58, FPR1/2, HMGB1, IL33,

NLPR3, and P2RX7 were notably up-regulated the C1

(Figure 5G), revealing activated immunogenic cell death in the

cluster. Ferroptosis has been implicated in anticancer immunity and

immune response (46). The C1 presented remarkable up-regulation

of many ferroptosis molecules, such as LSP1, CAT, SOD2, PRNP,

FTL, FES, GLRX, PFKP, PDIM1, MBP, HHEX, and GPX3

(Figure 5H). Overall, the C1 tumors were characterized by potent

anticancer immunity.
B C

D E F

G H I

A

FIGURE 2

Classification of breast cancer patients into radiotherapy-sensitive and -resistant consensus clusters. (A) Consensus matrix heatmap at cluster number
k=2. White means samples never get together; blue means the samples are always clustered together. (B) PAC distribution at cluster numbers k=2~9.
(C) PCA verifying the different transcriptome profiles in two clusters. (D) Expression values of the prognostic DERRGs in two clusters. Blue to red denotes
down- to up-regulated expre©on. (E) Survival probability of two clusters. (F) The top 100 up-regulated marker genes in each cluster. (G, H) Verification
of the patient classification, and survival difference via NTP method in the GSE58812 cohort. (I) Comparison of CIITA, 27RA, ZFP41, and N4BP3
expression in breast cancer tissues that are sensitive (n=10) or resistant (n=8) to radiotherapy by quantitative real-time PCR detection.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1288698
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1288698
B C

D E F

G H

A

FIGURE 3

Two consensus clusters are characterized by different clinical traits and radiotherapy responses. (A–F) Diverse age, T, N, M, stage, and survival status
features in two clusters. *P-value<0.05. (G, H) Difference ROS and response to X-ray between two clusters.
B C D

E F

A

FIGURE 4

Two consensus clusters show diverse genomic alterations. (A, B) Gene gains and losses in the C1 tumors. The significance was set as q-value<0.25.
(C, D) Gene gains and losses in the C2 tumors. (E, F) Dominating somatically mutated genes in two clusters. Mutation forms are represented by
unique colors. Genes are ranked by mutation frequency.
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Generation of a radiotherapy
response-based RiskScore model
for improving prognosis

LASSO analysis on the prognostic DERRGs was conducted. In line

with the minimum lambda (0.0093), a radiotherapy resistance-based

RiskScore model was generated following the RiskScore = 0.614 *

C2CD2 + 0.197 * PLXNB3 + 0.443 * MRPL18 + (-0.212) * BCL2A1 +

0.037 * HHIPL2 + 0.093 * FAM155B + (-0.07) * CTSW + (-0.144) *

IL27RA + 0.13 * EFNA3 + (-0.381) * MAP2K6 + 0.203 * LYPLA2 +

(-0.143) * SORBS1 + 0.228 * DOCK6 + (-0.248) * PRKAA2 + 0.431 *

TMED1 + 0.044 * QPRT + 0.199 * DLG3 + (-0.097) * STK17A

(Figure 6A). Using the formula, the RiskScore of each TCGA-BRCA

sample was computed. Under the median RiskScore, TCGA-BRCA

samples were stratified into two groups (Figure 6B). Survival difference

was found in two groups, with poorer survival probability for the high
Frontiers in Oncology 08
RiskScore group versus another group (Figure 6C). ROCs were plotted

to appraise the prediction efficiency. The one-, three-, and five-year

AUC values were 0.785, 0.800, and 0.800, respectively, proving that the

RiskScore was capable of estimating patient prognosis. The excellent

efficacy was externally demonstrated in the GSE17705 and GSE58812

datasets (Figures 6D, E).

Uni- in combination with multivariate-cox regression results

demonstrated the independency of the RiskScore in prognostication

in addition to age and stage (Figures 6F, G). Based upon them, a

nomogram was generated for estimation of one-, three-, five-, eight-

, and ten-year survival probability (Figure 6H). To verify its

performance, calibration curves were conducted. Consequently,

the nomogram-estimated prognosis was close to the actual

outcomes (Figure 6I). Overall, our nomogram provided a method

to estimate survival outcomes via integration of the RiskScore, age,

and stage.
B C

D EF

G H

A

FIGURE 5

Two consensus clusters exhibit heterogeneous anticancer immunity and immune evasion mechanisms. (A) Abundance of immune cell types in two
clusters. (B–E) Different exclusion, dysfunction, IFNG, and TIDE scores in two clusters. (F) Submap for investigating the similarity in the expression
profiling of two clusters with that of samples that responded or did not respond to PD-1 or CTLA4 antibody. (G, H) Difference in immunogenic cell
death and ferroptosis molecules between two clusters.
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B

C D

E F

G

H

I

A

FIGURE 6

Establishment of a radiotherapy response-based RiskScore model for improving prognosis. (A) LASSO coefficients of the DERRGs and selection of
the minimum lambda value. (B) Distribution of RiskScore, survival duration, and expression of the DERRGs. (C) Survival probability of low- and high-
RiskScore groups and 1-, 3-, and 5-year ROCs. (D, E) Verification of survival outcomes and ROCs in the GSE17705 and GSE58812 cohorts. (F, G) Uni-
and multivariate-cox regression analyses on the RiskScore and clinical parameters with prognosis. (H) Nomogram generation based upon
independent prognostic variables. *, P-value<0.05; **, P-value<0.01. (I) Calibration curves for verifying the prediction accuracy of the nomogram.
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Transcriptional regulatory mechanisms
underlying the RiskScore

Transcriptional factors of theDERRGs from the RiskScore were then

investigated. As illustrated in Figure 7A, DOCK6, FAM155B, MAP2K6,

HHIPL2, PRKAA2, MRPL18, PLXNB3, IL27RA, CTSW, DLG3,

LYPLA2, TMED1, QPRT, EFNA3, STK17A, C2CD2, and BCL2A1

were transcriptionally modulated by multiple transcriptional factors.
The RiskScore positively correlates to
radiotherapy resistance

The RiskScore was negatively connected to response to X-ray,

especially for the C2 tumors (Figure 7B). A positive relationship

between the RiskScore and ROS was also found in the C2 tumors

(Figure 7C). In addition, the RiskScore was positively linked with DNA

damage response pathways, e.g., base excision repair, direct reversal of

damage, homologous recombination, and nucleotide excision repair

(Figure 7D). Altogether, the RiskScore was positively connected to

radiotherapy resistance.
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The RiskScore is negatively associated with
anticancer immunity

The study executed multiple well-established computational

methods to estimate the abundance of immune cells .

Intriguingly, most immune cells, notably cytotoxic T-

lymphocytes that are critical effectors of anticancer immunity

(47), presented higher infiltration in low-RiskScore tumors

(Figure 8A). Moreover, the RiskScore was negatively linked

with cytotoxic T-lymphocytes (Figure 8B), indicative of a

negative association of the RiskScore with anticancer

immunity. We also focused on the remarkably negative

relationships of the RiskScore with common immune

checkpoint molecules, e.g., PDCD1 (PD-1) and its ligands

CD274 (PD-L1) and PDCD1LG2 (PD-L2) (Figure 8C) (48).

This indicated that low-RiskScore tumors displayed a stronger

sensitivity to ICB. The RiskScore was also found to be negatively

connected to most immunogenic cell death molecules, such as

IL33, TLR2/3/4/7, CLEC4E, NLRP3, CGAS, and FPR1/2

(Figure 8D), demonstrating a negative association of the

RiskScore with immunogenic cell death.
B

C D

A

FIGURE 7

Transcriptional regulatory mechanisms underlying the RiskScore and a positive association of the RiskScore with radiotherapy resistance.
(A) Transcriptional factor-gene network. Rhombus, transcriptional factor; circle, the DERRG from the RiskScore. (B, C) Relationships of the RiskScore
with response to X-ray and ROS in the C1 and C2 tumors. (D) Correlation between the RiskScore with DNA damage repair pathways. The bubble
from green to pink denotes the association from negative to positive. P-value is represented by a unique line color.
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Low-RiskScore patients are more sensitive
to chemotherapy and several DERRGs in
the RiskScore model are potential
druggable targets

Docetaxel, doxorubicin, and paclitaxel are routinely applied in

chemotherapy for breast cancer. Here, we evaluated the difference

in sensitivity to these chemotherapeutic agents. Consequently, the

low RiskScore group presented significantly lower IC50 values of

docetaxel, doxorubicin, and paclitaxel versus the high RiskScore

group (Figures 9A–C). Hence, low-RiskScore patients were more

sensitive to the above chemotherapeutic drugs.

Small molecules that potentially targeted the DERRGs from the

RiskScore model were also analyzed. As illustrated in Figure 9D,
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seventeen small molecules: HESPERADIN, SP-600125,

CHEMBL225519, LY-2090314, R-406, GW441756X, CYC-116,

CHEMBL3 7 9 9 7 5 , PD - 0 1 6 6 2 8 5 , CHEMBL2 0 0 5 1 8 6 ,

ILORASERTIB, GSK-269962A, AZD-1080, PF-00562271, TAE-

684, RG-1530, and CENISERTIB specifically targeted STK17A;

s ix smal l molecu les : TRAMETINIB, SELUMETINIB,

COBIMETINIB, BINIMETINIB, NEFLAMAPIMOD, and WX-

554 specifically targeted MAP2K6; five small molecules:

HESPERADIN , METFORMIN HYDROCHLORIDE ,

CHEMBL2348411, METFORMIN, and SAPONARIN specifically

targeted PRKAA2; QPRT was a specific target of NIACIN; and

BCL2A1 was a specific target of OBATOCLAX MESYLATE. Thus,

PRKAA2, STK17A, MAP2K6, BCL2A1, and QPRT were potential

druggable targets.
B

C D

A

FIGURE 8

Association of the RiskScore with immunogenicity. (A) Distribution of the infiltration of distinct immune cell populations in low- and high-RiskScore
groups by use of multiple algorithms. Green to red denotes weak to strong infiltration. (B) Association of the RiskScore with infiltrative immune cells.
The bubble location indicates the correlation coefficient. (C) Correlation between the RiskScore with known immune checkpoints. The bigger the
bubble, the stronger the correlation. (D) Relationships of the RiskScore with immunogenic cell death molecules. The bubble from green to pink
shows the correlation from negative to positive. P-value is represented by a unique line color.
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Discussion

The present study has provided a comprehensive molecular

classification system for predicting radiotherapy response and

anticancer immunity in individual breast cancer patients. This

classification system, based on the consensus clustering of

differentially expressed radiotherapy response-related genes

(DERRGs), has identified two distinct clusters, C1 and C2, with

C1 tumors demonstrating a higher sensitivity to radiotherapy and

stronger anticancer immunity. The identification of these two

distinct clusters has significant implications for the personalized

treatment of breast cancer patients, as it helps the prediction of

individual responses to radiotherapy, thereby enabling the decision

of treatment strategies to enhance therapeutic efficacy and minimize

adverse effects.

The C1 cluster, characterized by a higher activity of Reactive

Oxygen Species (ROS) and a stronger response to X-ray,

demonstrated a better radiotherapeutic response. ROS

accumulation can lead to DNA damage and genomic instability,

induce multiple forms of cell death, and play an important role in

cancer development and progression (49). In preclinical studies of

breast cancer, ROS-induced nanophototherapy systems have been

shown to increase radiosensitivity (50). This finding is consistent

with previous studies (51) that have highlighted the role of reactive

oxygen species in mediating the cytotoxic effects of radiotherapy.

Furthermore, the C1 tumors exhibited a stronger anticancer
Frontiers in Oncology 12
immunity, as evidenced by the rich immune cell infiltration and

the similar expression profiling to patients who responded to anti-

PD-1. In this study, we validated the high expression of MHC class

II transactivator (CIITA) in the C1 population through quantitative

PCR. CIITA is a master controller of antigen presentation and a

crucial factor in adaptive immunity. In recent years, CIITA has been

speculated to be an important exploration target in anti-checkpoint

blockade immunotherapy and anti-tumor vaccination (52, 53).

Therefore, the C1 tumors may be more sensitive to ICB, which

has emerged as a promising therapeutic strategy for various types of

cancer. However, the effects of RGGs on chemotherapy response in

the C1 population are somewhat contradictory, with some genes

enhancing chemotherapy sensitivity (IL7R) (54) while others

promoting chemotherapy drug resistance (PLAC8, CCL5) (55, 56).

In contrast, the C2 cluster was associated with poorer prognosis,

older age, more advanced T stage, and more dead status. These

tumors demonstrated a lower response to radiotherapy and a

stronger DNA damage repair capacity, suggesting a higher

resistance to radiotherapy. Reactive oxygen species (ROS) are one

of the major inducers of DNA damage, and one of the key

determinants of the efficacy of anti-tumor therapy is the severity

of DNA damage resulting in tumor cells. However, cancer cells are

able to adapt DNA repair pathways to make tumors resistant to

treatment (57). Inhibitors targeting the DNA repair system may

enhance the radiosensitivity of tumors, but a few studies have

suggested that the loss of DNA repair function may increase the
frontiersin.or
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FIGURE 9

Analysis of drug sensitivity and druggable targets. (A–C) Estimated IC50 values of docetaxel, doxorubicin, and paclitaxel in low- and high-RiskScore
groups. The larger the IC50, the weaker the sensitivity to a drug. (D) Drug-gene network. Triangle, drug; circle, the DERRG from the RiskScore model.
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rate of gene mutation and eventually lead to radioresistance.

Therefore, the relationship between DNA damage repair and

radiotherapy resistance is still controversial and needs further

study (58). This finding underscores the need for alternative

therapeutic strategies for patients with C2 tumors, such as the use

of DNA damage repair inhibitors to sensitize these tumors to

radiotherapy. Moreover, the C2 tumors exhibited poor anticancer

immunity, which highlights the need for further research to

elucidate the mechanisms underlying the immune escape.

The RiskScore system proposed in this study represents a

significant advancement in the prognostication of breast cancer

patients. This system, based on the expression of DERRGs, was

capable of predicting patient prognosis with high accuracy, as

evidenced by the high area under the curve (AUC) values.

Importantly, the RiskScore system was independent of age and

stage, suggesting that it could provide additional prognostic

information beyond these traditional prognostic factors.

Furthermore, the RiskScore system was associated with

radiotherapy response and anticancer immunity. The high-

RiskScore samples demonstrate lower radiotherapeutic response

and poor anticancer immunity, while low-RiskScore samples are

more sensitive to chemotherapy drugs such as docetaxel,

doxorubicin, and paclitaxel. This suggests the RiskScore system

could potentially help the decision of therapeutic strategies for

individual patients.

In conclusion, this study has proposed a novel radiotherapy

response classification system based on molecular profiles for

evaluating radiosensitivity in individual breast cancer patients.

This system, combined with the RiskScore system, could

potentially revolutionize the personalized treatment of breast

cancer by enabling the prediction of individual responses to

radiotherapy and immunotherapy. However, further validation in

prospective clinical trials is warranted to confirm the clinical

significance of these systems. Moreover, future research should

focus on elucidating the molecular mechanisms underlying the

differential radiosensitivity and anticancer immunity of the

identified clusters, which could guide the development of new

therapeutic targets.
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