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Breast cancer is the most common form of cancer in women, contributing to

high rates of morbidity and mortality owing to the ability of these tumors to

metastasize via the vascular system even in the early stages of progression. While

ultrasonography andmammography have enabled themore reliable detection of

early-stage breast cancer, these approaches entail high rates of false positive and

false negative results Mammograms also expose patients to radiation, raising

clinical concerns. As such, there is substantial interest in the development of

more accurate and efficacious approaches to diagnosing breast cancer in its

early stages when patients are more likely to benefit from curative treatment

efforts. Blood-based biomarkers derived from the tumor microenvironment

(TME) have frequently been studied as candidate targets that can enable tumor

detection when used for patient screening. Through these efforts, many

promising biomarkers including tumor antigens, circulating tumor cell clusters,

microRNAs, extracellular vesicles, circulating tumor DNA, metabolites, and lipids

have emerged as targets that may enable the detection of breast tumors at

various stages of progression. This review provides a systematic overview of the

TME characteristics of early breast cancer, together with details on current

approaches to detecting blood-based biomarkers in affected patients. The

limitations, challenges, and prospects associated with different experimental

and clinical platforms employed in this context are also discussed at length.

KEYWORDS

tumor microenvironment, circulating tumor cell clusters, early breast cancer,
biomarkers, detection
1 Introduction

Cancer is a complex heterogeneous disease that is regulated by genetic, molecular,

cellular, environmental, ethnicity-related, and socioeconomic factors. Currently, Breast

cancer (BC) is the most frequently diagnosed tumor type in women and the leading cancer-

associated cause of recurrence and mortality (1). Due to its global prevalence, many
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researchers have focused on gaining better exploration in cancer

biology and developing tools for diagnosis and treatment. Over the

past two decades, the average age of BC diagnosis has declined, and

there have been concerted research efforts to define and explore the

pathogenesis of BC including the roles of genetic susceptibility (2),

DNA damage and repair (3), immunosuppression and immune

evasion (4), and metabolic reprogramming driven by conditions

such as hyperglycemia and obesity (5).

Mammography and ultrasonography are widely used to screen

for early BC (EBC) (6). While noninvasive, these technologies are

prone to high false negative rates and have limitations in terms of

accuracy and sensitivity, and the diagnostic efficacy of common

tumor markers in BC still has been relatively poor (7). Definitive BC

diagnoses can only be confirmed through puncture or surgical

biopsies, which are inherently invasive and risk overtreatment in

cases where identified tumors are ultimately found to be benign. As

such, there has been growing interest in the identification of more

reliable and accurate noninvasive biomarkers that can aid in the

detection of BC in its early stages and monitor tumor development

through analyses of peripheral blood samples or other biofluids, as

such biomarkers would offer clear clinical value (Figure 1).

In the past few years, a new diagnostic “liquid biopsy” has

emerged and received widespread attention. The most common

method is to collect samples of human peripheral blood for different

analyses. Several other body fluids can also be used for specific

biopsy applications, such as cerebrospinal fluid, pleural effusion,

ascitic fluid and urine. Circulating tumor cells (CTCs) and

circulating tumor DNA (ctDNA) are cornerstones of liquid
Frontiers in Oncology 02
biopsy (8). Besides, cell-free RNAs, antigen and metabolites, that

encapsulated or not encapsulated in exosomes are also present in

liquid biopsy specimens.

Our review provides a summary of circulating tumor

biomarkers and cell properties associated with BC in blood, while

also discussing the characteristic markers and metabolites that may

aid in identifying affected patients. Recent advances in the detection

and enrichment of circulating tumor cells (CTCs) are also

discussed, and an overview of the potential clinical applications of

these circulating tumor-related biomarkers is provided.
2 Breast cancer occurrence
and development

In many cases, patient susceptibility to BC is thought to have a

genetic component, with heterozygous high-penetrance variants in

the BRCA1 and BRCA2 genes accounting for 50-80% of such

variation and BRCA1/2 gene sequences accounting for

approximately 20% of cases of familial BC (9). Mutations in

certain non-BRCA genes with low or intermediate levels of

penetrance may also contribute to BC incidence and progression,

including mutations in TP53, PTEN, ATM, ESR1, CDH1, STK11,

PALB2, RAD51, and BARD1 (2, 10, 11).

The DNA damage repair (DDR) system is responsible for

detecting harm to the DNA induced by endogenous or exogenous

factors, thereafter coordinating an appropriate signaling response to
FIGURE 1

Mechanism of breast cancer and liquid detection process.
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repair such damage. The DDR system also controls cell cycle

progression to prevent the propagation of damaged DNA via

cellular division, thereby protecting against oncogenesis or the

differentiation of epithelial breast cells towards a more

mesenchymal phenotype (12). BRCA1 helps to protect against

DNA damage in vivo, thereby preventing the development of BC.

Low levels of BRCA1 expression are evident in ~30% of BC patients

owing to the methylation of the BRCA1 promotor and/or the

dysfunction of upstream signaling pathways responsible for its

induction (13). BRCA2 can also help preserve genomic integrity

through the promotion of homologous recombination-based DNA

break repair, stabilizing stalled DNA replication forks, and

regulating DNA damage-associated checkpoints in cell cycle

progression (14). Other key proteins involved in DDR system-

mediated cell cycle checkpoint regulation, DNA repair, and related

processes include poly (ADP-ribose) polymerase 1 (PARP-1), the

DNA-dependent protein kinase catalytic subunit (DNA-PKcs),

ataxia-telangiectasia-mutated (ATM) kinase, and ATM and Rad3-

related (ATR) kinase (15–17).

Solid tumor development can lead to the induction of a hypoxic,

acidified, nutritionally depleted TME that can suppress immune cell

activity and facilitate immune evasion, thereby hampering immune

cell-mediated efforts to clear tumors and limiting the efficacy of

immunotherapy (18–20). Tumor-associated macrophages (TAMs)

are key members of the TME, with high TAM infiltration levels

being tied to poor prognostic outcomes in BC (Figure 2) (21).
Frontiers in Oncology 03
Classically activated M1 macrophages are capable of producing

reactive oxygen species (ROS) and recruiting cytotoxic T

lymphocytes (CTLs), thereby facilitating adaptive immunity and

tumor clearance (22). M2 macrophages, in contrast, can produce

vascular endothelial growth factor (VEGF) and transforming

growth factor beta (TGF-b) to promote tissue growth and

angiogenesis, thereby supporting the growth of tumors (23). TME

infiltration by regulatory T cells (Tregs) can protect tumor cells

against immune-mediated clearance owing to their ability to secrete

a range of immunosuppressive mediators such as TGF-b while also

expressing inhibitory receptor molecules including CTLA4 that can

interfere with NK and T cell functionality (24). Myeloid-derived

suppressor cells (MDSCs) are a class of innate immune cells that

also play key immunosuppressive roles in various tumors,

generating ROS and utilizing amino acids otherwise necessary to

support the proliferation of T cells. These MDSCs can produce IL-

10 and TGF-b to suppress immune activity, and crosstalk between

these cells, BC tumors, and other stromal cells can ultimately result

in the enhancement of angiogenesis, invasivity, and metastasis (25,

26). Cancer-associated fibroblasts (CAFs) also comprise an

important subset of cells in the TME and function by inhibiting

the infiltration and activity of T cells, ultimately promoting other

immunosuppressive cell recruitment and thereby modulating TME

composition (19, 27).

Dysregulated metabolic activity is closely associated with the

risk of BC development and can be observed in non-tumor cells
FIGURE 2

Mechanism of breast cancer development and metastasis. Tregs, regulatory T cells; Te, T-lympocyte; NK, nature killer cell; M1 and M2, M1
macrophages and M2 macrophages; CTL, cytotoxic T lymphocyte; CA, cancer antigen; MDSC, myeloid-derived suppressor cell; CAFs, cancer-
associated fibroblasts; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor; TGF-b, transforming growth factor-b; IL-10:
interleukin10.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1288077
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qiu et al. 10.3389/fonc.2023.1288077
ingredient within the TME. Obesity and diabetic individuals

frequently exhibit elevated insulin and glucose levels together

with the production of abnormal amounts of adipose tissue-

derived adipokines, estrogens, and inflammatory factors (28).

These alterations are particularly relevant in patients with

postmenopausal hormone receptor-positive BC. Estrogen receptor

(ER) signaling is related to the upregulation of genes important for

fatty acid, glucose, and amino acid metabolism, whereas

progesterone receptor (PR) facilitates the upregulation of genes

related to the metabolism of cholesterol, steroids, lipids, fatty acids,

nucleotides, and amino acids (29). In prior reports, glucose

metabolism has been shown to promote the reprogramming of

the hypoxic TME. Hypoxia contributes to an increase in the

frequency of BC stem cells in a HIF-1-dependent fashion, and

such HIF-1 activity is also related to chemoresistance (30). The

highest levels of lipid metabolism-related gene expression for genes

including FASN, CPT-A1, and PLIN1 have been observed in

patients with HER2+ BC, whereas these levels are reportedly

lowest in TNBC (31). The overexpression of ACLY, FASN, and

SCD1 has been noted in individuals with HER2+ disease, whereas

these genes are expressed at lower levels in TNBC (32). The amino

acid requirements of tumor cells exceed those of healthy cells, with

BC cells exhibiting altered glutamine, serine, glycine, and proline

metabolic pathway activity levels, thus highlighting the potential

importance of amino acid transport as a mediator of the

proliferation of BC cells and the progression of this disease (33).

Glutamine metabolism, in particular, is particularly as highly

proliferative tumor cells utilize glutamine as a source of energy

and a resource for the production of lipids, nucleotides, and

proteins (34). These metabolic pathways ultimately complement

one another, providing energy and modifying the TME in a manner

conducive to BC progression.
3 Circulating tumor biomarkers

3.1 Circulating tumor cell clusters

CTC clusters consist of 2+ CTCs exhibiting stable cell-cell

junctions, and these clusters are thought to exhibit a metastatic

potential greater than that of a single CTC by a factor of 23- to 100-

fold (35, 36). Most reports to date have determined that CTC

clusters play an important role in the metastatic dissemination of

advanced BC. These CTC clusters can evade immune-mediated

detection, allowing for the blood-based transmission of tumors

through the body (37). Whether these CTC clusters are present in

EBC patients as they are in individuals with metastatic disease,

however, remains to be studied in greater detail. Krol et al., however,

successfully detected CTC clusters composed of at least 3 cells in

EBC patients, indicating that these clusters may not be specific to

advanced disease and suggesting a potential role for these clusters in

the progression and spread of BC (38). Reduzzi et al. further

employed the CellSearch approach to isolate CTC clusters

exhibiting genetic abnormalities from 46 EBC patients, while

using the ScreenCell method to assess CTCs from 23 EBC

patients and 2 metastatic BC patients. Strikingly, clusters were
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found to be more commonly present in the blood of women with

HER2-negative disease (39). Abnormal epithelial-mesenchymal

transition (EMT) activity has also been linked to the metastatic

progression of BC. Using microfluidic systems, researchers have

successfully used antibodies specific for epithelial or tumor-

associated antigens to capture CTCs, revealing high levels of

EMT-related gene expression in these CTC clusters (40). As such,

further research is warranted to explore the clinical significance of

CTC clusters as predictors of distant metastatic progression and

prognostic outcomes in BC patients.
3.2 Circulating tumor antigens

Circulating tumor antigens are closely associated with tumor

cell proliferative, migratory, invasive, angiogenic, and

immunomodulatory properties (35). Several such antigens have

been detected in the serum of BC patients including

carcinoembryonic antigen (CEA), CA15-3 (41), CA27-29, CA-

125, Trop2 (42), tissue polypeptide specific antigen (TPS) (43),

the circulating extracellular domain of HER2, and riboflavin carrier

protein (RCP) (44). While these biomarkers can be dysregulated in

EBC, their utility in the context of early disease screening faces

challenges. The Videssa breast liquid biopsy approach (45) utilizes a

combination of serum biomarkers and clinical factors to detect

breast cancer with 93% sensitivity and 98% negative predictive value

(NPV) in women 25-75 years of age, although in women under 50,

it exhibits 87.5% sensitivity and 99.1% NPV (46). This technique

thus required further development to reliably detect solid breast

tumors. Future efforts to combine analyses of these or other

circulating tumor antigens with results derived from

ultrasonography, mammography, and imaging may also improve

EBC detection rates.
3.3 Circulating tumor DNA

ctDNA has also been evaluated as a promising biomarker

candidate that consists of small DNA fragments distinct from the

nucleic acids that can be detected in live CTCs (47). Importantly,

ctDNA levels and detection frequencies in plasma samples exceed

those of CTCs in some reports (47, 48), although there have been

some conflicting results (49).

In one report, an estimated 73% of BC patients were found to be

positive for ctDNA prior to undergoing neoadjuvant chemotherapy

(NAC), whereas these rates declined over the course of NAC

treatment. Strikingly, ctDNA-positive patients were found to be

significantly more likely to exhibit residual disease following NAC

treatment, with all patients achieving pathological complete

response (pCR) ultimately being found to be negative for ctDNA

(50, 51). In the BRE12-158 trial (NCT 02101385), the detection of

CTCs and ctDNA in patients with early-stage TNBC was found to

be independently related to disease recurrence (52). As such,

detecting ctDNA may represent an effective means of predicting

NAC efficacy and the odds of pCR, while also enabling the

assessment of disease recurrence and metastasis.
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DNA methylation is a form of epigenetic modification that can

influence gene expression and may be altered early in the course of

oncogenesis such that certain methylation patterns may represent

viable biomarkers for early cancer diagnosis (53). Abnormally

methylated DNA has frequently been detected in the plasma and

serum of cancer patients (54). Uehiro et al. were able to design a

novel system for the assessment of the epigenetic characteristics of

isolated ctDNA to facilitate the screening-based diagnosis of BC

(55). Gao et al. further utilized a whole-genome bisulfite sequencing

(WGBS) approach to assess methylated ctDNA, providing a means

of distinguishing among cancer subtypes in a manner with great

clinical potential (56).

Chromosomal instability is an important hallmark of cancer,

and low-pass WGBS approaches can enable the assessment of

chromosomal instability in ctDNA samples, facilitating the

detection of BC recurrence with greater accuracy than that

afforded by CEA or CA15-3 (57). The amplification of

chromosome 1q21.3, for example, has been shown to be

significantly associated with early relapse in patients with BC

(58). Analyzing ctDNA can also permit the detection of TP53

mutations, and may enable efforts to screen for BC patients

harboring mutations in BRCA1 (59).

On the whole, ctDNA analyses offer a greater dynamic range

and are more representative of tumor specificity than are CTCs.

However, the half-life of ctDNA is relatively short. Detecting

mutations and epigenetic modifications in these ctDNA samples

can support the early detection of BC. However, ctDNA copy

numbers and content levels in peripheral circulation are generally

low and the associated testing platforms are expensive, hampering

the clinical application of ctDNA-based biomarker analyses

at present.
3.4 Circulating noncoding RNAs

MicroRNAs (miRNAs) are short (19-23 nucleotide) transcripts

that regulate a range of physiological and pathological processes via

the modulation of gene expression (60). Circulating miRNA levels

can be readily detected, and these levels are dysregulated in many

pathological settings including cardiovascular disease (61), diabetes

(62), obesity (63), and cancer. In one study, BC patients were found

to exhibit increases in the levels of hsa-miR-21-5p and miR-106b-

5p, whereas hsa-miR-205-5p and miR-143-3p expression was

downregulated as compared to normal tissues (64). There is also

evidence for the tumor type-specific roles of particular miRNAs. For

example, miR-7 can promote B cell lymphoma development yet it

inhibits BC progression, while miR-29 can promote BC but

suppress lung cancer, and miR-16 can suppress hepatocellular

carcinoma while driving the incidence and metastatic progression

of glioma and lung cancer (65–68). MiR-21 has been shown to be

among the most upregulated miRNAs in BC, and it can function by

interacting with a range of target mRNAs including LZTFL1 and

PTEN, thereby promoting the growth of BC cells (69, 70). There is

also evidence for the ability of miR-155 to target BRCA1, thereby

modulating DNA repair activity and progression through the cell

cycle (71). MiR-205 can induce VEGF-A upregulation and ZEB
Frontiers in Oncology 05
family activity to facilitate BC cell growth and invasivity (72). While

these results offer tantalizing glimpses of the pathologic relevance of

these miRNAs, it is important to note that many miRNAs

detectable in systemic circulation are not derived from tumors

and instead originate from the steady-state activity of the other cells

present throughout the body.

Long noncoding RNAs (lncRNAs) are > 200 nucleotides long

and can serve as precursor forms of miRNAs or other RNA

molecules, and can also interact with particular miRNAs through

a competing endogenous RNA (ceRNA) mechanism. Certain

lncRNAs have been shown to offer a high degree of utility as

noninvasive biomarkers in particular cancers (73). Mechanistically,

there is evidence for the ability of lncRNAs to control the

proliferation, angiogenic activity, survival, invasivity, and

metastatic progression of tumors through post-translational

mechanisms and the remodeling of the chromatin (74). There

have been several recent reports indicating that serum lncRNA

levels can serve as biomarkers for BC diagnosis and prognostic

assessment. For example, one group analyzed the serum levels of

lncRNA-ATB, which can be activated by TGF-b, and FAM83H-

AS1 in EBC patients and healthy controls, ultimately determining

that lncRNA-ATB is superior to other tumor antigens such as

CA15-3 when used to identify patients with stage I-II disease,

whereas FAM83H-AS1 levels were related to tumor volume and

metastatic progression to the lymph nodes (73). The dysregulation

of the TINCR-miR-761 axis has been linked to the promotion of

metastatic progression in early-stage triple-negative BC (TNBC)

patients (75). Lu et al. further found that the lncRNA APOC1P1-3

was capable of decreasing levels of caspase-3/8/9 and PARP activity,

overcoming Bcl-2 inhibition and specifically binding miR-188-3p to

enhance the resistance of BC cells to anoikis, facilitating metastatic

progression (76). Plasma lncRNA H19 levels are also reportedly

significantly associated with ER status, PR status, C-erbB-2 levels,

and lymph node metastasis in BC patients, with significantly higher

presurgical levels in these patients as compared to analyses

performed postoperatively (77). LncRNA H19 levels have also

been found to be positively correlated with miR-675 expression,

with miR-675 representing a potential lncRNA H19 derivative and

a close documented association between lncRNA H19 and early

HER2-positive BC (78).

CircRNAs are a subset of noncoding RNA exhibiting a closed

covalent loop structure that is generated via the back splicing of pre-

mRNAs (79). As they do not exhibit poly-A tails or 5’- or 3’- ends,

these circRNAs are highly resistant to degradation mediated by

RNase R or other exonucleases. Prior studies have explored the

prognostic relevance of particular circRNAs in cancer patients. For

example, one report observed the upregulation of circ-UBE2D2 in

tamoxifen-resistant BC (80), while in another study the

downregulation of circ-0025202 was evident in tamoxifen-

resistant BC, with the upregulation of this circRNA suppressing

the proliferative, migratory, and invasive activity of MCF-7 cells

while enhancing their tamoxifen sensitivity and tendency to

undergo apoptotic death (81). Zang et al. observed an increase in

circRNF11 expression in paclitaxel-resistant BC with the silencing

of this circRNA contributing to enhanced paclitaxel sensitivity in

BC cells mediated via the miR-140-5p/E2F3 axis (82). Want et al.
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additionally determined that BC cells resistant to trastuzumab

exhibit the upregulation of circ-BGN, which contributes to this

chemoresistance through its ability to directly bind OTUB1 and

SLC7A11, thus inhibiting ferroptotic cell death via the

enhancement of OTUB1-mediated SLC7A11 deubiquitination

(83). These studies suggest that efforts to monitor circRNA levels

may provide particular value for the assessment and monitoring of

BC patient responses to particular chemotherapeutic interventions.

Overall, these prior studies emphasize the potential utility of

circulating miRNAs, lncRNAs, and circRNAs as effective

noninvasive biomarkers that may facilitate the detection,

prognostic evaluation, and monitoring of BC while also

permitting analyses of the therapeutic efficacy of particular

drugs (84).
3.5 Exosomes and metabolites

Initially discovered 40 years ago (85), exosomes were initially

thought to represent a mechanism through which cells dispose of

waste. However, more recent research has demonstrated that they

are a subset of extracellular vesicles (EVs) that carry both

membrane and non-membrane p ro t e in s and o ther

macromolecular cargos including mRNAs, miRNAs, lncRNAs,

DNA, lipids, and metabolites (86). Relative to normal cells, cancer

cells reportedly release higher numbers of exosomes in response to

the acidic and hypoxic conditions in the TME (87, 88). Paracrine

signaling among BC cells in the TME mediated by exosomes can

contribute to migratory, invasive, and metastatic activity and to

immune evasion (89). Efforts to detect proteins present within BC-

derived exosomes through analyses of blood samples can also

support molecular subtyping efforts (90). Rontogianni et al., for

example, were able to successfully differentiate between HER2+ BC

and TNBC cases based on the proteomic analysis of circulating

exosomes (90). Extracellular Hsp70 levels also reportedly offer value

in predicting metastatic disease and therapeutic responsivity (91).

Most studies of circulating exosomes to date, however, have largely

centered on miRNAs. The exosome-mediated transfer of miRNAs

between cells can enable them to directly regulate target mRNA

expression within recipient cells (92). However, given the

complexities and lack of standardization pertaining to the

separation and collection of exosomes, analyzing them in the

context of clinical trials remains challenging.

Metabolic reprogramming is a major hallmark of tumor

development and growth, yielding a range of biological targets

that are relevant to biomarker researchers and that may also have

therapeutic implications (93). The TME of BC tumors is

characterized by metabolic changes including glutamine addition,

the Warburg effect, and elevated levels of lactic acid fermentation

that help promote immunosuppression and angiogenic activity (94,

95). A subset of these cellular metabolites can be released into

systemic circulation within EVs such that they can be detected in

liquid biopsy samples. Accordingly, several reports have explored

the potential application of these metabolites as biomarkers for

early cancer patient diagnosis, characterization, and predictive

treatment assessment (96). In their metabonomic analyses, Mao
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et al. determined that serum samples from patients with

trastuzumab-resistant HER2+ BC exhibited higher levels of the

essential amino acid L-arginine and the polyunsaturated membrane

fatty acid arachidonic acid, both of which are important for

immune system functionality (97). A prospective serum

metabolomics study further determined that BC patients

exhibited elevated levels of dimethyldodecane, galactose, and a-
glyceryl stearate relative to healthy controls, while levels of

glucopyranoside, tetradecane, mannose, and benzene 1,2

dicarboxylic acid were capable of differentiating among subgroups

of BC patients based on staging, grading, and neoadjuvant status

(98). In one study, the levels of four different metabolites in BC

patient plasma samples (L-octanoylcarnitine, 5-oxoproline,

hypoxanthine, and docosahexaenoic acid) were suggested to be

associated with tumor pathological characteristics (99). Authors

have also reported the utility of serum threonine, isoleucine,

glutamine, and linolenic acid levels as predictive biomarkers of

BC patient NAC responses (100), while Jobard et al. analyzed EBC

and advanced BC patient blood samples and determined that

circulating histamine, alanine, and betaine levels were elevated in

EBC, suggesting that they may offer predictive value for patient

staging (101).

While advances in targeted and non-targeted metabolomics

analyses provide an opportunity to aid in the diagnosis and

evaluation of BC patients, there are some limitations to the

studies that have been conducted to date. Notably, patient-specific

factors including hyperglycemia, drinking, smoking, and obesity

can all complicate efforts to clarify the association between

metabolite levels and BC status (102).
4 Emerging detection methods

Studies have suggested that CTCs offer value as potential

biomarkers that can aid in the early diagnosis of particular

cancers, while also enabling clinicians to monitor patients for

minimal residual disease (MRD) (103). While CTC detection

efforts thus hold immense diagnostic promise, the limited

numbers of available CTCs pose a substantial technical challenge

that is the focus of ongoing research efforts. Technologies including

multiplex reverse-transcription quantitative PCR (RT-qPCR),

imaging-based strategies, and microchip/microfilter devices can

aid in the sensitive assessment of CTC samples present in

biofluids such that disease status and therapeutic efficacy can be

readily assessed (104). For example, the CTC Chip microfluidic

device has been developed, employing antibodies such as anti-

EpCAM (105), anti-CD146 (106), and anti-CD176 (107) for CTC

capture. Automated cell imaging systems including the RareCyte

and CellSearch systems, together with ScreenCell and CellSieve

filters, can enable reanalyses of CTCs (39, 108, 109), improving

detection rates for these rare tumor cells. In one study, authors

successfully applied the CytoSorter system to enable CTC detection,

and observed higher rates of CTC detection in cancer patients with

advanced disease in a manner related to T staging, with detection

rates as high as 100% in patients with T3/T4 disease (110). Krol

et al. employed the CellSeed liquid handling platform and
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nanostructured titanium oxide-coated slides to achieve the shear-

free detection of CTCs, successfully and efficiently capturing these

cells from clinical samples while preserving their morphology to

facilitate subsequent non-disruptive analyses (38). In addition,

protein detection such as EpiSpot detection based on anti-

cytokeratin (anti-CK) antibodies which is specifically combined

with tumor specificity protein released by CTCs, is the most

common detection approach (111).

The tumor cell-specific methylation status of ctDNA reportedly

outperforms copy number variation levels as a predictor of BC

patient risk. However, the reliable detection of such epigenetic

modifications remains challenging owing to the low levels of

ctDNA availability and the absence of on‐locus-specific DNA

methylation technologies (112). To address these issues,

researchers have leveraged digital PCR technologies to assess the

ctDNA status of patients with various cancers, achieving successful

ctDNA detection in 48% and >75% of EBC and advanced BC

patients, respectively (113). In the c-TRAK TN trial

(NCT03145961), digital PCR was utilized for the prospective

monitoring of ctDNA in early TNBC patients or patients with

residual disease following NAC as a means of guiding treatment

efforts and demonstrating the clinical value of this detection

modality (114). Gao et al. designed an improved ctDNA WGBS

approach to allow for the unbiased assessment of ctDNA

methylation status using small plasma sample volumes,

successfully distinguishing among BC patients based on HR status

(56). Yoshinami et al. were able to implement molecular barcode

next-generation sequencing as a means of detecting ctDNA in EBC

patients, thereby allowing for the identification of clinically relevant

mutations with greater sensitivity than that afforded by traditional

PCR (115). Epigenomic studies have also reported the use of

Illumina arrays to prospectively evaluate samples with the goal of

clarifying the association between blood DNA methylation and BC

risk, as in the Sister Study (116) and EPIC-Italy study (117). In the

I-SPY291 trial (NCT 27406347), researchers analyzed plasma

samples from EBC patients prior to NAC and were able to use

ultra-deep whole exon group sequencing to detect 16 patient-

specific mutations in ctDNA, while also revealing that ctDNA

clearance dynamics are related to NAC responses (50). These

results may inform efforts to adjust patient treatment regimens in

a timely and individualized manner.

As circulating miRNAs are small and present at low levels, their

detection in a clinical setting remains challenging. Alternative

detection strategies beyond RT-qPCR include microarray

platforms capable of capturing large numbers of miRNAs,

although these platforms tend to have a low dynamic range and

are not capable of detecting novel miRNAs (118). Next-generation

sequencing can facilitate miRNA detection, including novel

miRNAs (119), but the resultant data require complex and time-

consuming bioinformatics analyses to achieve reliable result

interpretation. The digital molecular barcoding-based NanoString

nCounter platform can allow for the precise quantification of exact

miRNA copy numbers in a given sample, although only 800

miRNAs can be analyzed per slide (120). Hong et al. compared

these different miRNA detection strategies and noted marked

variations in speed, cost, and performance, revealing that
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miRNA-Seq can achieve a high degree of cost-efficiency when

used for appropriate sample analyses (121).

Differential analyses of exosomal proteins associated with BC

tumors and normal breast cells can offer insight into the processes

that drive tumor progression (122). Risha et al. characterized the

exosomal proteomes of MDA-MB-231 and MCF-10A cells when

using three different exosomal separation techniques (ExoQuick,

Ultracentrifugation, and Ultrafiltration-Ultracentrifugation) and

detergents (n-dodecyl b-D-maltoside, Triton X-100, and

Digitonin) through nano-liquid chromatography-tandem mass

spectrometry (123). Liu et al. identified targets of interest through

a droplet microfluidics digital ELISA strategy (124). There are also

reports of the use of anti-CD81-modified immunomagnetic beads

to separate EVs, thereby avoiding issues associated with

precipitation and ultracentrifugation strategies (125, 126). Yu

et al. employed a simple, sensitive, low-cost colorimetric aptamer

sensor consisting of mucin 1 (MUC1) aptamers and a heme/G-

quadruplex subunit with HRP-like activity that enabled the

oxidation of substrates such that exosomes could be effectively

detected (127). Nanoparticle Tracking Analysis (NTA) approaches

can also provide insight into the characteristics of EVs based on

light scatter following laser irradiation using the Stokes-Einstein

equation and cell volume, permitting the detection of exosomes >

50 nm in size albeit with limitations pertaining to reliability and

concentration measurements (128).

Metabolic dysregulation is a defining characteristic of most

tumors (93), and a growing number of studies in recent years have

focused on characterizing metabolic changes associated with

different subgroups of BC patients. Mass spectrometry-based

metabolic spectrum analyses offer a powerful means of detecting

cancer-related metabolic changes that can offer insights into tumor

pathogenesis and aid in the selection of candidate drug targets

(129). In some reports, a combination of nuclear magnetic

resonance (NMR) and gas chromatography-quadrupole mass

spectrometry (GC-qMS) approaches have been used for

metabolomic analyses of urine and breast tissue samples from BC

patients and healthy controls, revealing that altered lactate, valine,

aspartate, and glutamine metabolism are frequently observed in BC

patients (130). Jasbi et al. were also able to successfully conduct

metabolomic analyses through a targeted LC-MS/MS approach that

revealed characteristic changes in arginine/proline metabolism,

tryptophan metabolism, and fatty acid biosynthesis in EBC

patients (102). Using nanoparticle-enhanced laser desorption/

ionization mass spectrometry (NPELDI-MS), Huang et al. were

able to rapidly detect serum metabolic fingerprints of BC, achieving

high levels of accuracy (88%) and diagnostic efficiency in a manner

that was reproducible and required very low amounts of serum

input (131). These reports emphasize the rapid advancement of

metabolomics-focused analytical technologies, and future efforts to

integrate these platforms may improve the clinical utility of

particular metabolites as biomarkers and therapeutic targets.

As summarized above, the detection of many circulating

biomarkers faces many challenges pertaining to sensitivity,

precision, and high costs. Table 1 summarizes several common

detection methods currentky used. Despite this, though, many

clinical trials have explored the clinical relevance of these
frontiersin.org

https://doi.org/10.3389/fonc.2023.1288077
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qiu et al. 10.3389/fonc.2023.1288077
biomarkers when assessed in noninvasive liquid biopsy samples,

and the US FDA has approved the detection of ctRNA and CTCs in

BC patients (132). Future randomized clinical trials combining

these noninvasive biopsy techniques with appropriate clinical

interventions are expected to offer greater insight into the value of

applying these detection strategies in routine practice.
5 Clinical trials focused on circulating
biomarkers in BC

Efforts to detect CTCs, ctDNA, miRNAs, and exosomes in

peripheral blood samples have been used to assess the clinical

treatment responses and prognosis of patients with breast cancer

in several trials to date. Per the 2015 ASCO guidelines, ctDNA and

CTCs are recommended as readouts for the monitoring of patient

treatment responses (133). During the first-in-human study of oral

SERD AZD9496 (NCT03236974), early changes in CTCs and

ctDNA were explored as potential noninvasive tools, alongside

j o in s up w i th pa i r ed tumor b iop s i e s , t o e va l u a t e

pharmacodynamics and early efficacy (134). In patients with

locally recurrent unresectable or metastatic HR+/HER2- BC,

next-generation sequencing-based analyses of tumor tissue

samples or plasma ctDNA should be to detect mutations in

PIK3CA in order to determine whether patients are eligible for
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treatment with the phosphatidylinositol 3-kinase inhibitor alpelisib

plus fulvestrant (135). Clinical data supporting the routine use of

ctDNA or CTCs for the monitoring of treatment responses in

metastatic BC (MBC) patients, however, remain limited.

Retrospective analyses of two phase III trials (NCT00253422;

NCT00944918) revealed that in patients with ESR1 mutations

detectable in baseline analyses of ctDNA, fulvestrant treatment

was associated with better progression-free survival (PFS) as

compared to patients that had previously progressed on a

nonsteroidal aromataseunhibitor (AI) (136). In the PALOM-3

trial (NCT01942135) (35), MBC patients with HR+/HER2-

disease were randomly assigned to undergo treatment with the

CDK4/5 inhibitor palbociclib plus fulvestrant group or placebo plus

fulvestrant at a 2:1 ratio, with ctDNA samples being analyzed to

detect mutations on day 1 and at the end of treatment. In this trial,

data pertaining to ESR1, PIK3CA, and TP53 mutation status were

available for 331 and 195 patients on day 1 and at study end,

respectively. Davis et al. were successfully able to apply whole

exome sequencing to isolate and analyze ctDNA from 216

samples of plasma from 51 HR+/HER2- MBC patients in their

phase II study of palbociclib plus letrozole or fulvestrant

(NCT03007979). Their analyses revealed an association between

higher blood tumor mutational burden and blood copy number

burden (bTMB and bCNB) and both a lack of clinical benefit and

poor PFS as compared to patients with lower bTMB or bCNB (all P

< 0.05) (137). In the plasma MATCH trial (NCT03182634), MBC

patients were separated into ESR1 mutated, HER2 mutated, AKT1

mutated HR+, and PTEN mutated or AKT1 mutated HR-

subgroups, revealing that ctDNA analyses were able to rapidly

and accurately facilitate such genotyping efforts, enabling the

identification of rare mutations such that they represent viable

therapeutic targets (138). In the BEECH trial (NCT01625286),

dynamic ctDNA analyses were used to assess MBC patient PFS

(139), although as this was a phase I/II study, additional evidence

from a larger sample cohort will be necessary to validate this

approach. Similarly, the APOLLO trail (NCT04501523) also

utilized ctDNA to assess high-risk TNBC presents for recurrence,

in order to provide effective follow-up treatment (140).

The above studies clearly indicated that the analysis of ctDNA

samples as the clinically applicable biomarkers have been supported

and can aid in efforts to predict patient treatment responses and

prognostic outcomes, while also facilitating efforts to monitor

mutational status in real time over the course of treatment,

thereby providing a practical foundation for the application of

personalized interventions. However, our review only limited

describe the clinical application of detection ctDNA mutations,

while other circulating markers researches are still very rare.

Therefore, we look forward to the application of other markers in

the diagnosis and monitoring of BC to help improve the efficiency

of cancer treatment.
6 Final considerations

Liquid biopsy strategies and circulating tumor biomarkers have

been major topics of interest in several studies published to date,
TABLE 1 Dection methods and technical platforms for circulating
markers.

Detection
Method

Biomarker Refence
(PMID).

RT-qPCR/
digital PCR

CTCs, ctDNA, miRNA, lncRNA,
proteins

35241469;
32170028

RareCyte system CTCs 30277660

CellSearch system CTCs, CECs 21737256;
31113842

CytoSorter system CTCs 31908156

CellSeed system CTCs 33762721

EpiSpot CTCs, proteins 31330795;
24255082

WGBS ctDNA, proteins 36474139

NGS CTCs, ctDNA, miRNA 36613590;
32887501

Microarray miRNA 34387660

NanoString nCounter miRNA, EVs 27542126;

miRNA-seq miRNA 37056771

MS EVs, cellular metabolites,
proteins

35302894;
30016454

ELISA CTCs, Evs, miRNA, proteins 36081561;
29888919

NTA EVs 31936142
RT-qPCR, reverse-transcription quantitative PCR; WGBS, whole-genome bisulfite
sequencing; NGS, next generation sequencing; MS, mass spectrometry; ELISA, enzyme-
linked immunosorbent assay; NTA, nanoparticle tracking analysis.
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and ongoing attempts are being made to assess the association

between these biomarkers and BC development. Early-stage

diagnosis and monitoring are particularly vital given that different

subtypes of BC necessitate different treatment plans and exhibit

different response rates, with important prognostic implications. No

diagnostic technology has yet been established that is capable of

reliably predicting the development of EBC or its clinical prognosis.

Circulating biomarkers may aid clinicians in their efforts to

understand the biological characteristics of patient disease,

facilitating the design of more personalized treatment regimens

and novel therapeutic methods based on the monitoring of tumor

development and the identification of organs facing a high risk of

metastases, potentially even enabling the detection of specific

mutations that will allow for the adjustment of treatment in real

time (141).

So far, the progress in liquid biopsy has been significant

especially for non-small cell lung cancer (NSCLS), while plasma

ctDNA is the most widely studied and widely used alternative to

tissue tumor genotyping in solid tumors, and the detection of EGFR

mutations in NSCLS is the first example to enter clinical practice

(142). In BC, though liquid biopsy has the potential to help

transform efforts to diagnosis and managament, they remain

subject to many limitations at present. For one, current studies of

CTCs and ctDNA have largely focused on their use as alternative

indicators for use in the evaluation of patient hormone receptor or

HER2 status. Most clinical trials conducted thus far remain in phase

II or III, emphasizing a need for additional clinical validation. These

biomarkers have also primarily been used to evaluate advanced BC

patients rather than those with EBC, and research focused on the

latter subgroup of patients will be necessary. Secondly, no

circulating RNA targets such as miRNAs have yet to be

implemented in clinical practice. However, the biological

significance of cfRNA may be more extensive. An early prediction

of cfRNA in preeclampsia has demonstrated the value of cfRNA in

pregnancy abnormalities, endothelial cell disturbance and organ

damage (143). Other study has identified tissue and subtype specific

cell-free biomarkers in BC and lung cancer patients by

characterizing cfRNA (144). But because of the low abundance of

these miRNAs together with the costly and time-consuming

methods needed to isolate them may ultimately serve as a barrier

to their application. Even so, they remain invaluable research tools

that can aid in studies of tumor cells and related pathological

processes. EVs and metabolites are released into systemic

circulation by virtually all cell types, harboring strong genetic

signals and serving as facilitators of intercellular communication.

The lack of standardized approaches to their isolation and

detection, as well as uncertainties pertaining to the most effective

reference genes, however, represent important challenges to their

use. In addition, there have only been a few published reports in

which clinical validation was performed, and additional studies will

be important to gauge their clinical performance. In this article, we
Frontiers in Oncology 09
focus on the application of early detection of circulating markers in

monitoring and evaluating the development of breast cancer.

However, there is no evidence to suggest that blood biopsy can

replace tissue biopsy in diagnosis and characterization. Therefore, if

the weight of blood tests can be equivalent to tissue biopsy in the

future, it will greatly reduce the treatment harm to patients. Due to

the convenience and real-time of blood biopsy, it will be combined

with imaging examinations to continuously update the

development status of cancer, which is more conducive for

clinical doctors to adjust and modify intervention measures in a

timely manner.

In conclusion, ongoing research efforts focused on identifying

further avenues for the application of these and other circulating

biomarkers are expected to have profound implications for the

detection, targeting, and immunotherapeutic treatment of

EBC patients.
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