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Disulfidptosis is a novel mechanism underlying actin-cytoskeleton-associated

cell death, but its function in colorectal cancer (CRC) is still elusive. In this study,

we investigated the potential role of Disulfidptosis-Related Long Non-Coding

RNAs (DRLs) as prognostic indicators in CRC. Through transcriptome data from

TCGA CRC cases, we identified 44 prognosis-correlated DRLs by Univariate Cox

Regression Analysis and observed a differential expression pattern of these DRLs

between CRC and normal tissues. Consensus clustering analysis based on DRL

expression led to subgroup classification of CRC patients with distinct molecular

fingerprints, accompanied by a superior survival outcome in cluster 2. We are

encouraged to develop a score model incorporating 12 key DRLs to predict

patient outcomes. Notably, this model displayed more reliable accuracy than

other predictive indicators since DRLs are intimately related to tumor immune

cell infiltration, suggesting a considerable potential of our DRL-score model for

tumor therapy. Our data offered a valuable insight into the prognostic

significance of DRLs in CRC and broke a new avenue for tumor

prognosis prediction.

KEYWORDS
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1 Introduction

Colorectal cancer is a highly lethal digestive malignancy, ranking third in incidence and

second in cancer-related deaths (1–4). While a comprehensive treatment approach,

encompassing both surgery and chemotherapy, has notably enhanced survival rates for

colorectal cancer (CRC) patients, 40% continue to grapple with challenges associated with

tumor resistance and recurrence (1). However, the invasiveness of the tumor can impact the
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effectiveness of these treatments, limiting the anticancer effects

produced by radiotherapy and chemotherapy (5). Recent studies

show that immunotherapy is a promising treatment strategy for

advanced CRC with high microsatellite instability, which is still

limited to a very small portion of CRC patients (6, 7). Therefore,

establishing an effective bio-alarm system is an urgent need for

precise detection, diagnosis and treatment guidance for CRC patients.

Disulfidptosis has been identified as a newly discovered

mechanism of cell death that involves the actin cytoskeleton

within cells (8). Excessive intracellular disulfides can induce

disulfide stress, making actin cytoskeleton proteins susceptible to

the formation of abnormal disulfide bonds. Ultimately, cell death

occurs due to the disruption of the actin network (9, 10). The

regulatory genes governing these intricate mechanisms have been

meticulously unearthed (8). For instance, inactivation of the genes

GYS1, NDUFS1, NDUFA11, NDUBL, and LRPPRC collaborates

with glucose starvation to induce cell death (8, 11–15); OXSM

contributes to glycogen regulation (16); and NCKAP1, RPN1,

SLC3A2, and SLC7A11 collaboratively participate in disulfidptosis

regulation (8, 17). Consequently, further investigation into the

potential of targeting disulfidptosis as a diagnostic and

therapeutic strategy for cancer is warranted.

Long non-coding RNAs (lncRNAs) are non-protein-coding

RNA molecules longer than 200 nucleotides that are involved in

various biological processes such as cell proliferation, apoptosis, and

metastasis via their interactions with proteins, RNAs, and DNAs

(18, 19). Studies suggest that lncRNA-CDC6 promotes cell

proliferation and metastasis in breast cancer, which is positively

correlated with malignant stage (20). Silencing lncRNA-SNHG1 in

macrophages inhibits pro-angiogenic and tumor-promoting effects

(21). In addition, the lncRNA SH3PXD2A-AS1’s partial expression

is associated with tumor size, TNM staging, and metastasis in CRC

patients. Moreover, knockdown of SH3PXD2A-AS1 suppresses

CRC cell growth, migration and invasion, offering a new target

for CRC diagnosis and treatment (20). Taken together, lncRNAs are

demonstrated to possess therapeutic potential in early CRC

diagnosis and treatment.

This study aimed to assess the expression levels of DRLs in the

CRC data set to pursue the objective of constructing a prognostic

model to predict individual patient outcomes and facilitate clinical

decision-making. Additionally, we performed gene set enrichment

analysis (GSEA) and immune infiltration analysis to investigate the

mechanisms of DRLs in CRC. Finally, we conducted a preliminary

validation of our prediction model according to the differential

expression of eight DRLs in CRC cell lines. Our data proved the

potential use of this strategy for predicting the prognosis of CRC

patients and offers valuable standards for clinical decision-making.
2 Materials and methods

2.1 Data source and differential expression
of disulfidptosis-related genes (DRGs)

TCGA supplied gene transcriptome data, clinical characteristics

(n = 458), and mutation details (n = 452) for both normal and CRC
Frontiers in Oncology 02
samples, serving as the data source for Disulfidptosis-Related genes

(DRGs) and their differential expression. Transcription data was

processed per kilobase fragment and normalized to one million

transcripts. To normalize gene expression levels, log2 (FPKM+1)

was utilized. Ten DRGs were identified from previous studies. The

Limma software was utilized to detect differentially expressed DRGs

with an absolute log2 fold change greater than 1.5 and a false

discovery rate (FDR) lower than 0.05.
2.2 Visualizing copy number variations
(CNV) in colorectal cancer

CNV data was analyzed using Gistic2.0 to identify

chromosomal segments with significant amplifications and

deletions, comparing CNVs across chromosomal arms. The

chromosomal positions of genes were visualized using “RCircos”

in R.
2.3 Analyzing and clustering DRLs through
identification and consensus

DRLs were obtained by performing Pearson correlation analysis

on differential expression DRGs, considering a correlation

coefficient greater than 0.5 and a P-value less than 0.001.

Prognosis was found to be significantly associated with DRLs

through univariate Cox regression analysis using the ‘survival’

package. To identify variations in expression of prognosis-

associated DRLs between tumor and normal tissues, the

Wilcoxon test was employed. We used the “limma” and

“corrplot” packages to compute the correlation between PD-L1

expression and DRLs. Unsupervised consensus clustering using the

“ConsensusClusterPlus” package identified potential DRL subtypes.

We utilized the ‘survival’ and ‘survminer’ packages to conduct

survival analysis and compare clinical parameters. Using the

‘CIBERSORT’ package, the proportions of 22 different subtypes of

immune cells were estimated between the subgroups. For each

patient with CRC, the immune score, stromal score, and tumor

purity were acquired using the ‘estimate’ package.
2.4 Creating and verifying the
DRL signature

An algorithm was developed to measure disulfidptosis patterns

in each individual with CRC, providing a prognosis feature. To

prevent overfitting and create the best prognosis feature called the

DRL score’, we utilized lasso regression analysis.

DRL score = ½SNHG17 expression � (0:262)� + ½ALMS1 − IT1 expression� (0:244)�
+½AC087481:3 expression � (0:038)� + ½AL138724:1 expression � (0:106)�  
+ ½AC069281:2 expression� (0:149)� + ½NCK1 − DT expression� (0:098)�
+ ½AC024560:3 expression� (0:078)� + ½SNHG26 expression� (0:184)�
+ ½AP001505:1 expression � (0:137)� + ½HOXC − AS2 expression� (0:034)�
+ ½AC018653:3 expression� (0:117)� + ½SNHG16 expression� ( − 0:350)�
frontiersin.org

https://doi.org/10.3389/fonc.2023.1287808
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dong et al. 10.3389/fonc.2023.1287808
Using the ‘caret’ package, the TCGA database was split into

training and testing sets. DRL’s signature was validated using Kaplan-

Meier survival analysis using the “survival” and “survminer” packages.

The prognosis model’s sensitivity and accuracy were assessed using

the ‘survivalROC’ package. Using the R packages “limma” and

“scatterplot3d”, all CRC samples were subjected to principal

component analysis (PCA). A comparison of DRL’s signature with

other lncRNA-based CRC prognostic features was conducted using

the “limma,” “Survival,” “survminer,” and “timeROC” packages.
2.5 Evaluation of the DRL signature’s
clinical usefulness and independent
prognostic analysis

The independence of the DRL score from other clinical features

was evaluated through univariate and multivariate Cox regression

analyses. The predictive capability of DRL scores in different

subgroups was evaluated through a stratified analysis. “limma” and

“ggpubr” packages were used to evaluate the correlation between

DRL score and immune score. Associations among DRL score,

immune score, Microsatellite Instability (MSI), age, sex, and TNM

staging were examined using the ‘limma’ and ‘ggpubr’ packages.

Additionally, a nomogram was developed to forecast the overall

survival (OS) of colorectal cancer (CRC) patients at 1 year, 3 years,

and 5 years by integrating the DRL score with various clinical

characteristics. The nomogram’s accuracy was evaluated using

calibration plots from the ‘regplot,’ ‘survival,’ and ‘rms’ packages.
2.6 Analysis of immune microenvironment
features in CRC subcategories based on
DRL scores

To evaluate variances in the immune microenvironment features

among various DRL score subcategories in CRC, we employed the

ssGSEA and ESTIMATE algorithms. The evaluation of immune cell

infiltration and function in CRC patients was performed for the

‘GSVA’ package through single-sample gene set enrichment analysis

(ssGSEA). In medical research, ssGSEA, a commonly employed

enrichment algorithm, measures the proportionate prevalence of

every cell infiltration within the CRC tumormicroenvironment (TME).
2.7 Cell culture

The Chinese Academy of Sciences’ Cell Bank (in Shanghai,

China) provided the human NCM460, HCT116, DLD1, and RKO

cells for culture. In DMEM with 10% FBS, 1% antibiotics, and 37°C

with 5% CO2, NCM460, HCT116, DLD1, and RKO cells were grown.
2.8 Real-time PCR with quantification
(qRT-PCR)

Trizol (Sigma) was used to extract total RNA from cell lines. 1

microgram of total RNA was reverse transcribed into complementary
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DNA using the Rever TraAce qPCR RT kit from Toyota after being

quantified with a Nanodrop 1000 spectrophotometer (Thermo

Scientific). Using the StepOne real-time PCR machine from

Applied Biosystems, quantitative PCR was carried out using the

SYBR Green real-time PCRMaster Mix from Toyobo. As an internal

control, GAPDH was utilized. In Supplementary Table S1, primer

sequences for the pertinent genes are listed.
2.9 Statistical analysis

All statistical analyses were performed using the R software

program, version 4.2.1. Using one-way ANOVA or a Student’s

t-test, statistical differences between groups were computed. Unless

otherwise noted, P< 0.05 was assumed to be statistically significant.
3 Result

3.1 Expression and mutation landscape
of DRGs

To investigate the potential role of DRGs in CRC progression,

10 DRGs (GYS1, NDUFS1, NDUFA11, OXSM, LRPPRC, NUBPL,

NCKAP1, RPN1, SLC3A2, and SLC7A11) were obtained from Liu’s

study (10). Among them, 8 DRGs (NDUFS1, NDUFA11, OXSM,

LRPPRC, NCKAP1, RPN1, SLC3A2, and SLC7A11) displayed a

marked differential expression pattern between CRC and normal

tissues (P<0.05) (Figure 1A). Notably, NDUFA11, OXSM, LRPPRC,

NCKAP1, RPN1, SLC3A2, and SLC7A11 were upregulated in

cancer tissues, while NDUFS1 showed the opposite trend

(Figure 1B). Following that, the analysis of CNV data using

Gistic2.0 identified chromosomal segments with significant

amplifications and deletions, comparing CNVs across

chromosomal arms. The visualization of gene chromosomal

positions using “RCircos” in R revealed that copy number

deletions were the predominant mutations in DRGs (Figure 1C).

The most significant alterations were observed in SLC7A11, OXSM,

and GYS1, in contrast to NUBPL, NDUFS1 and NCKAP1 that

predominantly exhibited copy number amplifications. Since CNV is

a significant component of structural variation (SV) in the genome,

the chromosomal positions of CNV mutations in DRGs were

represented in the circular plot (Figure 1D).
3.2 Identification of prognostic-related
DRLs in CRC

The association between genes related to disulfidptosis and

lncRNAs was evaluated using a Pearson correlation analysis and a

Sankey diagram was used for visualization (Figure 2A). To validate

the prognostic potential of DRLs, we determined 44 prognostic-

related DRLs through univariate Cox regression analysis. Among

them, 42 lncRNAs were identified as high-risk lncRNAs (HR > 1),

while the other two were identified as low-risk lncRNAs (hazard

ratio (HR) < 1) (Figure 2B). Besides, we assessed the expression
frontiersin.org
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levels of these prognostic-related DRLs and found that all 44 DRLs

showed a differential expression pattern between CRC tissues and

control ones (Figure 2C). Specifically, 34 DRLs were upregulated,

while 10 DRLs were downregulated in CRC samples (Figure 2D).

Furthermore, we utilized the “limma” and “corrplot” packages to

explore the correlation between the expression of the immune

checkpoint gene PD-L1 and DRLs. Our results demonstrate a

positive correlation between AC138207.5, AC069281.2, HOXC

−AS2, AC019205.1, and PD-1, while AC092910.3, ALMS1−IT1,

AC012360.3, AC239868.1, LINC02175, ZKSCAN2−DT, GABPB1

−AS1, L359878.1, AC013652.1, AL683813.1, LINC02352,

AC109460.1, AC007128.1, MALINC1, SNHG15, AC073957.3,

ITFG1−AS1, and SNHG16 show a negative correlation with PD-1

(Figure 2E). All these results demonstrate strong correlations,

thereby suggesting a significant potential role for DRLs in

predicting prognosis in colorectal cancer.
3.3 CRC molecular subgroups based
on DRLs

To further investigate the expression profile of DRLs in CRC,

we performed consensus clustering analysis and divided CRC

patients into two subgroups (Cluster 1 and Cluster 2) based on

the expression of fore-mentioned DRLs. Survival rates indicated
Frontiers in Oncology 04
that Cluster 2 patients had a more significant survival advantage

than those in Cluster 1 (Figure 3C). The heatmap data

demonstrated a differential expression pattern of prognostic-

related DRLs in the two clusters, and the majority of lncRNAs

showed higher expression in Cluster 1 than in Cluster 2 (Figure 3D).

Cluster-1 was characterized by increased expressions of

AC145423.3 , AC018653.3 , AC087481 .3 , AC024560 .3 ,

AC073957.3, AL355388.2, AL359878.1, AC139887.2, AC239868.1,

AC012360.3, AC092910.3, ZKSCAN2−DT, GABPB1−AS1,

AL683813.1, and AC004148.2. In addition, we analyzed the

immune cell infiltration landscape in different clusters, revealing

that various immune cell types were significantly enriched in

Cluster 2 (Figure 3E). Moreover, the ESTIMATE score, immune

score, and stromal score were significantly higher in Cluster 2 than

those of Cluster 1 (Figure 3F), indicating that cluster analysis based

on DRLs exhibits remarkable effectiveness.
3.4 Validation of DRLs’ prognostic value
in CRC

To precisely predict the prognosis of CRC patients, we

constructed a prognostic model for DRLs using 12 key DRLs

determined by univariate Cox and LASSO regression analyses

(Figures 4A, B). These 12 DRLs are closely associated with GYS1,
A B

DC

FIGURE 1

Expression levels and genetic variations of Disulfidptosis-Related Genes (DRGs). Heatmap (A) and boxplot (B) showing the expression levels of DRGs in
colorectal cancer and normal tissues. Mutation frequency of DRGs in colorectal cancer patients (C). (D) Chromosomal positions of DRGs. * p< 0.05;
** p< 0.01; *** p< 0.001; ns p> 0.05.
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NDUFS1, NDUFA11, OXSM, LRPPRC, NUBPL, NCKAP1, RPN1,

SLC3A2, and SLC7A11 (Supplementary Figure 1A), which are

intimately correlated to a poorer prognosis of CRC except for

SNHG16 (Supplementary Figure 1B). Consequently, we categorized

individuals into low-risk and high-risk categories depending on the

median DRL score. The Kaplan-Meier analysis demonstrated that

individuals in the high-risk category experienced considerably poorer

overall survival (OS) compared to those in the low-risk category, as

observed in both the training and validation sets (Figures C–E).

Additionally, ROC analysis showed that the DRL score efficiently
Frontiers in Oncology 05
predicted the overall survival tendency of CRC patients in the

training set, validation set, and entire cohort (Figures 4F–H).

Furthermore, PCA analysis demonstrated distinct clustering of

patients based on the DRL score (Figure 5A). The AUC values of

DRL-associated features for 1-year, 3-year, and 5-year OS were

significantly higher than those of other clinical features, indicating

a high accuracy of the DRL-based prognostic model (Figures 5B–D).

Heatmap analysis displayed a remarkable difference in the expression

of 12 key DRLs between the CRC patients in the low-risk group and

those in the high-risk group (Figure 5F).
A

B

D E

C

FIGURE 2

(A) Sankey diagram depicting the relationship between double sulfur death-related genes and co-expressed lncRNAs. (B) Prognosis-relevant DRLs
identified through single-factor Cox regression analysis. (C, D) Heatmap (C) and boxplot (D) displaying expression levels of DRLs. (E) Correlation
between prognosis-related DRLs and PD-L1 expression. *p< 0.05, **p< 0.01, ***p< 0.001.
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3.5 Clinical correlation analysis and
stratified analysis using a DRL-based
pronostic model

The analysis of clinical correlation showed that patients with

colorectal cancer who had a high DRL score exhibited larger

tumors, more lymph node involvement, a more advanced tumor

stage, and a wider distribution of primary lesions. Nevertheless,
Frontiers in Oncology 06
there were no notable disparities in DRL scores among patients of

varying ages and genders (Figures 6A–F).The predictive capability

of the DRL score in different clinical subgroups was further

confirmed through stratified survival analysis, as higher DRL

scores showed a strong association with poorer overall survival in

the majority of subgroups (Figures 6G–R).

We performed univariate and multivariate Cox regression

analysis and Concordance Index analysis to confirm the
A B

D

E F

C

FIGURE 3

(A) Consensus clustering matrix for k = 2. (B) Cumulative distribution function curve for K = 2–10. (C) Survival analysis of two molecular subtypes.
(D) Heatmap depicting differential expression of prognosis-related DRLs among different subtypes. (E) Immune cell infiltration landscape in the two
subtypes. (F) ESTIMATE score, immune score, and stromal score comparison between the two subtypes. DRLs, disulfidptosis-related. * p< 0.05;
** p< 0.01; *** p< 0.001; ns p> 0.05.
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autonomous predictive ability of the DRL score. This analysis

revealed that both the DRL score and stage could act as

autonomous prognostic markers for patients with CRC

(Figures 7A–C).By utilizing calibration curves, the constructed

column chart successfully forecasted the prognosis of CRC

patients at various time intervals (Figures 7D, E).
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3.6 Characteristics of the immune
microenvironment in various DRL
score subgroups

We conducted a study on the role of DRL scores in predicting the

immune microenvironment landscape in CRC using the
A B

D E

F G

I

H

J K

C

FIGURE 4

(A) Determination of Optimal l Value. (B) LASSO Coefficient Profiles of DRLs. (C–E) Survival Analysis Based on DRL-Score: Training (C), Validation
(D), and Entire Cohort (E). (F–H) ROC Curve for Overall Survival Prediction: Training (F), Validation (G), and Entire Cohort (H). (I–K) Distribution of
DRL-Score, Patient Survival Status, and Survival Time: Training (I), Validation (J), and Entire Cohort (K). DRLs, disulfidptosis-related lncRNAs.
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CIBERSORT algorithm. The results of Pearson correlation analysis

revealed a significant negative correlation between DRL scores and

various immune cell types. Specifically, DRL scores were negatively

correlated with eosinophils, neutrophils, monocytes, CD4 memory

resting T cells, resting dendritic cells, and T cells gamma delta. In

contrast, DRL scores showed a positive correlation with CD8 T cells,

regulatory T cells (Tregs), resting NK cells, and macrophages M0
Frontiers in Oncology 08
(Figure 8A). This implies that individuals with elevated DRL scores

might encounter a reduction in the abundance of various immune

cell types, potentially resulting in the suppression or modulation of

immune system functions throughout the anti-tumor process.

Further analysis of tumor infiltration indicated that the high

DRL score group exhibited lower levels of various immune cell

types compared to the low DRL score group (Figures 8B).
A B

D

E

C

FIGURE 5

(A) Principal Component Analysis for 1-Year (B), 3-Year (C), and 5-Year (D) Overall Survival in the TARGET Cohort. (E) Heatmap Displaying Expression
of Twelve Disulfidptosis-Related lncRNAs.
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Additionally, the high DRL score group showed lower immune,

stromal, and ESTIMATE scores, along with higher tumor purity

(Figures 8C–F). Consequently, we speculate that patients with high

DRL scores may have a poorer prognosis due to restricted immune

cell infiltration. Moreover, the high DRL score group demonstrated

significantly elevated scores for functional impairment, MSI, and

TIDE (Figures 8G–I). The high MSI status may render tumor cells
Frontiers in Oncology 09
more susceptible to recognition and attack by the immune system.

The increased functional impairment score suggests that these

patients ’ immune systems may experience inhibition or

modulation, resulting in reduced immune cell activity and

challenges in effectively combating tumor cells. The elevated

TIDE score may indicate stronger immune evasion features in

these patients’ tumors, posing greater challenges for immune
A B

D E F

G IH

J K L

M N

C

O

P Q R

FIGURE 6

Correlation Between DRL Score and Clinical Factors (A-F). Stratified Survival Analysis for Various Clinical Subgroups (G-R). T, tumor size; N, lymph
node involvement; M, metastasis.
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therapy. Overall, the negative correlations imply lower immune

system activity in certain aspects for patients with high DRL scores,

potentially enabling tumors to more effectively evade immune

surveillance, exhibit more invasive biological behavior, and

present greater challenges for treatment.
3.7 In vitro validation of the DRL-based
prognosis prediction model in CRC

As mentioned above, we had performed various analyses to

demonstrate that our DRL-based prediction is highly consistent
Frontiers in Oncology 10
with clinical data. To further validate the findings, we conducted

RT-qPCR analysis on CRC cell lines (DLD-1, HCT116, and RKO)

and the normal cell line NCM460 to avoid background noise caused

by hetereogenous cell types from in vivo tumor tissues. The results

confirmed overall significant up-regulated levels of SNHG16,

HOXC-AS2, SNHG26, AC087481.3, AL138724.1, NCK1-DT, and

ALMS1-IT1 in CRC cell lines compared to those of normal cell lines

(Figure 9). In summary, both bioinformatic analyses and in vitro

experiments support our proposed DRL-based model as an effective

strategy for CRC prognosis prediction, which may shed light on

precise medicine in CRC treatment by using certain DRL scores as

typical standards for strategic decision-making.
A B

D

E

C

FIGURE 7

Univariate Analysis (A), Multivariate Analysis (B), and Concordance Index (C) for Different Clinical Parameters and DRL Scores. Construction of Forest
Plots Utilizing Different Clinical Parameters and DRL Scores (D). Calibration Plots of Forest Plots for Overall Survival Prediction (E). * p< 0.05;
** p< 0.01; *** p< 0.001; ns p> 0.05.
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4 Discussion

Early screening advancements have positively impacted

colorectal cancer survival rates, yet it remains a major global

cause of cancer-related deaths (22). In the realm of treatment

progress, immunotherapy, specifically immune checkpoint

blockade (ICB), has emerged as a promising avenue for certain
Frontiers in Oncology 11
co lo rec t a l cancer pa t i en t s (23 ) . Notab ly , Key t ruda

(pembrolizumab), an anti-PD-1 monoclonal antibody, has

received FDA approval for the first-line treatment of unresectable

or metastatic microsatellite instability-high (MSI-H) or mismatch

repair-deficient (dMMR) colorectal cancer patients, offering

newfound hope for those resistant to traditional chemotherapy

(24). While significant progress has been achieved, a substantial
A

B D

E F

G IH

C

FIGURE 8

(A) Correlation Analysis Between DRL Score and Immune Infiltrating Cells. (B) Single-Sample Gene Set Enrichment Analysis (ssGSEA) of Immune
Infiltrating Cells in Different DRL Score Subgroups. (C-F) Immune Scores Among Different DRL Score Subgroups. (G-I) Immune Therapy Scores
Across Different DRL Score Subgroups. * p< 0.05; ** p< 0.01; *** p< 0.001.
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proportion of colorectal cancer patients lack the specific alterations

targeted by immune checkpoint blockade (ICB). This emphasizes

the urgent need to uncover the cellular and molecular factors

contributing to immunotherapy resistance (25–27).. Hence, it is

crucial to discover new indicators and treatment objectives to

enhance the results of individuals with CRC.

Biological development and internal environmental balance are

both maintained by cell death, a physiological process (28, 29).

Targeting cell death-related pathways to eliminate cancer cells is a

major direction in cancer treatment (28, 30, 31). Recently, a

research team discovered and identified a novel type of cell death

called disulfidptosis. The discovery of disulfidptosis (DSD) as a

distinct mode of cell death introduces a novel perspective on cancer

progression and treatment strategies (32). The connection between

DSD and the actin cytoskeleton underscores its potential to

influence key cellular processes, potentially paving the way for

therapeutic interventions (14, 32, 32). Understanding how DSD

influences tumor initiation, progression, metastasis, and treatment

resistance is crucial for developing effective strategies. While current

therapies often aim to induce apoptosis, resistance to apoptosis

leads to treatment failure and disease recurrence. This underscores

the importance of exploring DSD as a potential diagnostic and

therapeutic avenue (33).
Frontiers in Oncology 12
lncRNAs have emerged as integral players in various biological

processes, offering potential as diagnostic, prognostic, and

therapeutic tools (34, 35). Their multifaceted roles include

regulating gene expression through interactions with proteins,

RNA, and DNA, thereby impacting critical cellular functions (34).

Notably, lncRNAs have been implicated in CRC development and

progression, rendering them attractive candidates for early

diagnosis and treatment (36). As a result, lncRNAs represent a

novel avenue for advancing CRC management.

Currently, bioinformatics analysis has been widely applied in

the detection, diagnosis, treatment, and drug screening of tumors,

providing essential tools and methods for more effective medical

practices (37–40). Our study investigated the potential role of DRLs

in CRC and aimed to develop a prognostic model for predicting

patient outcomes and guiding clinical decisions. This study is the

first comprehensive exploration of the prognostic significance of

DRLs in CRC.We initially investigated the expression and mutation

profiles of 10 DRGs in CRC tissues, identifying 8 DRGs with

significant differential expression between CRC and normal

tissues (Figure 1). Subsequently, using univariate Cox regression

analysis, we identified 44 prognostic-related DRLs, of which 42 were

classified as high-risk and 2 as low-risk for CRC patients. All 44

DRLs showed differential expression between CRC samples and
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FIGURE 9

Detection of (A) SNHG16, (B) AC087481.3, (C) HOXC-AS2, (D) NCK1-DT, (E) SNHG26, (F) ALMS1-IT1, (G) AL138724.1, and (H) SNHG7 expression in
colorectal cancer cell lines by RT-qPCR. * p< 0.05; ** p< 0.01; *** p< 0.001, **** p< 0.0001.
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control tissues (Figure 2). To study the molecular subgroups of CRC

based on DRL expression, we conducted consensus clustering,

resulting in the division of patients into two subgroups (Cluster 1

and Cluster 2). Cluster 2 patients showed a significant survival

advantage compared to Cluster 1 patients. Immune cell infiltration

analysis revealed various immune cell types significantly enriched in

Cluster 2 (Figure 3). All these data implicate a potential immune-

related mechanism underlying different survival outcomes, in which

DRL may take an unignorable part.

To construct a relevant prognostic model, we used 12 key DRLs

(SNHG17, ALMS1-IT1, AC087481.3, AL138724.1, AC069281.2,

NCK1-DT, AC024560.3, SNHG26, AP001505.1, HOXC-AS2,

SNHG16) identified through univariate Cox and LASSO regression

analysis (Figure 4). The DRL score model effectively predicted the

survival of CRC patients in both the training and validation sets

(Figure 5). Moreover, the DRL score demonstrated higher accuracy

compared to other clinical features, highlighting its potential clinical

utility as a prognostic tool (Figures 6, 7). Notably, some DRLs, such as

SNHG17, SNHG26, and SNHG16, have been previously linked to

colorectal tumorigenesis and metastasis (41–43), while NCK1-DT

and HOXC-AS2 expression were associated with immune cell

infiltration heterogeneity (44), suggesting that DRLs may aid in

predicting survival outcomes and evaluating cancer immune

regulation. Additionally, our study revealed, for the first time, the

impact of AL138724.1, AC069281.2, AC024560.3, and AP001505.1

on prognosis in CRC (Supplementary Figure 1), which may open a

new window for further investigation as to other cancer types.

As well-known, TME plays a crucial role in tumor initiation and

development and is a critical determinant of prognosis and

treatment response in CRC patients. Particularly, tumor-

infiltrating CD8+ T cells are key players in effective anti-tumor

responses. Our study found the DRL score was associated with

specific immune cell types, such as B cells, CD8+ T cells, and

dendritic cells, among others. The low DRL score group exhibited

higher levels of immune cell infiltration, lower immune scores,

stromal scores, and ESTIMATE scores, and higher tumor purity

(Figure 9). This suggests that the DRL score might influence the

immune microenvironment and impact tumor progression. To

validate this finding, we performed RT-qPCR analysis on CRC

cell lines and normal cell lines, confirming the significant

upregulation of DRLs in CRC cell lines compared to normal cell

lines (Figure 8). Therefore, we proposed the first DRL-based

prognosis prediction model for CRC with higher accuracy than

current biomarkers, which also offered an in-depth understanding

of the clinically applicable role of lncRNAs in cancer treatment.
5 Conclusion

In conclusion, this study identified key DRLs associated with

CRC prognosis. The developed DRL score model showed promising

potential as a prognostic tool to predict individual patient outcomes

and guide clinical decisions. Additionally, the study shed light on

the immune microenvironment characteristics associated with

DRLs, providing insights into potential immunotherapy targets

for CRC treatment.
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