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prediction and verification
for stereotactic radiosurgical
treatment of isolated
brain metastases
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Lei Shi3, Fengjiao Zhuo4, Hao Jiang1* and Xiangpan Li2*

1School of Electronic Information, Wuhan University, Wuhan, Hubei, China, 2Department of Radiation
Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China, 3Department of Oncology,
Renmin Hospital, Wuhan University, Wuhan, Hubei, China, 4Department of Radiation Oncology,
Jiangling County People’s Hospital, Jingzhou, Hubei, China
Purpose: While deep learning has shown promise for automated radiotherapy

planning, its application to the specific scenario of stereotactic radiosurgery (SRS)

for brain metastases using fixed-field intensity modulated radiation therapy

(IMRT) on a linear accelerator remains limited. This work aimed to develop and

verify a deep learning-guided automated planning protocol tailored for this

scenario.

Methods: We collected 70 SRS plans for solitary brain metastases, of which 36

cases were for training and 34 for testing. Test cases were derived from two

distinct clinical institutions. The envisioned automated planning process

comprised (1): clinical dose prediction facilitated by deep-learning algorithms

(2); transformation of the forecasted dose into executable plans via voxel-centric

dose emulation (3); validation of the envisaged plan employing a precise

dosimeter in conjunction with a linear accelerator. Dose prediction paradigms

were established by engineering and refining two three-dimensional UNet

architectures (UNet and AttUNet). Input parameters encompassed computed

tomography scans from clinical plans and demarcations of the focal point

alongside organs at potential risk (OARs); the ensuing output manifested as a

3D dose matrix tailored for each case under scrutiny.

Results: Dose estimations rendered by both models mirrored the manual plans

and adhered to clinical stipulations. As projected by the dual models, the apex

and average doses for OARs did not deviate appreciably from those delineated in

the manual plan (P-value≥0.05). AttUNet showed promising results compared to

the foundational UNet. Predicted doses showcased a pronounced dose gradient,

with peak concentrations localized within the target vicinity. The executable

plans conformed to clinical dosimetric benchmarks and aligned with their

associated verification assessments (100% gamma approval rate at 3 mm/3%).
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Conclusion: This study demonstrates an automated planning technique for

fixed-field IMRT-based SRS for brain metastases. The envisaged plans met

clinical requirements, were reproducible across centers, and achievable in

deliveries. This represents progress toward automated paradigms for this

specific scenario.
KEYWORDS

brain metastases, stereotactic radiosurgery, dose prediction, deep learning,
radiation oncology
1 Introduction
Brain metastases rank as the most ubiquitous intracranial

tumors and significantly contribute to the elevated mortality and

disability rates associated with cancer. An estimated 25-40% of

malignant neoplasms culminate in brain metastases (1, 2). Such

metastatic occurrences predominantly manifest in patients

diagnosed with non-small cell lung, breast, and melanoma.

However, they can also arise from gastrointestinal tract

malignancies, liver, pancreas, uterus, ovary, thyroid, adrenal

gland, prostate, kidney, and bone (3). Present-day therapeutic

interventions primarily involve surgery and radiotherapy, with

Stereotactic radiosurgery (SRS) and whole brain radiation therapy

(WBRT) (4, 5) emerging as the leading radiotherapeutic techniques.

Due to its spatial dose distribution, exemplary conformal shape,

reduced treatment sessions, enhanced tumor control rate and

diminished adverse effects on healthy tissues compared to WBRT,

SRS often holds a therapeutic advantage. Consequently, SRS is

extensively employed in treating brain metastases (6, 7).

Current treatment planning strategies generally use the inverse

intensity-modulated radiotherapy (IMRT) method, in which a

clinical goal is first determined, followed by optimization of dose

distribution to meet this goal. Physicists generally need to adjust the

optimization parameters repeatedly to obtain a clinically plausible

plan due to factors such as dose limitations for organs at risk,

multileaf collimator physical constraints, etc. (8, 9). This planning

procedure is time-consuming, labor-intensive, and may result in

inconsistent treatment quality. Thus, automatic planning methods

have been proposed to improve the quality and efficiency of IMRT

planning. For example, the knowledge-based automatic planning

method (10–12) predicts the dose distribution for a new patient by

training on the dataset of accepted clinical plans. The predicted plan

provides a better starting point, thereby reducing the frequency of

trial and error. However, this method has certain limitations. On

one hand, the method extracts the hand-design features from the

patient’s anatomy, which separates the processes of feature

extraction and dose prediction, resulting in a suboptimal solution;

on the other hand, the predicted dose is usually a one-dimensional
02
dose-volume histogram (DVH) or zero-dimensional dose point

parameter, which cannot accurately reflect the three-dimensional

(3D) dose distribution.

In recent years, advanced deep learningmethods have made great

progress in the automatic segmentation of organs at risk and

multimodal image registration. This success has also inspired

research on end-to-end 3D dose prediction using deep learning. In

light of the excellent performance of ResNet (13) in image

classification, Chen (14) and Fan (15) proposed deep learning

methods based on ResNet to predict the 3D dose distribution of

IMRT plans for head and neck cancer. However, ResNet performs

resolution reduction operations on the images, resulting in low

resolution of the predicted doses. To overcome this problem,

Nguyen (16) introduced the 3D UNet (17) network, originally used

for image segmentation, to facilitate dose prediction during IMRT

planning of prostate cancer. UNet (18, 19) has a unique resolution-

preserving feature that improves the resolution of the predicted dose

distributions. UNet-based dose prediction has been predominantly

applied to non-stereotactic intensity modulated radiation therapy

(IMRT) plans (20–24), with limited exploration for stereotactic

radiation therapy. A few studies have utilized UNet for stereotactic

body radiation therapy (SBRT) dose prediction, including Kearney

et al. (25) for prostate cancer and Momin et al. (26) for pancreatic

cancer. Zhang et al. (27) developed a UNet model to predict Gamma

Knife radiosurgery dose distributions for intracranial tumors.

However, the application of deep learning for dose prediction in

the specific scenario of linear accelerator-based stereotactic

radiosurgery using fixed-field IMRT for brain metastases has not

been extensively studied. Moreover, some commercial vendors such

as Brainlab and Varian have partially implemented automated

planning products using deep learning, though these are not

tailored for the particular scenario addressed here.

Furthermore, while deep learning for dose prediction has been

widely reported, conversion and delivery verification of predicted

doses into clinically viable treatment plans remains an unmet

challenge. Dose distributions forecasted on a voxel basis may not

be achievable in practice due to beam and collimator limitations.

In summary, automated treatment planning for brain

metastasis radiosurgery is an active research area with multiple
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academic and commercial solutions in various stages of

development. Groups such as Zhang et al. have explored

techniques like deep learning for this application. Commercial

products from vendors including Brainlab and Varian perform

automated planning tasks for radiosurgery of brain metastases

using diverse approaches including deep-learning. However,

exploring novel approaches may offer opportunities to improve

on existing techniques. Here we describe a deep learning approach

to planning brain metastasis radiosurgery as delivered by a linac

radiosurgery platform employing a co-planar fixed-field IMRT

delivery technique.

We proposed an automated treatment planning pipeline that

integrates dose prediction, plan generation, and delivery

verification. Two 3D UNet architectures were implemented to

forecast dose distributions from CT and contour data. The

proposed AttUNet model additionally leverages an attention

mechanism to incorporate CT information. The predicted doses

were transformed into deliverable plans using a dose mimicking

approach (28). The resulting plans were validated on a 6MV linear

accelerator with orthogonal stacked multileaf collimation. Testing

on multi-institutional data affirmed the clinical applicability of the

proposed models.
2 Materials and methods

2.1 Patient data

A total of 70 patients with solitary brain metastases treated with

IMRT from April 2019 to July 2022 were recruited. Among them,

60 patients were selected from Radiotherapy Center 1, and the

remaining 10 were selected from Radiotherapy Center 2. The

training dataset consists of 36 patients randomly selected from

Center 1. The subsequent evaluation of the models was conducted

using the residual 34 patients from both centers.

The prescription dose for all patients was 30 Gy in 5 fractions.

The dosimetric considerations for SRS were summarized as follows.

The dose to 95% primary gross tumor volume (PGTV) reaches the

prescription dose. Any areas receiving greater than 105% of the

prescription dose, commonly referred to as high-dose spillage, are

generally confined to the PGTV. For difficult cases, normal tissue

volume receiving >105% of the prescription dose should be kept

under 15% of the PGTV. Intermediate-dose spillage is responsible

for most of the toxicity associated with SRS (29). The dose to any

point 2 cm away from the PGTV surface (D2cm) should be below a

limit. The ratio of 50% isodose volume (TV50%) to the PGTV

volume (expressed as R50% = TV50%/PGTV) ought to be

minimized to the greatest extent feasible.
2.2 Data processing

Using in-house Python scripts, the anatomical structure (RT-

Struct), clinical dose distribution, and CT images were extracted
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from DICOM files. The coordinate systems of the structure and

dose were aligned with the coordinate system of the CT image.

Integer values denoted PGTV and organs at risk (OARs). Dose

values were normalized to a range of -1 to 1. For enhanced image

contrast, the CT values outside the range [-200, 300] were clipped to

the interval edges. The resulting values were further normalized to

[-1, 1]. To reduce computational complexity and save graphics

memory, all data were cropped to 224 × 224 × 32 pixels with a pixel

size of 2.5 × 2.5 × 2.5 mm. In the preliminary experiment, we found

that the PGTV size greatly influences the model performance. As a

result, we categorized training and test patients into two groups

based on PGTV volume. Patients with a PGTV ≤ 20 cc were

grouped under small PGTV, while those with a PGTV > 20 cc

were labeled as large PGTV. In the training set, there were 36 cases

in total: 15 cases in the large target area and 21 in the small target

area. The test set comprised of 34 cases: 17 cases in the large target

area and 17 in the small target area. Models were then trained and

evaluated separately for each group.”
2.3 Neural network structure design
and training

We employed the deep learning framework PyTorch (Meta,

Menlo Park, CA) to build dose prediction models. The first one is

the 3D UNet which has been applied extensively to dose prediction

tasks. The UNet model takes anatomical structures as input and

outputs dose distribution. The second is our proposed 3D AttUNet,

which uses anatomical structures and CT images as inputs. A novel

attention mechanism was developed to facilitate the information

fusion between CT images and anatomical structures. Figure 1A

illustrates the two dose prediction models.

The widely used UNet network is designed to overcome the

problem of resolution reduction caused by the pooling operation of

convolutional neural networks. The network structure consists of

two parts, namely, the encoder and the decoder. The encoder’s

input layer is a 224×224×32 matrix, representing processed CT

images and structural contours. The output consists of the extracted

features of the anatomical structures. The decoder predicts a

224×224×32 dose matrix from the extracted features. As shown

in Figure 1B, the encoder encompasses four layers bridged by 2x2x2

max pooling. Each layer incorporates dual 3x3x3 convolutions

succeeded by batch normalization (BN) and rectified linear unit

(ReLU) activation. The filter count commences at 32, and doubles

post each pooling, peaking at 512 filters in the bottleneck layer. The

decoder, mirroring the encoder, progressively upsamples the

features to match the original input resolution. Skip connections

amalgamate encoder and decoder features. UNet’s distinctive

feature is its low-rank compact representation of anatomical

structures, enhancing model generalizability.

The proposed AttUNet is an improved version of the above

UNet. As illustrated in Figure 1D, two encoders extract features

from the CTs and structures separately. The CT and structure
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features are fused by a multi-head attention layer before being

passed to the decoder. The main purpose of attention is to allow an

element in the structure features to look at all elements in CT

features for clues that can help lead to a better encoding for this

element. As illustrated in Figure 1C, we use 8 attention heads with

64 dimensional features per head. The attention layer introduces

three matrices: Query, Key, and Value, to calculate the attention

scores. The scores measure the importance of the key term

compared to the query term related to a feature element. The key

and value matrices are computed from the CT features with the dot

product. The query matrix is obtained similarly from the structure

features. The score is calculated by taking the dot product of the

query with the key of the respective element we are scoring. The

attention block is further refined by adding a mechanism called

multi-head attention. It expands the model’s ability to focus on

different positions and gives the attention layer multiple

representation subspaces. The decoder, akin to UNet, comprises

four upsampling layers.

We initialized the neural networks’ parameters with Kaiming

initialization (30). The mean squared error between the inputs and

outputs was used as the loss function. The network parameters were

optimized on two NVIDIA 3090 GPUs using Adam optimizer with

a learning rate set at 0.0001 and a batch size of 2. Whenever the

validation loss plateaued, the learning rate was reduced by a factor

of 10. Model training spanned 1000 epochs, incorporating an early

stopping criterion if the validation loss saw no improvement over

100 consecutive epochs.
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2.4 Dosimetric comparison between
clinical and predicted doses

We employed specific dosimetric parameters (31) to juxtapose

the predicted doses with clinical doses.

For PGTV, the dosimetric parameters encompass the doses

covering 2%, 98%, and 95% of the target volume (D2%, D98%, and

D95%), mean dose (Dmean), homogeneity index (HI), conformity

index (CI), and intermediate-dose spillage (R50% and D2cm). The

dosimetric parameters for OARs include the maximum point dose

in brainstem volume (brainstem Dmax), the volume of brainstem

receiving 23 Gy (brainstem V23), optic nerve Dmax, optic chiasm

Dmax, lens Dmax, lens Dmean, eyeball Dmax, eyeball Dmean, and

hypophysis Dmax.

The CI is defined in equation (1), indicating the ratio of the

volume of the isodose shell that receives the prescription dose to the

PGTV volume (32). VPGTV is the PGTV volume. VRX is

the volume enclosed by the prescription isodose line. PGTVRX is

the volume of PGTV enclosed by the prescription isodose line. The

closer the value of the CI is to 1, the higher the conformity of the

target volume.

CI =
½PGTVRX �2
VPGTV � VRX

(1)

HI is defined in equation (2), indicating the difference between

the maximum dose, the minimum dose, and the average dose in the

target region (33). The dose distribution in the target region is
B

C D

A

FIGURE 1

(A) Workflow of the dose prediction models. (B) UNet network. (C) Multi-head attention mechanism. (D) UNet equipped with multi-head attention
(AttUNet). CT, computed tomography; ReLU, rectified linear unit.
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considered to be homogeneous when the HI = 0. The larger the HI

value, the poorer the homogeneity of dose distribution in the target

region.

HI =
D2% − D98%

Dmean
(2)

R50% is defined in equation (3), representing ratio of 50%

isodose volume V50%RX to the PGTV volume VPGTV. A larger

R50% indicates a poor dose drop.

R50% =
V50%RX

VPGTV
(3)

D2cm is defined as the maximum dose within 2 cm outside the

PGTV. A larger D2cm indicates a poor dose drop.

The dosimetric parameter difference between predicted and

clinical doses was patient-wisely calculated as their absolute

difference jdDj and normalized to the prescription dose (30 Gy).

The paired-sample t-test was used to assess the statistical

significance of the difference mentioned above. A P-value > 0.05

indicates that the predicted dosimetric parameters do not deviate

from the clinical ones, whereas a P-value< 0.05 implies the

predicted plan is significantly different from the clinical plan.

The dose-point difference between clinical and predicted doses was

computed point-wisely as d(r, r) = Dc(r) − Dp(r), where r represents

the point position. The mean (md(r,r)), standard deviation (sd(r,r)), and

mean absolute error (MAE) (MAE = 1
non

i ∣Dc(r) − Dp(r) ∣i) of d(r, r)
were calculated to assess the accuracy of the predicted dose.

We used the dice similarity coefficient (DSC) to assess the 3D

isodose accuracy, DSC(a, b) = 2ja∩bj
jaj+jbj , where arepresents the isodose

volume for the clinical plan and b is the isodose volume for the

predicted outcome. We also used the 3D gamma passing rate at 3

mm/3% to evaluate the prediction accuracy (34–36).

For SRS plans, the dose gradient and the hot spot’s positioning

are also of paramount importance. Hence, we extracted the dose

profile along the cross-section’s axis to assess both the dose gradient
Frontiers in Oncology 05
and the location of the hot spot.
2.5 Plan delivery and
dosimetric verification

The predicted dose distributions were imported into LinaTech

TiGRT TPS (LinaTech, Sunnyvale, CA) for dose mimicking. This

approach enabled the creation of a clinically viable plan within the

TPS system that mirrored the predicted dose without necessitating

any alterations to the commercial software. Initially, coplanar beams

were auto-configured based on institutional guidelines, eliminating

the need for user intervention. Specifically, the inaugural beam

direction is established by linking the center of the entire brain to

the PTV’s center. Subsequently, four additional beams are introduced

clockwise at 20-degree intervals from the primary beam. Another

quartet of beams is added counter-clockwise, culminating in nine

uniformly spaced beams. The optimizer then progressively refines the

fluence intensity maps to curtail the voxel-wise disparity between the

actualized and anticipated doses. The refined fluence maps are then

transitioned into deliverable MLC sequences using the TPS’s inherent

beam sequencing algorithms. A novel dual-layer orthogonal stacked

MLC was used for the MLC sequencing, which collimates the 6 MV

flattening-filter-free beam from a VenusX LINAC, as depicted in

Supplementary Figure 1. The generated plans were then compared

with clinical plans using the dosimetric parameters described in

section 2.4. Figure 2 provides the overview of the dose mimicking.

Based on our current hardware condition, the delivered doses

were verified using the MatriXX Evolution 2D ionization chamber

array and OmniPro IMRT (IBA Dosimetry, Schwarzenbruck,

Germany) according to the routine for dose quality control. All

the fields were set to gantry angle 0 and then exposed to the

MatriXX to obtain the dose maps. The measured dose maps were

then compared with the planned dose maps using the 2D gamma

passing rate at 3 mm/3%.
FIGURE 2

Pipeline of the dose mimicking. MLC, multi-leaf collimator; MC, Monte Carlo.
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3 Results

3.1 Dosimetry index statistics and
DVH comparison

Figure 3A shows the DVHs of the predicted and clinical plans

for two test patients from two clinical centers. For both models, the

DVHs of the predicted doses were close to the DVHs of the clinical

plans. And the PGTV D95% of the predicted doses reached the

prescription dose.
Frontiers in Oncology 06
Figure 3B shows the dose distributions of the clinical plan, the

predicted plan, and their absolute difference for the two test

patients. We observed two models produced similar dose

distributions and achieved a slightly better intermediate-dose

spillage than the clinical plans.

Figure 3C shows that both models controlled the hot spot

within the target region. The intersecting point of the cross lines

indicates the maximum dose. We also plot the normalized dose

profile along the vertical cross line in the bottom right subfigure. We

found the high-dose spillage was confined within the PGTV area.
A

B

C

FIGURE 3

(A) Comparison of the DVHs of two test cases from two clinical centers (solid: clinical dose, dashed-dotted: prediction dose of UNet, dotted:
prediction dose of AttUNet). (B) Illustrated dose distribution and the corresponding dose difference for the two patients
(DDoseDifference = DPr edictedDose − DClinicalDose). (C) Dose heatmaps of the two patients (top left: clinical dose, top right: UNet dose, bottom left: AttUNet
dose, bottom right: normalized dose profile along the Y-axis of the cross lines). DVH, dose-volume histogram; PGTV, primary gross tumor volume.
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3.2 Dosimetric parameters of the
predicted dose

Table 1-1 presents the dosimetric values for the small PGTV

group across the two models, while Table 1-2 delineates the

dosimetric values for the large PGTV group. It was observed that

the doses produced by both UNet and AttUNet closely matched the

clinical benchmarks in terms of D98%, D95%, D50%, D2%, Dmean,

HI, and CI. With UNet, the statistical analysis indicated that six out

of the seven dosimetric parameters in the small PGTV group

significantly deviated from the clinical dose. In contrast, only one

parameter in the large PGTV group demonstrated a statistically

significant variation from the clinical dose. Conversely, the

proposed AttUNet yielded statistically indistinguishable dose

distributions across all seven parameters in the small PGTV

group. Notably, even though the predicted D95% value by both

models in the small PGTV group was statistically different from the

clinical dose, the actual and predicted dose values were remarkably

similar in each instance, with only negligible differences.

Additionally, both UNet and AttUNet exhibited a steeper dose

fall-off surrounding the PGTV in the large PGTV group compared
Frontiers in Oncology 07
to the clinical plan, as evidenced by the D2cm and R50% values.

AttUNet manifested a more consistent dose gradient than UNet, as

highlighted by the P-value.

Table 2 summarizes the dosimetric parameters of OARs for the

two models. For 11 out of 14 patients, the difference in dosimetric

parameters between predicted and clinical doses were not

statistically significant. For the three deviating parameters (left,

right eye Dmean, and right eye Dmax), UNet achieved lower

toxicity AttUNet, although the dose distribution produced by

AttUNet did not exceed the dose limitation of the eye.

In summary, Tables 1-1, 1-2, and 2 suggest that the two models

produced clinically acceptable dose predictions, and AttUNet

outperformed UNet slightly.
3.3 Comparison of the two
prediction models

Dose difference between clinical and predicted distributions

was computed point-wisely. Figure 4A plots the median, mean,

and standard deviation of the dose difference for 12 test patients.
TABLE 1–1 Target dosimetric parameters of small PGTV group.

Dosimetric index Clinical UNet ∣ δDI ∣UNet(%) P-value UNet AttUNet ∣ δDI ∣AttUNet(%) P-valueAttUNet

PTV

D98%(Gy) 27.8 ± 0.9 27.4 ± 2.2 2.6 ± 6.2 0.31 28.0 ± 0.7 1.1 ± 1.3 0.19

D95%(Gy) 28.7 ± 0.7 28.7 ± 0.7 0.2 ± 0.2 0.00 28.7 ± 0.7 0.2 ± 0.1 0.00

D50%(Gy) 32.1 ± 0.7 33.7 ± 1.0 5.4 ± 3.5 0.00 32.4 ± 0.9 3.0 ± 2.3 0.26

D2%(Gy) 34.3 ± 1.4 36.7 ± 1.5 8.3 ± 6.3 0.00 34.6 ± 0.8 4.9 ± 4.0 0.52

Dmean(Gy) 31.9 ± 0.7 33.2 ± 0.9 4.7 ± 3.2 0.00 32.1 ± 0.8 2.7 ± 2.1 0.33

HI 0.20 ± 0.06 0.28 ± 0.09 0.00 0.20 ± 0.02 0.83

CI 0.79 ± 0.04 0.84 ± 0.04 0.00 0.81 ± 0.08 0.38

Body D2cm(Gy) 13.2 ± 2.5 15.2 ± 3.5 18.6 ± 7.0 0.01 15.3 ± 2.4 18.5 ± 8.4 0.01

R50 2.7 ± 0.3 2.4 ± 0.3 0.02 2.9 ± 0.4 0.02

The values were calculated over 34 patients and reported in Mean (± SD) format. Bold fonts indicate statistical significance.
TABLE 1–2 Target dosimetric parameters of large PGTV group.

Dosimetric index Clinical UNet ∣ δDI ∣UNet(%) P-value UNet AttUNet ∣ δDI ∣AttUNet(%) P-valueAttUNet

PTV

D98%(Gy) 28.3 ± 1.2 28.0 ± 1.5 3.7 ± 5.7 0.54 27.5 ± 1.2 4.8 ± 4.6 0.14

D95%(Gy) 29.4 ± 0.4 29.4 ± 0.4 0.2 ± 0.2 0.05 29.4 ± 0.6 0.5 ± 0.9 0.99

D50%(Gy) 32.9 ± 1.4 34.2 ± 2.9 7.7 ± 10.0 0.19 34.7 ± 4.1 9.4 ± 13.5 0.15

D2%(Gy) 35.0 ± 2.4 35.9 ± 3.2 11.1 ± 10.9 0.50 36.3 ± 4.2 12.7 ± 13.2 0.38

Dmean(Gy) 32.6 ± 1.3 33.5 ± 2.6 6.9 ± 8.7 0.32 33.9 ± 3.5 8.3 ± 11.4 0.22

HI 0.20 ± 0.09 0.22 ± 0.10 0.60 0.24 ± 0.10 0.33

CI 0.85 ± 0.04 0.87 ± 0.04 0.02 0.86 ± 0.05 0.28

Body D2cm(Gy) 17.4 ± 5.6 12.9 ± 2.9 36.6 ± 16.4 0.00 13.2 ± 3.6 36.1 ± 16.1 0.00

R50 2.2 ± 0.2 1.8 ± 0.3 0.00 1.8 ± 0.4 0.00

The values were calculated over 34 patients and reported in Mean ± SD format. Bold fonts indicate statistical significance.
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The difference was rescaled relative to the prescription dose. The

two models showed similar predictive ability among the test

patients. For example, they both predicted large dose differences

for patient 7 and 22. And they both achieved small dose

differences for patient 1, 25, 28, and 34. Overall, AttUNet

achieved a smaller average MAE (4.3%) for all patients than

UNet (4.4%). The maximum MAE was 13.8% for UNet and

10.6% for AttUNet. These findings indicate that AttUNet

performed more closely in line with the desired outcomes than

UNet when assessing point-wise dose difference.

Figure 4B compares the dosimetric parameter difference of UNet

and AttUNet. For 16 out of 20 parameters, AttUNet surpassed

the UNet.

Figure 4C compares the DSC of clinical and predicted doses for

12 test patients. The DSC of 1 indicates an ideal match of 3D

isodose surface distribution. The predicted doses were close to the

clinical doses in the high-dose area, while the model performance in

the low-dose area was relatively poor.
Frontiers in Oncology 08
While AttUNet generally outperformed UNet, it is harder to

train, as illustrated in Figure 5, where training loss (weight MSE)

was plotted as the function of the training epoch. We found the

training dynamic of UNet is quite stable, while AttUNet fluctuated

over the training process.

3.4 Dose delivery verification

Two deliverable plans were generated from the predicted doses

following the dose-mimicking pipeline shown in Figure 2. Dose

mimicking is achieved by optimizing fluence maps to replicate the

predicted dose distribution closely. Typically, this optimization

spans between 1 and 5 minutes. Following this, the fluence maps

are seamlessly transformed into MLC sequences, upon which a

Monte Carlo dose algorithm calculates the ultimate delivery dose.

This phase necessitates a duration of roughly 2 to 10 minutes.

Their DVHs, gamma passing rates, and dosimetric parameters

are shown in Figures 6A, 6B, and Table 3, respectively.
TABLE 2 OARs dosimetric parameters.

Dosimetric
Parameters

Clinical UNet
∣ δDI ∣UNet
(%)

P-value UNet AttUNet
∣ δDI ∣AttUNet
(%)

P-value
AttUNet

Brain Stem

Dmax (Gy) 9.1 ± 6.9
9.3 ±
9.1

9.6 ± 7.6 0.77 10.2 ± 9.3 10.6 ± 8.6 0.20

V23 (%) 0.1 ± 0.2
0.1 ±
0.4

0.2 ± 0.8 0.14 0.1 ± 0.4 0.2 ± 0.7 0.15

Optic Nerve L Dmax (Gy) 2.3 ± 3.7
2.0 ±
3.5

2.4 ± 3.4 0.31 2.5 ± 3.9 3.1 ± 3.2 0.41

Optic Nerve
R

Dmax (Gy) 2.1 ± 2.4
1.5 ±
0.9

3.9 ± 4.8 0.11 2.1 ± 1.1 4.2 ± 4.4 0.92

Optic Chiasm Dmax (Gy) 2.8 ± 2.3
2.1 ±
1.6

4.9 ± 4.6 0.17 2.9 ± 1.7 5.3 ± 5.1 0.80

Len L

Dmax (Gy) 0.4 ± 0.3
0.9 ±
0.4

1.9 ± 1.4 0.20 1.2 ± 0.2 2.6 ± 4.3 0.09

Dmean (Gy) 0.3 ± 0.2
0.8 ±
0.4

1.8 ± 1.1 0.19 1.1 ± 0.2 2.6 ± 0.3 0.08

Len R

Dmax (Gy) 0.6 ± 0.6
1.0 ±
0.5

1.5 ± 1.3 0.19 1.3 ± 0.4 2.4 ± 0.5 0.09

Dmean (Gy) 0.4 ± 0.3
0.9 ±
0.5

1.9 ± 1.3 0.16 1.2 ± 0.4 2.9 ± 0.4 0.09

Eye L

Dmax (Gy) 1.5 ± 1.6
1.2 ±
0.8

2.1 ± 2.2 0.12 1.8 ± 1.0 2.7 ± 1.8 0.14

Dmean (Gy) 0.7 ± 0.7
0.8 ±
0.4

1.2 ± 0.9 0.13 1.4 ± 0.6 2.5 ± 1.5 0.00

Eye R

Dmax (Gy) 1.8 ± 1.4
1.3 ±
0.7

3.0 ± 2.3 0.04 1.9 ± 1.0 2.7 ± 2.2 0.54

Dmean (Gy) 0.8 ± 0.6
0.9 ±
0.5

1.3 ± 0.8 0.22 1.5 ± 0.7 2.4 ± 1.6 0.00

Hypophysis Dmax (Gy) 2.1 ± 2.0
1.5 ±
0.9

3.9 ± 3.0 0.11 2.3 ± 1.0 4.8 ± 3.4 0.67
fr
PGTV, primary gross tumor volume; HI, homogeneity index; CI, conformity index; D2%, D98%, and D95%, minimum dose to 2%; 98%; and 95% of the target volume; respectively; D2cm,
maximum dose within 2 cm outside the PGTV; DI, dose-related index; Dmean, mean point dose in the target volume; Dmax, maximum point dose in the target volume; OAR, organ at risk.
The values were calculated over 34 patients and reported in Mean ( ± SD) format. Bold fonts indicate statistical significance.
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Figure 6A compares the DVHs of the delivered plans and

clinical plans. Table 2 reports the PGTV and OAR dosimetric

parameters of the delivered plans and clinical plans. The results

suggest that the delivered plans met the clinical criteria.

Figure 6B shows the gamma pass rate of the two delivered plans

at the 3 mm/3% criterion. Both plans achieved a 100% passing rate,

indicating successful delivery.
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3.5 Automatic planned quality and
efficiency assessment

The 20 auto-generated plans underwent a thorough reevaluation

by a physician boasting a decade of planning expertise, confirming

that all were clinically acceptable. Furthermore, when the automatic

plans were juxtaposed with their corresponding manual versions for
A

B

C

FIGURE 4

(A) point-wise dose difference between predicted and clinical doses for UNet (left) and AttUNet (right). Mean, median, and standard deviation are
plotted in blue, red, and box, respectively. (B) patient-wise dosimetric difference of UNet (green) and AttUNet (purple). (C) dice score of the two
models as a function of relative dose for 12 test patients. PGTV, primary gross tumor volume; OARs, organs at risk.
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the 20 cases and presented to the physician for assessment, they were

tasked with selecting the superior plan. Impressively, 14 of the auto-

generated plans were the favored choice of the radiologist. Given that

they fulfill clinical prerequisites, the automatic plans exhibit swifter

fall-down in low doses and superior low-dose protection compared to

their manual counterparts. Figure 7 provides a comprehensive visual

representation of the clinical pass rate and the physician’s

selection criteria.

Supplementary Table 1 enumerates the optimization durations

for both automatic and manual plans. Specifically, for solitary brain

metastase plans, the mean and standard deviation of optimization
Frontiers in Oncology 10
time are tabulated as ([481.2 ± 55/1212 ± 237.7] s, [Automatic/

manual]). In this study, the fluence map’s automated generation

utilized a deposition matrix, a method proposed by M.C. The

strategy ensures target coverage and observes organ-at-risk

constraints. It also considers the dose gradient beyond the target

region within the stereotactic radiotherapy plans’ context. This

requires the harnessing of the patient’s entire CT voxel dataset.

Consequently, this method processes a more substantial voxel

dataset than the automatic plans designed for conventional

fractionated doses, which might account for a more extended

duration. However, creating automated plans that adhere to
FIGURE 5

Training loss as a function of the training epoch for the two models. MSE, mean square error.
A

B

FIGURE 6

(A) Comparison of DVHs of two test cases from two clinical centers (solid line indicates the clinical dose; dotted line indicates the delivery dose).
(B) Gamma pass rate (%) of the two delivered plans under the 3 mm/3% criterion. DVH, dose-volume histogram.
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clinical standards undeniably offers a time-saving advantage over

manual plan formulations.
4 Discussion

Two deep-learning dose prediction models based on 3D UNet

have been developed and evaluated for brain metastases SRS. The

comparison of the predicted and clinical doses shows that the

average MAE was 4.4% and 4.3% for UNet and AttUNet,

respectively. The dice similarity coefficient of isodose volume

above 65% of the prescribed dose exceeded 85%. The predicted

doses had a sharp dose gradient, and hot spots fell within the target

region. The dose verification results show that the deliverable plans

achieved a 100% gamma pass rate at 3 mm/3% and met the dose

evaluation criteria. We also observed some unfavorable issues. For

instance, in the low-dose area (below 65% of the prescribed dose),

the model prediction results varied considerably from the clinical

plan. For some patients, the DSC of isodose was less than 85%,

suggesting the models’ heightened focus on PGTV. Training loss
Frontiers in Oncology 11
metrics highlighted that AttUNet experienced more fluctuating

training dynamics compared to UNet’s steady convergence. This

inconsistency could be attributed to several factors:

The integrated attention mechanism amplifies the model’s

complexity, complicating optimization.

AttUNet grapples with assimilating information from two

diverse data sources (CTs and structures), whereas UNet

exclusively processes structures. Streamlining this fusion

is challenging.

The restricted dataset size might be inadequate for effectively

training the augmented parameters in AttUNet. Potential solutions

encompass employing advanced optimization strategies, enhancing

data augmentation, modifying architectural components, and

rigorously monitoring validation performance. Further research is

paramount to facilitate the robust and efficient training of intricate

multimodal structures like AttUNet for dose prediction endeavors.

While deep learning has been rigorously explored for dose

prediction in radiotherapy planning, making direct comparisons

with extant models remains challenging due to differences in

treatment modalities and patient datasets used across studies.
TABLE 3 Dosemetric parameters of the delivered plans.

Dosimetric Parameters
Patient 1 Patient 2

Clinical Delivery Clinical Delivery

PGTV

D98% (Gy) 27.6 27.3 28.4 28.5

D95% (Gy) 29.4 29.5 29.2 29.2

D50% (Gy) 35.9 34.1 32.1 33.1

D2% (Gy) 39.8 36.9 33.8 34.6

Dmean (Gy) 35.3 33.7 31.8 32.6

HI 0.34 0.28 0.17 0.18

CI 0.78 0.78 0.86 0.88

Body
D2cm (Gy) 15.4 16.6 14.1 13.2

R50 3.5 3.5 2.3 2.4

Brain Stem
Dmax (Gy) 10.0 11.2 13.3 19.5

V23 (%) 0.0 0.0 0.0 0.0

Optic Nerve L Dmax (Gy) 3.4 3.4 0.3 1.1

Optic Nerve R Dmax (Gy) 10.2 7.0 0.4 1.2

Optic Chiasm Dmax (Gy) 7.1 6.9 0.5 1.2

Len L
Dmax (Gy) 0.7 0.6 0.0 0.0

Dmean (Gy) 0.6 0.4 0.0 0.0

Len R
Dmax (Gy) 1.4 2.9 0.0 0.0

Dmean (Gy) 0.8 2.6 0.0 0.0

Eye L
Dmax (Gy) 3.1 2.0 0.2 1.1

Dmean (Gy) 1.8 0.9 0.2 1.0

Eye R
Dmax (Gy) 4.8 4.3 0.3 1.1

Dmean (Gy) 2.7 2.8 0.2 1.0

Hypophysis Dmax(Gy) 6.6 7.2 0.4 1.2
fr
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Campbell (37) noted an MAE discrepancy for SBRT for pancreatic

cancer not surpassing 10%, while our AttUNet model registered a

peak MAE of 10.6%. Liu (38) disclosed a 3D gamma pass rate of 81.5-

93.4% for helical tomotherapy for nasopharyngeal carcinoma utilizing

a U-ResNet-D model. Our study’s corresponding figures were 87.9%

for UNet and 85.5% for AttUNet at 3 mm/3% for brain metastases.

A prevalent limitation in contemporary dose prediction

techniques is the omission of deliverable plan verification. The

predicted dose distributions are not necessarily clinically

deliverable, even though they are derived from previously

deliverable treatment plans. The current work, therefore,

completed the entire automated planning pipeline in a closed-

loop framework. Furthermore, the proposed AttUNet

incorporates the multi-head attention mechanism to combine

features from CT images and anatomical structures. This

integration aims to discern both commonalities and differences,

potentially enhancing the model’s efficiency. Our experiments,

based on this specific dataset, indicated that AttUNet ’s

performance was more in line with the desired outcomes than

UNet across various criteria. However, it’s important to note that

these findings might not be generalizable to other datasets given the

limited scope of our testing. Tests across two centers validated the

model’s predictive prowess in a multi-center setting. Utilizing the

forecasted dose as an initial reference for planning assures

consistent plan quality, independent of planner, TPS, and LINAC

variables. The automated planning method proposed herein

operates autonomously, devoid of manual intervention,

culminating in 3-17 minutes. In contrast, traditional planning

durations for multi-met SRS cases using HyperArc have been

documented at 77 minutes (39). Thus, our novel methodology

significantly curtails planning durations by obviating labor-

intensive manual iterations.

While the models we have developed exhibit encouraging

outcomes for single-target brain metastases SRS, several

constraints warrant attention. Firstly, these models have been
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tailored and assessed exclusively for isolated brain metastases, a

scenario markedly simpler than multi-lesion occurrences. Adapting

these models to cater to multiple lesions may necessitate alterations

to accommodate the interplay among adjacent abnormalities. In our

investigations, mitigating the toxicities in surrounding healthy

tissue proved straightforward, mainly because the organs at risk

(OARs) were distinctly separated from the targeted region.

Predicting doses for instances where OARs are juxtaposed or

even encroach upon the targets could intensify the challenge.

Thirdly, our models have been calibrated for a singular

prescription dose tier, leaving their adaptability to fluctuating

prescription doses uncharted. Fourthly, while our models forecast

a solitary dose distribution, clinical protocols might see multiple

potential dose distributions for a single patient. Variabilities might

stem from institutional preferences, patient-centric considerations,

or LINAC specifications. Peering into the future, enhancing the

models might involve training on diversified datasets encompassing

multiple metastases and an array of prescriptions. Introducing

sophisticated network structures could amplify dose conformality

and organ conservation. Estimating uncertainties could pinpoint

scenarios where model predictions might waver. A culmination of

biological modeling with radiomic data might pivot predictions

towards clinical outcomes, transcending mere physical dose

distributions. In essence, this research paves the way for

automation in planning, yet a concerted effort is essential to

navigate intricate clinical landscapes.

Our study developed and evaluated an automatic brain-

metastases-SRS planning pipeline using deep learning for dose

prediction. While automated planning techniques have been

explored for Gamma Knife radiosurgery, this work represents a

novel application of deep learning to predict dose distributions

specifically for stereotactic radiosurgery of brain metastases

delivered by a linear accelerator platform with multi-leaf

collimator beam modulation, as well as verification of the

deliverable treatment plans. Both models yielded clinically
FIGURE 7

Plan assessment conducted by a physician with 10 years of experience.
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acceptable predicted doses in our study. The prediction outcomes

from AttUNet were more consistent with the original clinical plan

compared to those from UNet. The predicted dose distribution of

the two models fulfilled the clinical prerequisites in terms of target

region dose, dose drop, and protection of organs at risk. The

deliverable plans agreed with the predicted doses regarding the

gamma passing rate and achieved clinical criteria. When applied to

other treatment sites or modalities, the proposed models may

require adaptation. The 3D dose projections proffered by our

models stand to refine radiotherapy planning blueprints, ensuring

consistent plan quality and underscoring the potential for a fully

automated radiotherapy treatment planning paradigm.
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