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Interferon gamma immunoPET
imaging to evaluate response to
immune checkpoint inhibitors

Justin B. Hackett, Nicholas Ramos, Stephen Barr,
Madeline Bross, Nerissa T. Viola and Heather M. Gibson*

Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine,
Detroit, MI, United States
Introduction: We previously developed a 89Zr-labeled antibody-based immuno-

positron emission tomography (immunoPET) tracer targeting interferon gamma

(IFNg), a cytokine produced predominantly by activated T and natural killer (NK) cells

during pathogen clearance, anti-tumor immunity, and various inflammatory and

autoimmune conditions. The current study investigated [89Zr]Zr-DFO-anti-IFNg PET
as a method to monitor response to immune checkpoint inhibitors (ICIs).

Methods: BALB/c mice bearing CT26 colorectal tumors were treated with

combined ICI (anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and

anti-programmed death 1 (PD-1)). The [89Zr]Zr-DFO-anti-IFNg PET tracer,

generated with antibody clone AN18, was administered on the day of the

second ICI treatment, with PET imaging 72 hours later. Tumor mRNA was

analyzed by quantitative reverse-transcribed PCR (qRT-PCR).

Results: We detected significantly higher intratumoral localization of [89Zr]Zr-

DFO-anti-IFNg in ICI-treatedmice compared to untreated controls, while uptake

of an isotype control tracer remained similar between treated and untreated

mice. Interestingly, [89Zr]Zr-DFO-anti-IFNg uptake was also elevated relative to

the isotype control in untreated mice, suggesting that the IFNg-specific tracer

might be able to detect underlying immune activity in situ in this immunogenic

model. In an efficacy experiment, a significant inverse correlation between tracer

uptake and tumor burden was also observed. Because antibodies to cytokines

often exhibit neutralizing effects which might alter cellular communication

within the tumor microenvironment, we also evaluated the impact of AN18 on

downstream IFNg signaling and ICI outcomes. Tumor transcript analysis using

interferon regulatory factor 1 (IRF1) expression as a readout of IFNg signaling

suggested there may be a marginal disruption of this pathway. However,

compared to a 250 µg dose known to neutralize IFNg, which diminished ICI

efficacy, a tracer-equivalent 50 µg dose did not reduce ICI response rates.

Discussion: These results support the use of IFNg PET as a method to monitor

immune activity in situ after ICI, which may also extend to additional T cell-

activating immunotherapies.

KEYWORDS
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Introduction

Modern cancer immunotherapy approaches have improved

clinical outcomes for a subset of malignancies, and immune

checkpoint inhibitors (ICI) are among the most promising of

these modalities. Immune checkpoints are ligand:receptor

interactions that regulate the activity of inflammatory cells. These

checkpoints are critical for tempering immune activity; they play a

major role in slowing the immune response to prevent excessive

tissue damage and/or autoimmunity after a trigger, such as an

infection (1–3). In cancer, immune checkpoints are coopted by

malignant cells to escape immune-mediated attack. FDA-approved

ICI therapies have primarily targeted two inhibitory signaling axes:

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and

programmed death 1 (PD-1) with its primary ligand PD-L1. Both

CTLA-4 and PD-1/PD-L1 signaling down-regulate the

inflammatory effector functions of multiple immune cell subtypes,

including CD8+ T-cells [reviewed in (4)]. Recently, an antibody

targeting lymphocyte-activation gene 3 (LAG-3) received Food and

Drug Administration (FDA) approval (5) and several additional

targets are undergoing clinical testing (6).

Combination of ICI therapies has proven beneficial for

advanced melanoma, lung, and renal carcinomas (5, 7–13).

Melanoma is recognized as the most responsive cancer to this

therapy. Despite its notable clinical success, durable response to

combined ICI in metastatic melanoma is less than 50%, and it

remains unclear what factors differentiate which patients will

benefit (5, 11–13). PD-L1 expression is an imperfect biomarker

that neither precludes nor guarantees response to PD-1/PD-L1-

directed therapies (reviewed in (14). Tumor mutational burden is

somewhat reliable as a biomarker, with the most highly mutated

tumors trending toward improved ICI response rates, but the

correlation is not robust (15, 16). Additionally, collecting and

analyzing patient samples to evaluate tumor mutational burden

can be invasive, expensive, and is not always feasible.

The development of methods to measure immune activity

during ongoing therapy also remains a significant challenge.

Peripheral immune analyses are currently non-standardized,

typically require either knowledge of the antigen(s) of interest or

access to adequate tumor tissue to provide said antigen(s), and the

results of these assays may not accurately reflect the immune status

within the tumor microenvironment (TME). Traditional imaging

technologies, such as positron emission tomography (PET) and

computed tomography (CT), are utilized to measure tumor volume,

but the tumor volume alone may be deceiving if the

immunotherapy is driving an influx of beneficial tumor-reactive

immune cells. This phenomenon, known as pseudoprogression,

mimics tumor growth, but is typically followed by at least a partial

response to therapy (17). Given the need for better monitoring

options, there has been considerable activity in the development of

more relevant immune imaging technologies. The most common

PET imaging modality for oncology uses an 18F-radiolabeled

glucose analog (FDG), which detects metabolically active tumors.
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Since active immune cells will also take up FDG, it is difficult to

distinguish tumor versus immune cell FDG uptake after

immunotherapy (18). A small study evaluated whether FDG PET

imaging could provide an early prediction of therapeutic response

12-18 weeks after initiation of ICI (19). The authors observed a

“flare” defined as >100% standardized uptake value (SUV) increase

from baseline without a corresponding increase in tumor volume in

2/7 patients with subsequent complete tumor regression, but an

absence of this flare was not predictive of outcomes. More recently,

efforts have turned to the development of novel imaging agents

designed to specifically measure immune cell presence and/or

activity within the tumor, including tracers targeting CD3, CD4,

CD8, IL-12, IL-2R, granzyme B, inducible co-stimulator (ICOS),

and the immunoPET tracer we have developed against interferon

gamma (IFNg) (20–26).
Initially discovered as an anti-viral cytokine, IFNg also plays a

critical role in the interaction between cancer and the immune system

(27, 28). IFNg is secreted primarily by innate NK and NKT cells, and

adaptive Th1-skewed CD4 and cytotoxic CD8 T cells, and IFNg is a
necessary component of an efficacious anti-tumor immune response

(29). The clinical importance of IFNg as an inflammatory mediator is

evident; an anti-IFNg antibody (Emapalumab) has been FDA

approved for treating hemophagocytic lymphohistiocytosis, which

is driven by IFNg signaling (30). We have developed an immunoPET

tracer utilizing a radiolabeled antibody to IFNg to monitor response

to cancer immunotherapy, and we previously demonstrated that anti-

IFNg PET can identify HER2 cancer vaccine-induced intratumoral

immune activation (26). In the current study, we further validated the

utility of our IFNg immunoPET tracer to detect anti-tumor immunity

in situ using a pre-clinical model that is responsive to ICI. We then

evaluated the downstream effect of the tracer antibody on IFNg
signaling by measuring expression of interferon regulatory factor 1

(IRF1) (31). Finally, we tested whether the tracer dose of anti-IFNg
antibody inhibits ICI efficacy.
Materials and methods

Mice and cell lines

BALB/c-syngeneic CT26 colorectal cancer cells, a tumor that is

characterized as having a high mutational burden without

microsatellite instability (32), were directly purchased from ATCC

(CRL-2638) and maintained for fewer than 5 passages. All in vivo

experiments were performed on 6-8 week old BALB/c mice (The

Jackson Laboratory, strain #:000651) after a minimum of 48 hours

acclimatization, and all procedures were performed in accordance

with guidelines and regulations set by the Wayne State University

Institutional Animal Care and Use Committee. Inoculations were

given subcutaneously on the right inguinal quadrant with 2×105

CT26 cells suspended in sterile RPMI (Gibco, 72400047). Tumor

growth was monitored by caliper measurement 3 times per week and

tumor volume was calculated as (W×W×L)/2.
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Treatment with ICI

Mice were randomly distributed into treated and untreated

groups. ICI was given by intraperitoneal injection with 200 µg anti

PD-1 (clone RMP1-14, P362, Leinco Technologies) and 100 µg anti

CTLA-4 (clone 9D9, C2855, Leinco Technologies) in 200 µL

sterile saline.
Radiochemistry and PET imaging

Radiochemistry of anti-mouse-IFNg (clone AN18, Thermo

Fisher Scientific) and IgG1 isotype control anti-horseradish

peroxidase (clone HRPN, BE0088, BioXCell) was performed as

described previously (22, 26). All antibodies were conjugated to p-

SCN-Bn-Desferrioxamine (DFO) with a 1:5 mole ratio of mAb :

DFO in saline at pH ~9 for 1hr at 37°C. Unbound DFO was

removed via spin column centrifugation (MWCO: 30 kDa, GE

Vivaspin 500). 89Zr (3D Imaging) was incubated with the mAb-

DFO conjugates at pH ~ 7.2-7.4 at room temperature for 1hr.

Unbound 89Zr was removed via spin column centrifugation

(MWCO: 30 kDa, GE Vivaspin 500) using saline as eluent

buffer. [89Zr]Zr-DFO-anti-IFNg and [89Zr]Zr-DFO-IgG were

each labeled at a specific activity of ~5 mCi/mg. Radiochemical

yields of both constructs were >95% as determined via radio-

instant thin layer chromatography (iTLC, Eckert & Ziegler).

Tumor-bearing animals used for imaging were injected i.v. with

radiolabeled antibodies (189 ± 31 µCi) in ~150 µL sterile saline.

PET images were acquired 72 hrs post-injection on a Bruker

Albira SI microPET/CT system. Images were decay corrected and

analyzed in PMOD version 4.304. Volume of Interest (VOI)

measurements within tumors were used to determine the uptake

of the radiotracer, which is expressed as the maximum injected

dose per mL (%ID/mL).
Quantitative reverse transcribed PCR

Tumor tissue collected from mice was snap-frozen in liquid

nitrogen and allowed to decay for >10 half-lives stored at -80°C.

Tissue was then homogenized with a Tissue Tearor in TRIzol and

RNA was extracted as described by the manufacturer (Thermo

Fisher Scientific). cDNA was synthesized using a ProtoScript First

Strand cDNA synthesis kit (New England Biolabs) using PolyDT

primers. qRT-PCR was conducted with TaqMan probes (Thermo

Fisher Scientific) for glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) (Mm99999915_g1), IFNg (Mm01168134_m1), and IRF1

(Mm01288580_m1). 10 ng of cDNA/well was used and mRNA

quantity was calculated as 2-DCT relative to GAPDH. Transcripts

that failed to amplify in all technical replicates were set to a CT

value of 55. Transcripts in which only 1/3 of technical replicates

amplified were removed.
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Data and statistical analysis

All imaging analysis was performed in PMOD (version 4.304).

Statistical analysis utilized R (version 4.1.2) or GraphPad Prism

(version 9.5.1). For all two-way ANOVA comparisons, a test of

equal variance among groups was performed. If groups had unequal

variance, a general least squares model was used to compare

variable effects and to test whether variables interacted. A p-value

< 0.05 is considered statistically significant. Statistical comparisons

between groups were performed as stated in the figure legends.
Results

[89Zr]Zr-DFO-anti-IFNg PET tracer shows
specific uptake in tumors treated with ICI

To determine if an anti-IFNg immunoPET tracer could identify

intratumoral immune activity after ICI, we utilized BALB/c mice

bearing subcutaneous CT26 colorectal cancer as a responsive model

for combined ICI (anti-CTLA4 and anti-PD-1) therapy. Mice were

inoculated with CT26 on day 0 and treated on days 5 and 8 with

combined ICI. On day 8, mice were also given ~200 µCi [89Zr]Zr-

DFO-anti-IFNg or an IgG isotype control ([89Zr]Zr-DFO-anti-

horseradish peroxidase) tracer, with PET imaging 72 hrs post-

injection (Figure 1A) to allow for unbound tracer clearance and

optimal imaging per our previous experience (26). At the time of

tracer administration there was no significant difference in tumor

volume between any of the experimental groups (Figure 1B, left

panel); however, at the time of imaging on day 11 post-inoculation,

tumor volumes were significantly lower in mice receiving ICI

treatment (p<0.0001 for IFNg, p=0.0018 for IgG, Figure 1B, right

panel). Importantly, within the treatment groups there was no

difference in tumor volume attributable to the IFNg versus the

isotype control tracer (Supplementary Figure 1).

Quantitation of tumor tracer uptake illustrated a significant

increase in IFNg tracer accumulation in tumors from ICI-treated

(25.23 ± 6.48 %ID/mL) versus untreated mice (16.22 ± 2.68 %

ID/mL, p<0.00055, Figures 1C, D). Comparatively, mice receiving

the isotype control exhibit a marginal but insignificant difference in

tumor tracer uptake between untreated (8.49 ± 1.98 %ID/mL) versus

treated (12.06 ± 5.77 %ID/mL, p=0.394) animals (Figures 1C, D).

Interestingly, there is also a significant difference in uptake between

untreated (8.49 ± 1.98 %ID/mL) mice receiving the IgG isotype versus

[89Zr]Zr-DFO-anti-IFNg tracer (16.22 ± 2.68 %ID/mL, p<0.0001),

which suggests baseline IFNg expression may be present in untreated

CT26 tumors. This observation is consistent with previous reports

indicating CT26 is an immunogenic tumor model with moderate levels

of IFNg transcript in the TME (33–35). Consistent with our prior

experience, non-specific antibody tracer accumulation is also evident in

the liver, which is the primary organ for excretion. Biodistribution

studies with this tracer have been performed previously (26).
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[89Zr]Zr-DFO-anti-IFNg PET tracer uptake
correlates with ICI treatment outcomes

We next tested whether tumor [89Zr]Zr-anti-IFNg uptake would
correlate with ICI outcomes. ICI-treated or control CT26-bearing

BALB/c mice received ~200 µCi [89Zr]Zr-DFO-anti-IFNg, PET
imaging was conducted, and tumor volumes were monitored until

they reached an experimental endpoint of ≥ 100 mm3 (Figure 2A).
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Unlike our initial experiment, at the time of imaging the tumor volume

remained similar between treated and untreated groups (Figure 2B);

however, we did observe a significant difference in tracer uptake (p =

0.018, Figures 2C, D). These results suggest that tracer accumulation is

independent of tumor volume. Response to ICI is evident, as only 1/8

treated mice failed to eliminate the tumor (Figure 2E). To determine

whether tumor tracer uptake correlated to the magnitude of ICI

response, we calculated the area under the curve (AUC) of tumor
B

C D

A

FIGURE 1

[89Zr]Zr-DFO-anti-IFNg shows tumor-specific uptake in ICI-treated mice. (A) Schematic of the experiment. (B) CT26 tumor volumes for experimental
groups (ICI NO, anti-IFNg tracer n=8; ICI YES, anti-IFNg tracer n=8; ICI NO, isotype control tracer n=5; ICI YES, isotype control tracer n=8) at both
tracer injection (day 8, left panel) and PET imaging (day 11, right panel) timepoints. (C) Maximum PET tracer uptake VOI within the tumor in %ID/mL.
(D) Representative PET images from animals closest to the mean %ID/mL for the group in (C), with the tumor outlined in red. 2D coronal (top panel)
and 3D maximum intensity projection (MIP) (bottom panel) are shown. Significance was determined via Tukey’s test after general least squares
testing using an interaction model of tracer target and ICI.
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volumes for each animal through day 21, at which point all untreated

tumors had surpassed our experimental threshold and were

euthanized. Within ICI-treated mice, we observed an inverse linear

correlation of tumor burden AUC and tracer uptake within the tumor
Frontiers in Oncology 05
(r= -0.76, R2 = 0.58, p = 0.017, Figure 2F, upper panel). Comparatively,

in untreated mice there was no significant association between these

conditions (r=0.46, R2 = 0.21, p = 0.26, Figure 2F, lower panel),

suggesting tracer uptake is indicative of ICI efficacy.
B C

D E

F

A

FIGURE 2

[89Zr]Zr-DFO-anti-IFNg tumor uptake correlates to tumor burden in treated mice. (A) Schematic of the experiment. (B) Tumor volume of untreated
(n=8) and ICI-treated (n=9) mice at the PET imaging timepoint (day 11). (C) Maximum tumor uptake of [89Zr]Zr-DFO-anti-IFNg tracer VOI in %ID/mL
for ICI-treated and untreated mice. Significance determined by Student’s T-test. (D) Representative PET images from animals closest to the mean
%ID/mL for the group in (C), with the tumor outlined in red. 2D coronal (top panel) and 3D MIP (bottom panel) are shown. (E) Tumor growth in mice
bearing CT26 tumors with a vertical line indicating the PET imaging date. (F) Plot of tumor [89Zr]Zr-DFO-anti-IFNg uptake relative to tumor burden
measured by area under the curve (AUC) through day 21 for ICI-treated (top panel) and untreated (bottom panel) mice. The Pearson correlation
coefficient (r), the coefficient of determination (R2), and p values are shown. Linear correlation is indicated with a solid black line, with a dashed line
representing the 95% confidence interval.
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The impact of the anti-IFNg antibody tracer
on downstream signaling

Because most anti-IFNg antibodies including clone AN18 are

neutralizing, we next tested whether the tracer dose of antibody has

a detrimental effect on IFNg signaling. Unfortunately, ICI treatment

on days 5 and 8 yielded inadequate residual tumor tissue within the

treated cohort to extract quality RNA for downstream analysis of

IFNg expression and downstream signaling. To give the tumor

more time to develop, we shifted the experimental timeline by two

days, initiating ICI treatment on day 7, giving tracer antibody

(without PET imaging) on day 10, and harvesting tissue
Frontiers in Oncology 06
on day 13 (Figure 3A). Upon tissue harvest, we observed no

significant differences in tumor volumes between experimental

groups (Figure 3B).

We performed qRT-PCR on mRNA extracted from snap-frozen

tumor tissue, measuring transcripts for IFNg, to indicate response

to ICI, and interferon regulatory factor 1 (IRF1), to indicate whether

downstream IFNg signaling is disrupted. Upon IFNg engagement

with its receptor, the signal transducer and activator of transcription

1 (STAT1) protein is phosphorylated, translocates the nucleus, and

initiates IRF1 mRNA expression (31). Compared to untreated

controls, ICI treatment led to increased IFNg mRNA for both

AN18 and IgG control antibody-treated groups (p= 0.015 and
B

C

A

D

FIGURE 3

Effect of AN18 antibody on downstream signaling. (A) Schematic of the experiment. (B) CT26 tumor volume of experimental groups (ICI NO, AN18
antibody n=9; ICI YES, AN18 antibody n=10; ICI NO, isotype control antibody n=8; ICI YES, isotype control antibody n=9) on the day of tissue
collection (day 13). (C) qRT-PCR for IFNg (left panel) and IRF1 (right panel) mRNA from snap-frozen tumor sections. Transcript levels were
normalized to GAPDH and are displayed on a log scale. (D) Log transformed ratio of IRF1 to IFNg transcript abundance. Significance for (B–D) were
determined via Tukey’s test after general least squares testing using an interaction model of tracer target and ICI.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1285117
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hackett et al. 10.3389/fonc.2023.1285117
p<0.0001, respectively, Figure 3C). IRF1 transcript, however, was

only significantly increased in mice receiving isotype control

antibody (p = 0.00030), which might suggest that downstream

signaling was affected by AN18. In fact, IRF1 expression is higher in

ICI-treated mice receiving the control antibody compared to ICI-

treated mice receiving AN18 (p = 0.029). While IFNg expression

itself was not significantly different between these groups, there was

a slight elevation of IFNg transcript in mice receiving the control

antibody. As an additional test to determine whether the AN18

antibody was impacting IFNg signaling within the tumor, we

compared the ratio of IRF1:IFNg transcripts, since IRF1

expression is in part dependent on the presence of IFNg
(Figure 3D). There was no significant difference in the ratio of

IRF1:IFNg mRNA in ICI-treated mice receiving AN18 or IgG

control tracer antibody (p = 0.24), suggesting downstream

signaling was only marginally affected by AN18, if at all.

Collectively these results warranted further evaluation of the

impact that the anti-IFNg tracer antibody has on ICI

therapeutic efficacy.
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An imaging dose of anti-IFNg antibody
does not interfere with ICI response rates

Due to our results from the qRT-PCR analysis, it was important

to determine whether the use of an antibody-based IFNg tracer

could have a deleterious effect on ICI outcomes. Prior work has

demonstrated that AN18 has a neutralizing effect in inflammatory

conditions at a single 250 µg dose (36, 37). To investigate whether

the tracer dose impacts ICI outcomes, we followed CT26 tumor

growth in ICI-treated BALB/c mice receiving 0 µg, 50 µg (the

imaging dose), or 250 µg (a neutralizing dose) of cold anti-IFNg
antibody with a treatment scheme matching our imaging

experiments (Figure 4A). Mice receiving either 0 or 50 µg of anti-

IFNg had similar tumor growth curves with 5 of 8 mice eliminating

tumor in each group (Figures 4B, C). ICI-treated mice receiving 250

µg AN18 tended to succumb to tumor, with only 1 of 8 mice

achieving complete tumor regression. Survival analysis for ICI-

treated mice across AN18 doses shows borderline significance

between groups receiving 0 µg versus 250 µg (p = 0.041) and 50
B

C

A

FIGURE 4

Imaging dose of AN18 antibody does not impact ICI efficacy. (A) Schematic of the experiment. (B) CT26 tumor volume of experimental groups (n=8
per group). (C) Kaplan-Meier survival plot from mice in (B) to depict survival differences among treated mice receiving different dose of anti-IFNg
antibody. Significance is determined by Log-rank (Mantel-Cox) test.
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µg versus 250 µg (p = 0.084) AN18. Importantly, there was no

difference between survival of ICI-treated mice receiving 0 µg versus

50 µg AN18 (p = 0.95). This data suggests that while neutralization

of IFNg impedes ICI efficacy, the imaging dose of anti-IFNg does
not negatively impact therapeutic outcomes in this model.
Discussion

Clinical monitoring of response to ICI remains difficult due in

part to pseudoprogression and hyperprogression, both of which can

be observed with traditional imaging during immunotherapy

treatment (38, 39). This is partly resolved by the more recent

iRECIST classification to determine progression, but better

methods to predict and monitor response to ICI are still needed

(40). The results of this study support the use of a PET tracer to the

soluble cytokine IFNg as a promising candidate for immunotherapy

evaluation. We found that tumor-localized [89Zr]Zr-DFO-anti-

IFNg tracer uptake correlated with ICI treatment outcomes in

CT26 tumor-bearing mice. Importantly, in most cases the

elevated tracer uptake values preceded a treatment-induced

reduction in tumor volumes, highlighting the potential for this

tracer to identify intratumoral immune activity within the early

stages of treatment.

We utilized an irrelevant IgG antibody to validate the specificity

of the anti-IFNg tracer, and while we observed that ICI treatment

did not significantly increase control tracer uptake, we did see

variability in the amount of tracer detected within tumors from this

group (Figure 1C). This finding could be due to increased vascular

permeability during an active immune response, which has been

associated with expression of IFNg and other cytokines (41). It has

been shown that enhanced permeability and retention (EPR) can

increase the concentration of macromolecules including IgG;

however, there is little known regarding the effect of ICI on

tumor vasculature and/or EPR, and it remains unclear whether

these changes correlate with ICI response (42, 43). The variable

uptake of the isotype control tracer after ICI may be an indicator of

treatment-induced alterations within the TME that non-specifically

contribute to antibody accumulation.

Our analysis of downstream signaling suggested that the tracer

dose may have a physiologic effect, and thus we tested whether this

was sufficient to hinder ICI outcomes. A cold anti-IFNg tracer-dose
of AN18 antibody did not have a negative effect on ICI therapeutic

outcome, while a 5-fold higher, neutralizing dose dampened

efficacy. IFNg has a complex paradoxical relationship with both

pro- and anti-tumor effects (28, 44–48). Recent studies have shown

IFNg has a profound effect on tumor signaling and can act as an

inducer of ICI resistance (49–51). A mechanistic study in the B16

melanoma model demonstrated that IFNg-driven resistance

mechanisms may be due to signaling effects on tumor cells, and

disruption of tumor-specific IFNg signaling can rescue ICI

sensitivity (49). It is possible that a sub-neutralizing dose of anti-

IFNg might dampen the pro-tumor effects of IFNg signaling while

preserving anti-tumor immunity.

Of note, anti-IFNg tracer uptake was elevated compared to an

isotype control tracer in untreated mice (Figures 1C, D). The CT26
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tumor model is known to be immunogenic and responsive to

immunotherapy (33–35), and our results suggest that anti-IFNg
PET may be able to detect localized pre-treatment IFNg expression.
This raises the question as to whether anti-IFNg PET could be used

to detect underlying immune activity, in turn identifying patients

with historically non-responsive malignancies who may benefit

from immunotherapy.

Previous studies have indicated that response to

immunotherapy is dependent on characteristics of both the

mouse strain and the specific tumor line (33, 35). We chose to

utilize CT26-bearing BALB/c mice because of their responsiveness

to ICI, but it will be important to expand upon our findings to

include additional models. Our treatment scheme did not produce a

100% response rate, and thus we were able to correlate tracer uptake

to tumor burden (Figure 2F). Importantly, tracer administration

and/or imaging occurred prior to significant changes in volume

between treated and untreated mice in most experiments,

supporting their predictive value. However, future studies with

less-responsive models would allow for a deeper investigation of

whether the tracer can truly predict therapeutic outcomes in less

ideal circumstances.

We found that tracer accumulation within the tumor correlated

to tumor burden in our efficacy study (Figure 2); however, it is

important to note that treatment was initiated 5 days after

inoculation, and tumor burden was relatively low at the time of

imaging (30.3 ± 19.8 mm3). Slower-growing tumor models, where

treatment can be delayed until tumors are larger, may have more

clinical relevance and provide more insight into the correlation of

tumor burden to tumor tracer uptake. It will be important to

determine whether IFNg PET can identify intratumoral immune

activity in patients treated with ICI, and whether tumor location or

size influences imaging efficacy. It is anticipated that the liver would

remain the primary route of excretion for a full-length antibody

tracer (52), which may confound efforts to image primary

hepatocellular carcinoma, or liver metastases derived from other

tumor sites. Injection of excess unlabeled cold antibody

immediately prior to tracer may ameliorate this effect (53);

however in the case of IFNg antibody, a 5X antibody dose

suppressed ICI therapeutic efficacy (Figures 4B, C). Another

possible alternative is the use of antibody fragments in place of

full-length antibody. Liver accumulation may be reduced, however

accumulation is often detected in other organs, including the

kidneys (52). In addition to these considerations, an important

first step to clinical translation will be the selection of a suitable anti-

human IFNg antibody clone, as AN18 does not cross-react with the

human protein.

The immune landscape of cancer is complicated and biomarker

discovery for immunotherapy has been full of promise, but

definitive, dependable biomarkers have yet to be defined (54).

Broad classifications of the cancer immune landscape cluster

within, but also span across multiple cancer types (55). Consistent

signatures of an ICI-responsive immune phenotype may also

extend to historically less-responsive malignancies. Reliable, non-

invasive biomarkers could help bolster clinical implementation of

immunotherapy, and imaging modalities that capture immune

activity within the tumor may serve an important role in
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monitoring and predicting therapeutic response. The findings of

this study demonstrate the potential to meet this need with

immunoPET tracers targeting IFNg.
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