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Recherche Médicale (INSERM), France

*CORRESPONDENCE

Jifu Wei

weijifu@hotmail.com

Qiang Ding

dingqiang@njmu.edu.cn

†These authors have contributed equally to
this work and share first authorship

RECEIVED 29 August 2023

ACCEPTED 04 October 2023
PUBLISHED 17 October 2023

CITATION

Xu R, Yin P, Wei J and Ding Q (2023) The
role of matrix stiffness in breast cancer
progression: a review.
Front. Oncol. 13:1284926.
doi: 10.3389/fonc.2023.1284926

COPYRIGHT

© 2023 Xu, Yin, Wei and Ding. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 17 October 2023

DOI 10.3389/fonc.2023.1284926
The role of matrix stiffness
in breast cancer progression:
a review
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The significance of matrix stiffness in cancer development has been investigated

in recent years. The gradual elastic force the extracellular matrix imparts to cells,

known as matrix stiffness, is one of the most important types of mechanical

stimulation. Increased matrix stiffness alters the biological activity of cells, which

promotes the growth of numerous malignancies, including breast cancer.

Comprehensive studies have demonstrated that increasing matrix stiffness

activates molecular signaling pathways that are closely linked to breast cancer

progression. There are many articles exploring the relationship between

mechanism hardness and breast cancer, so we wanted to provide a systematic

summary of recent research advances. In this review, we briefly introduce the

mechanism of matrix stiffness in breast cancer, elaborate on the effect of

extracellular matrix stiffness on breast cancer biological behavior and signaling

pathways, and finally, we will talk about breast cancer treatment that focuses on

matrix stiffness.

KEYWORDS
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1 Introduction

Breast cancer is one of the most commonmalignancies among women. One of the most

obvious signs of breast cancer is tissue hardening, which can be detected by palpating

malignant nodules (1, 2). The stiffness of normal healthy breast tissue is approximately 0.2

kPa, while that of breast cancer tissue is over 4 kPa (3). In addition to the increased stiffness

of breast cancer tissues, adjacent matrix tissues are also affected. A study in an animal

model demonstrated that when breast tissue become invasive, the adjacent matrix tissue is

also much stiffer than the distant normal tissue (1). These phenomena arise from abnormal

changes in the structure and composition of the tumor extracellular matrix (ECM) in breast

cancer (2).

The ECM is an intricate network of three-dimensional macromolecules consisting

mainly of collagen, non-collagen, elastin, proteoglycans and glycosaminoglycans (4); it

offers appropriate chemical signals and mechanical stimulation to regulate cell shape,
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metabolism, function, migration, proliferation, and differentiation

(4, 5). Mechanical stimulation involves compression, matrix

stiffness, and hydrodynamics (6). Moreover, matrix stiffness, also

known as rigidity or modulus of elasticity, is defined as the

resistance of a material to deformation by a force applied at a

very slow rate (quasi-static) (7). Stiffness is an intrinsic material

property of tissues, and increased tissue hardness is the most

obvious and recognized mechanical abnormality in tumors,

including breast cancer (8).

With the application of atomic force microscopy (AFM) and the

continuous refinement of 3D culture techniques, the study of matrix

stiffness has become more feasible (9, 10). Hydrogels are good

candidates in the study of ECM physical properties using 3D

modeling (11). Various types of hydrogels have been used in the

study of matrix stiffness, including polyacrylamide hydrogels,

hyaluronic acid hydrogels, collagen hydrogels, gelatin hydrogels,

etc. (12). Based on the fact that the matrix stiffness is a constant state

of transformation with the dynamics of the ECM, more advanced

stimuli-responsive hydrogels were synthesized (13). Stimuli-

responsive hydrogels can adjust their stiffness in response to

external physical or chemical stimuli to better mimic the in vivo

environment in matrix stiffness studies (11, 13). In addition, to

better approach the treatment of breast cancer from the aspect of

stromal stiffness, various 3D experimental models have been

developed, mainly including cancer cell lines, 3D spheroids, in

vivo patient-derived xenografts (PDX), and in vitro patient-derived

organoids (PDO) (14–17). For example, PDOs have been

established from breast cancer, and this model can be used to

predict drug response in cancer patients, which in turn informs the

patient’s treatment regimen (17). 3D spheroids also have extensive

use in exploring the role of matrix stiffness in breast cancer

invasion (18).

The formation of tumors mainly depends on the balance

between increased matrix stiffness and matrix degradation (19).

Collagen accumulation and pathological collagen cross-linking are

the major causes of increased ECM stiffness in breast cancer (7).

Analysis of human breast tissue samples has revealed that the

transition from non-malignant tissue to invasive ductal

carcinoma (IDC) corresponds to significant collagen deposition,

resulting in stromal stiffening (20). In addition, computational

analysis of mammographic images has shown that dense breast

tissue has a stiffer matrix, contains more linearized and bound

collagen, and is associated with a higher risk of breast cancer (21,

22). Degradation of breast cancer matrix is mainly dependent on the

regulation of lysyl oxidase (LOX), lysyl oxidase like-1-4 (LOXL 1-4),

and matrix metalloproteinases (MMPs), which are extracellular

matrix remodeling enzymes (23, 24). LOX promotes the cross-

linking of elastin and collagen in the ECM and prevents collagen

degradation, which promotes breast cancer progression (25).

Furthermore, MMPs remodel the ECM by degrading ECM

proteins, which in turn promote breast cancer metastasis (26).

Thus, an excessively stiff matrix or excessive matrix degradation

can promote the progression of breast cancer.

Matrix stiffness is closely related to malignant breast cancer

phenotypes, including proliferation, metastasis, invasion, and drug

resistance. There are many articles exploring the relationship
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between matrix stiffness and breast cancer, so we want to provide

a systematic summary of recent research advances. In this review,

we systematically introduce the major causes of breast stiffening and

summarize the role of matrix stiffness in breast cancer initiation and

progression and its potential applications. This may provide clues

for studying matrix stiffness in breast cancer and exploring its

clinical applications in breast cancer treatment.
2 Formation of matrix stiffness in
breast cancer

The stiffness of cancer tissue is mainly determined by cancer

and stromal cells (27). Matrix deposition and cross-linking are the

two major causes of breast cancer stiffening (28, 29) (Figure 1).

Cancer cells and stromal cells are jointly involved in matrix

deposition and cross-linking and determine matrix stiffness (27).
2.1 Matrix deposition

Among all stromal cells, cancer-associated fibroblasts (CAFs)

are the most efficient in depositing and remodeling the ECM in the

tumor microenvironment (30, 31). Stromal cells with high alpha-

smooth muscle actin (aSMA) expression are known as cancer-

associated fibroblasts (CAFs) (32). Through Notch signaling,

interaction between cancer cells and fibroblasts can advance the

CAF phenotype in breast cancer (30). Cancer cells can also promote

the transformation of fibroblasts into CAFs by secreting TGFb,
which in turn further promotes tumor progression through ECM

remodeling (33, 34). During breast cancer progression, up to 80% of

stromal cells acquire the CAF phenotype (35). CAFs synthesize and

secrete collagen procollagen molecules, which are processed and

arranged to form collagen fibers. As fibrillar collagen (both type I

and type III) is progressively deposited in the ECM, the normal

ECM gradually transforms into dense fibrous tumor stroma (36,

37). Except for CAFs, other stromal cells play an important role in

causing increased matrix stiffness, including macrophages.

Macrophages secrete a variety of soluble factors that induce ECM

deposition, thereby stiffening the extracellular matrix (20). In

addition, during breast cancer progression, breast cancer

epithelial cells gradually lose epithelial markers to acquire

mesenchymal markers and mesenchymal cell-like properties

through epithelial-mesenchymal transition (EMT), which in turn

exerts a function like that of CAFs, synthesizing and secreting

collagen, leading to stromal deposition promoting an increase in

stromal stiffness (38). In summary, both stromal cells and breast

cancer cells undergoing EMT can promote increased matrix

stiffness through matrix deposition.
2.2 Matrix cross-linking

CAFs and cancer cells highly express LOX/LOXs (39), which are

amine oxidases that mainly regulate covalent cross-linking between

ECM collagen and elastin (40, 41). In breast cancer, LOX and collagen
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influence the architecture of the ECM and create a favorable

microenvironment for tumor development and progression (42).

LOX was reported to promote fibrosis of breast tissue through

collagen cross-linking, leading to increased matrix stiffness in breast

tumors (43, 44). Increased matrix stiffness can induce the assembly

of focal adhesions and up-regulate GFR-dependent PI3K signaling,

ultimately leading to tumor progression (1). Furthermore, breast

cancer cells and CAFs can synthesize and secrete proteolytically

active MMPs (45), which can degrade almost all proteins in the

ECM when metal ions are used as cofactors (46). However, when

collagen is cross-linked, MMPs are unable to break down the

collagen, thus increasing matrix stiffness (47). The phenomenon

of collagen cross-linking leading to increased matrix stiffness in

cancer cells is widespread. For instance, when highly expressed in

pancreatic cancer cells, tissue transglutaminase (TG2) crosslinks

proteins to stiffen the pancreatic tumor tissue (48). However, TG2

promotion of breast tumor matrix cross-linking has not been

elucidated. In conclusion, matrix cross-linking is essential for

enhancing the stiffness of cancer tissues (29).
3 Initiation and progression of breast
cancer regulated by matrix stiffness

Increased matrix stiffness leads to breast malignancy and

contributes to the malignant phenotypes of breast cancer by

promoting breast cancer proliferation, metastasis, invasion,

immune evasion, stemness, and drug resistance through the

regulation of breast cancer and stromal cells (Figure 2). With the

development of 3d culture technology, it has become possible to
Frontiers in Oncology 03
simulate different matrix stiffnesses using hydrogels, making it

possible to study in vitro how matrix stiffness affects cell signaling

pathways. Matrix stiffness affects tumor and non-tumor cells

through multiple molecular signaling pathways in breast tumors

that promote tumor progression (Table 1).
3.1 Tumorigenesis of breast cancer
promoted by matrix stiffness

Mammary density (MD) is associated with an overall increased

lifetime risk of malignancy. Increased mammary density is primarily

caused by the deposition of fibrillar collagen (68). It has been shown

to result in an increase in stromal stiffness which disrupts the

physiologic breast morphogenesis (69, 70). Even a small increase in

matrix stiffness results in activation of Rho GTPase and induces

collagen matrix contraction to disrupt tissue structure. Rho GTPase

also activates the ROCK pathway, which can lead to malignant

changes in the breast (49). Collagen cross-linking leads to matrix

stiffening promotes integrin aggregation, enhances PI3K activity, and

induces oncogene-initiated invasion of epithelial cells (1).

Mammary epithelial cells in cultured soft matrix can grow into

normal epithelial tubules; however, in hard matrix, they exhibit an

abnormal tumor-like morphology (71). Study of epigenomic

changes show that increased stromal stiffness leads to increased

nuclear ruffling and lamellipodia-associated chromatin, ultimately

inducing a tumor phenotype (72). In a mouse experiment, it was

also found that increased matrix stiffness increased mammary

tumorigenesis by about three times (73). So, increased matrix

stiffness is inextricably linked to breast cancer initiation.
FIGURE 1

Formation of matrix stiffness in breast cancer.
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3.2 Proliferation of breast cancer cells
regulated by matrix stiffness

The uncontrolled proliferation of cancer cells is one of the

dominant features of cancer (74). Mesenchymal stem cells

(MSC) in a stiff matrix can differentiate into cancer-associated

fibroblasts (CAF) with increased expression of the yes-associated

protein (YAP) (50). YAP, an important regulatory molecule in

the Hippo pathway, is phosphorylated to enter the nucleus to

transcribe anti-apoptotic and pro-proliferative genes, thereby

regulating cell proliferation and apoptosis and controlling organ

size (75–77). In the Wnt pathway, nuclear YAP can promote cell

proliferation by up-regulating b-catenin expression (51, 52). In

addition, an increase in mammary gland density is often

accompanied by an increase in matrix stiffness. Regions with

high breast density have increased stromal collagen and

epithelial cell contents (78). When NMuMG mammary

epithelial cells are cultured on a hard substrate, Wnt3a

increases the integrin-linked kinases (ILK)-mediated Frizzled-1

expression and thus promotes epithelial cell proliferation

through the integrin signaling pathway (53). Provenzano et al.

simulated increased matrix stiffness by increasing the matrix

collagen density. They found that matrix stiffness promoted the

proliferation of breast cancer cells through FAK-Rho and FAK-

Ras-ERK signaling networks (54). Similar conclusions have been

reached in animal experiments. Injecting breast cancer cells

cultured in a stiffer matrix into mice can form larger tumors

(79). In conclusion, matrix stiffness drives breast cancer

cell proliferation.
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3.3 Invasion and metastasis of breast
cancer cells regulated by matrix stiffness

Changes in matrix stiffness significantly affect the cytoskeletal

structure and ability of breast cancer cells to invade and metastasize.

By analyzing PAM50 tumor subtypes, Adam et al. found that

compared to the less aggressive luminal A and normal-like

subtypes, the more aggressive subtypes such as basal, human

epidermal growth factor receptor 2 (HER2), and luminal B, had

stiffer matrix and poorer overall survival. They suggested that

increased matrix stiffness enhances breast cancer invasion (79).

Mechanistically, integrins play important roles in this process

(Figure 3). Integrin receptors activate insulin receptors (IR) by

forming b1 and b3 integrins and IR complexes. IR activates the

PI3K/AKT/mTORC1 signaling axis to promote breast cancer cell

metastasis (55). Moreover, matrix stiffness can directly activate

integrin b1 and focal adhesion kinase (FAK), which accelerates

focal adhesion (FA) maturation and induces downstream cascades

of intracellular signals in the RhoA/ROCK pathway. ROCK

isoforms differentially regulate the RhoA/ROCK1/p-MLC and

RhoA/ROCK2/p-cofilin pathways in a coordinated fashion to

modulate breast cancer cell motility in a substrate stiffness-

dependent manner through integrin b1-activated FAK signaling

(58). Moreover, with the activation of EGFR and PLCg1, the
expression of Mena, a protein associated with metastasis in breast

cancer, is up-regulated in a stiff matrix. High Mena expression

further increases matrix stiffness by depositing fibronectin via a5
integrin (56, 57). In conclusion, integrins are important in

promoting the invasive metastasis of breast cancer cells.
FIGURE 2

Relationship between matrix stiffness and breast cancer. In breast cancer, matrix stiffness can affect its proliferation, EMT, metastasis, invasion,
immune evasion, stemness and drug resistance, thus further promoting fibrosis and the progression of breast cancer.
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One of the key processes that promotes the progression of

metastasis in cancer cells is the epithelial-mesenchymal transition

(EMT). EMT, the process by which epithelial cells lose polarity,
Frontiers in Oncology 05
intercellular adhesion, acquire migratory, and invasive properties to

become mesenchymal cells, is thought to play a key role in initiating

the metastatic cascade response. Thus, EMT allows cancer cells to

leave the primary tumor, invade the surrounding ECM, enter the

blood and lymphatic vessels, and spread to all body parts (80).

When matrix stiffness increasing, cells in the matrix gradually

develop an EMT phenotype, indicating that they are more likely

to undergo invasive and metastatic spreading (81, 82).

TWIST1 is a basic helix-loop-helix (bHLH) transcription factor

that promotes tumor metastasis by initiating EMT and degrading

ECT (59, 60). Furthermore, the increase in matrix stiffness causes

TWIST1 to move toward the nucleus, directly affecting the EMT

program. G3BP2 is a TWIST1 binding protein and tyrosine residue

Y103 is present in its binding sequence. In a soft matrix, there is a

strong tendency for the two to interact; however, in a stiffened

matrix, TWIST1 dissociates from G3BP2 and is transferred to the

nucleus (81). Fattet et al. have shown that increased matrix stiffness

activates extracellular signal-regulated kinases (ERK) and ribosomal

S6 kinase1 (RSK1). Activated ERK/RSK1 phosphorylates the ephrin

Receptor EPHA2 at serine 897 (S897). Moreover, phosphorylated

EPHA2 activates LYN Kinase to form an EPHA2/LYN complex.

This complex phosphorylates Y103 in the TWIST1-G3BP2 binding

sequence, leading to TWIST1-G3BP2 dissociation (83).

Additionally, it has been demonstrated that during matrix

stiffness, activated integrins phosphorylate Y103 through tyrosine

kinases, which eventually prevents TWIST1 from binding to G3BP2

(81). Additionally, a study found a positive correlation between

TWIST1 expression and tumor stiffness in patients with breast

cancer (84). Barriga et al. found that high tissue stiffness promoted

EMT triggering neural crest migration, and this study in turn

confirmed in vivo that higher matrix stiffness increased the

propensity of cells to undergo EMT, leading to distant metastasis

(85). Generally, increased matrix stiffness promotes breast cancer

metastasis by activating the EMT through a mechanical

conduction pathway.

In addition, there is a phenomenon in the process of cancer

recurrence and metastasis, which is that breast cancer recurrence

and metastasis are usually detected in tissues that are softer than

normal breast or primary breast tumors (such as bone marrow,

liver, brain, and lung) (86). Therefore, the soft microenvironment

can promote the survival of disseminated breast cancer cells at the

secondary site. When breast cancer cells were cultured on the soft

matrix mimicking the site of metastasis, they were found to remain

dormant for a long time to escape the killing effects of

chemotherapy drugs. Soft matrix can also induce chemical

resistance in breast cancer by increasing autophagy, making

metastatic breast cancer more difficult to treat (87).
3.4 Stemness of breast cancer cells
regulated by matrix stiffness

Cancer stem cells (CSC) are a small subpopulation of cancer

cells that maintain their self-renewal and undifferentiated abilities.

Breast cancer stem cells (BCSC) can self-renew, differentiate, drive
TABLE 1 List of Matrix Stiffness Affecting Breast Cancer.

Phenotype
Signaling
Pathway

Effect on Cells References

Tumorigenesis

ROCK
signaling
pathway

Rho GTPases
activation

(49)

Integrin
signaling
pathway

Integrin/PI3K
activation, oncogene
initiation

(1)

Proliferation

YAP
signaling
pathway

YAP/MLC
upregulation, PASP
secretion

(50)

Wnt signaling
pathway

b-catenin upregulation (51, 52)

Integrin
signaling
pathway

ILK-mediated Frizzled-
1 upregulation

(53)

FAK
signaling
pathway

FAK-Rho upregulation,
Ras-MAPK activation

(54)

Invasion/
Metastasis

Integrin
signaling
pathway

Integrin/IR/PI3K/AKT/
mTORC1 activation

(55)

EGFR/PLCg1
activation, Mena
upregulation

(56, 57)

ROCK
signaling
pathway

RhoA/ROCK1/p-MLC
and RhoA/ROCK2/p-
cofilin in a coordinate
fashion to modulate
breast cancer cell
motility

(58)

TWIST1
signaling
pathway

Promoted EMT,
TWIST1 nuclear
transportation

(59, 60)

Stemness

Integrin
signaling
pathway

Integrin/ILK/PI3K/Akt
activation

(61)

\
TAZ/NANOG
dissociate, SOX2 and
OCT4 upregulation

(62)

YAP
signaling
pathway

YAP nuclear
translocation

(63)

Drug resistance
YAP
signaling
pathway

Promoted EMT, YAP
nuclear transportation

(64)

Merlin/MST/LATS
inactivation, ILK/YAP
upregulation

(8)

Immune
evasion

\ PDL1 upregulation (65, 66)

\
Diminish T cells
permeation and
migration

(67)
The symbol (\) represents none.
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tumor progression, and mediate drug resistance and metastasis

(88). Pang et al. investigated the relationship between matrix

stiffness and BCSC by detecting CSC markers CD44, Nanog, and

CD49f. They found that the expression of all these markers

increased when the matrix stiffness increased. By comparing

the expression of CD44 at different matrix stiffness values,

they found that BCSCs were preferentially located in a stiff

microenvironment (61).

BCSCs were mainly regulated by ILK. In the presence of

increased matrix stiffness, ILK regulates BCSC development via

the PI3K/Akt pathway and promotes angiogenesis in tumor cells,

ultimately contributing to tumor metastatic spread (61). A recent

study found that cells cultured on hard polyacrylamide hydrogels (9

kPa) had a significantly higher proportion of BCSCs compared to

cells cultured on soft polyacrylamide hydrogels (0.5 kPa; matching

the compliance of normal mammary glands). Exploration of the

mechanism revealed that when matrix stiffness was increased, TAZ

dissociated from NANOG, promoting the transcription of SOX2

and OCT4, which in turn increased the proportion of BCSCs in the

breast cancer and promoted the stemness phenotype of breast

cancer (62). In another study, by using three different hydrogels,

Matrigel, collagen I, and fibrinogen gels, to simulate three different

matrix compositions, collagen, laminin, and fibronectin,

respectively, it was found that the increased matrix stiffness due

to different matrix compositions had different effects on the

stemness of breast cancer (89). Yan Li et al. cultured breast

cancer cells using different stiffness of polyacrylamide hydrogels

and found that increased matrix stiffness promotes YAP nuclear

translocation, which in turn promotes BCSCs maintenance (63).
Frontiers in Oncology 06
Matrix stiffness may be important for the induction and

maintenance of CSC; however, this requires further investigation.
3.5 Drug resistance of breast cancer cells
regulated by matrix stiffness

Drug resistance is one of the most important factors affecting

breast cancer treatment outcomes (90). Improving the sensitivity of

breast cancer cells to chemotherapeutic agents is essential to improve

the survival rate of patients with breast cancer. In addition, the ability

to achieve effective drug concentrations at the tumor site is also

essential for the treatment of cancer. Most chemotherapeutic agents

are dose-dependent, and chemotherapeutic agents need to pass

through the tumor vasculature system, cross the vessel wall to

enter, and pass through the interstitial space of the tumor to reach

the cancer cells to exert their therapeutic effects. However, when

stromal stiffness increases, the extravascular hydrostatic pressure, or

interstitial pressure (IFP), increases within the tumor, resulting in

inhibited drug extravasation. On the other hand, increased stromal

stiffness leads to vascular compression, resulting in inadequate

perfusion within the tumor, further reducing drug concentration.

More unfortunately, when stromal stiffness is increased, the dense

ECM further impedes the effective diffusion of chemotherapeutic

agents, ultimately making it difficult to achieve effective

concentrations and reducing the efficacy of chemotherapeutic

agents (91–93).

The responsiveness of primary breast cancer cells to

chemotherapeutic agents is altered after they are removed from
FIGURE 3

Signaling pathways associated with increased matrix stiffness leading to breast cancer invasion and metastasis. Matrix stiffness activates many
mechanoreactive signaling pathways in cells through transmembrane proteins including integrins. Pathways such as PI3K, ROCK and TWIST1 play a
major role in this transduction. Central players in these signaling pathways can connect with other molecules and ultimately translate changes in the
ECM into relevant biological changes.
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the host microenvironment and transferred to hard-surface cultures

in vitro. The activities of PTX and DOX were strongly correlated

with matrix hardness. Substrates that are too hard can reduce the

activities of PTX and DOX, leading to drug resistance (94). In

addition, the activity of targeted drugs for breast cancer treatment

can be influenced by stromal stiffness. Lapatinib is an orally

administered small-molecule epidermal growth factor tyrosine

kinase inhibitor. It is primarily used to treat HER2(human

epidermal growth factor receptor-2)-amplified breast cancer.

Furthermore, the ratio of HER2 phosphorylation decrease with

increasing matrix stiffness and was negatively correlated with

lapatinib insensitivity (95).

Sorafenib is a small-molecule tyrosine kinase inhibitor with

anti-angiogenic activity that has been used to treat hepatocellular

and renal cancers (96). Hepatocellular cancer cells on stiff substrates

show resistance to sorafenib compared to those on soft substrates

(97). The same phenomenon has been observed in breast cancer

cells (98). Breast cancer cells cultured on harder substrates were

more resistant to sorafenib (99).

Moreover, the EMT affects the sensitivity of breast cancer

cells to chemotherapy. Notably, increased matrix stiffness

promotes the nuclear translocation of YAP, triggering EMT

and increasing drug resistance. However, only the MDA-MB-

231 cell line showed drug resistance with increased simulated

matrix stiffness during the experiment (64). This suggests that the

effect of matrix stiffness on drug resistance is related to the cell

line. Additionally, matrix stiffness can regulate YAP ’s

translocation, dephosphorylation, and transcriptional activity

by increasing ILK expression, ultimately leading to increased

drug resistance in breast cancer cells (8). In summary, targeting

matrix stiffness is a prospective strategy for improving the efficacy

of chemotherapy.

In addition to chemotherapy, radiotherapy is also an important

treatment for breast cancer. One study showed that low doses of

radiation had no significant effect on tumor cell migration when

matrix stiffness was increased, but when high doses of radiation

were changed, tumor cell adhesion increased and migration rate

decreased significantly. On soft substrates, low doses of radiation

can reduce the migration rate of tumor cells. These results indicate

that the radiosensitivity of tumors on hard substrates is dose

dependent (100). But the results are not widely accepted. Rieken

et al. suggested that radiation promotes tumor migration by

inducing integrin overexpression (101). In conclusion, the

mechanism of the influence of matrix stiffness on radiosensitivity

is still unclear, and some conclusions are still controversial, which

may be closely related to radiation dose, radiation time and cell

types (93).

In addition, the targeted therapies of breast cancer could also be

affected by matrix stiffness. Lapatinib is a targeted drug for the

treatment of HER2-amplified breast cancer (102). Increased matrix

stiffness leads to YAP overexpression, which in turn modulates the

Hippo pathway and reduces the efficacy of lapatinib (95, 103). In

conclusion, matrix stiffness has an impact on multiple treatments

for breast cancer, including chemotherapy, radiotherapy and

targeted therapy.
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3.6 Immune evasion of breast cancer cells
regulated by matrix stiffness

Immunotherapy is a novel modality for the treatment of breast

cancer. However, breast cancer is considered a low-immune

reactive cancer. The key to immunotherapy is the interaction

between the programmed death-1 receptor (PD-1) and

programmed death ligand 1 (PD-L1). Previous studies revealed a

positive association between high PD-L1 expression and matrix

stiffness. High PD-L1 expression in breast cancer is associated with

poor prognosis (65, 66). On a physical level, when collagen

crosslinks and matrix stiffness increases, T cells have difficulty

penetrating the matrix and their ability to migrate in the matrix is

greatly diminished, thus limiting the further role of T cells in the

tumor (67). Therefore, reversing immune evasion in breast cancer

remains a challenge.
4 Therapy for breast cancer by
targeting matrix stiffness

As the study of matrix stiffness has intensified, new directions

for breast cancer treatment have been provided. Matrix targeting in

breast cancer can be broadly divided into two types:1) Reducing the

source of matrix stiffness. 2) Blocking the effect of matrix stiffness

on the downstream pathways (Table 2).

To reduce the source of matrix stiffness and collagen cross-

linking, ECM enzymes, such as LOX/LOXLs, MMPs, and CAFs,

can be used to directly block the excessive synthesis of certain

ECM components. For example, 4-methylumbelliferone

(MU) can significantly inhibit the synthesis and accumulation

of hyaluronic acid (HA, a matrix component), which

promotes tumor cell metastasis (110). b-Aminopropionitrile

(BAPN) acts as a LOX inhibitor and suppresses breast cancer

proliferation and metastasis by inhibiting collagen cross-linking

(25, 104, 105). Tetrathiomolybdate (TM), a LOX inhibitor,

belongs to a group of copper chelators that inhibit LOX activity

by binding to and depleting copper. A phase IIa TM study is

underway in breast cancer patients at an intermediate to high

risk of recurrence (25).

Prinomastat is a selective oral matrix MMP -2, -9, -13 and -14

inhibitor. The drug has been shown to prevent angiogenesis and

tumor development in a range of preclinical models, including

those of colon, breast, lung, melanoma, and glioma (106). Growth

factors, including TGF-b, PDGF, and VEGF, can also be used as

targets to block the increase in matrix stiffness. Pirfenidone (PFD) is

a potent TGF-b inhibitor approved for treating pulmonary and

renal fibrosis (111). For example, Hamidreza et al. showed that PFD

reduced breast cancer epithelial-mesenchymal transition and

globule formation by targeting CAFs (107).

Downstream receptors of matrix stiffness, such as integrins, FAK,

RhoGTPase, and AKT, can be used as therapeutic targets. Seon-Ok Lee

et al. found that fomes fomentarius ethanol (FFE) could inhibit MDA-

MB-231cells motility and growth, by reducing the expression of
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MMP-9 and phosphorylated Akt (108). Furthermore, the complex

formation of HER2-Src-a6b4 integrin influences the targeted therapy

with lapatinib. Cuiying Liu et al. explored how stiffness regulated the

response of breast cancer cells to lapatinib. They found that, on the stiff

substrate, the HER2 is difficult to combine with b4 integrin molecules,

constructing fewer complexes of HER2-Src-a6b4 integrin.

Consequently, free HER2 molecules were inhibited by lapatinib. In

addition, as early as 2002, the concept of “biomechanopharmacology”

was first proposed (109). The development of this field will provide

new ideas for future treatments.
5 Conclusions and perspectives

The role of the ECM in tumorigenesis has been increasingly

studied, and changes in matrix stiffness have also been considered as

factors contributing to disease development. This review begins with an

introduction to the mechanical microenvironment in breast cancer.

We then elaborated on the effect of extracellular matrix stiffness on

breast cancer’s biological behavior and signaling pathway. Finally, we

discuss the transformation treatments for matrix stiffness in

breast cancer.

In addition, several questions remain unanswered. Can matrix

hardness be integrated into clinical research? Is there an interaction

between the various mechanical stimuli? Can mechanical stimuli

such as matrix stiffness be measured quantitatively? Are there

signaling pathways other than those mentioned above? Research

into the effects of matrix hardness on signaling pathways is only

beginning, and the effects of matrix stiffness on biological pathways,

such as transcription, post-transcriptional modification, translation,

and post-translational modification, need to be further investigated.

In addition, we also noted that antibody-drug conjugates (ADCs)

are gradually becoming a novel treatment for breast cancer.

However, studies on the aspect of ADCs related to matrix

stiffness are still relatively scarce, and further studies are needed

to explore the relationship between the two subsequently. Although

studies on the effects of matrix stiffness on breast cancer are already

underway, our understanding of the mechanisms involved is

limited to the tip of the iceberg. We will be able to develop new
Frontiers in Oncology 08
therapeutic options through a better understanding of matrix

stiffness. We believe that concerted efforts by researchers are

required to address these questions.
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TABLE 2 List of conversion therapy drugs.

Categorizations Drugs Mechanism References

Extracellular matrix remodeling enzymes inhibitors
LOX inhibitors

BAPN Inhibit collagen cross-linking (104, 105)

TM Copper chelator (25)

MMPs inhibitors Prinomastat MMP -2, -9, -13 and -14 inhibitor (106)

Targeted drugs

TGF-b PFD Inhibition of TGF-bexpression in CAFs (107)

Akt FFE Reduce phosphorylated Akt (108)

HER2-Src-a6b4 integrin Lapatinib Inhibit HER2 activity (109)

Others MU Inhibit HA synthesis (110)
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