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In-depth single-cell and bulk-
RNA sequencing developed a
NETosis-related gene signature
affects non-small-cell lung
cancer prognosis and tumor
microenvironment: results from
over 3,000 patients

Liangyu Zhang1,2†, Xun Zhang1,2†, Maohao Guan1,2†,
Fengqiang Yu1,2* and Fancai Lai1,2*

1Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University,
Fuzhou, China, 2Department of Thoracic Surgery, National Regional Medical Center, the First
Affiliated Hospital, Fujian Medical University, Fuzhou, China
Background: Cell death caused by neutrophil extracellular traps (NETs) is known

as NETosis. Despite the increasing importance of NETosis in cancer diagnosis

and treatment, its role in Non-Small-Cell Lung Cancer (NSCLC) remains unclear.

Methods: A total of 3298 NSCLC patients from different cohorts were included.

The AUCell method was used to compute cells’ NETosis scores from single-cell

RNA-sequencing data. DEGs in sc-RNA dataset were obtained by the Seurat’s

“FindAllMarkers” function, and DEGs in bulk-RNA dataset were acquired by the

DESeq2 package. ConsensusClusterPlus package was used to group patients

into different NETosis subtypes, and the Enet algorithmwas used to construct the

NETosis-Related Riskscore (NETRS). Enrichment analyses were conducted using

the GSVA and ClusterProfiler packages. Six distinct algorithms were utilized to

evaluate patients’ immune cell infiltration level. Patients’ SNV and CNV data were

analyzed by maftools and GISTIC2.0, respectively. Drug information was

obtained from the GDSC1, and predicted by the Oncopredict package. Patient

response to immunotherapy was evaluated by the TIDE algorithm in conjunction

with the phs000452 immunotherapy cohort. Six NRGs’ differential expression

was verified using qRT-PCR and immunohistochemistry.

Results: Among all cell types, neutrophils had the highest AUCell score. By

Intersecting the DEGs between high and low NETosis classes, DEGs between

normal and LUAD tissues, and prognostic related genes, 61 prognostic related

NRGs were identified. Based on the 61 NRGs, all LUAD patients can be divided

into two clusters, showing different prognostic and TME characteristics. Enet

regression identified the NETRS composed of 18 NRGs. NETRS significantly

associated with LUAD patients’ clinical characteristics, and patients at different

NETRS groups showed significant differences on prognosis, TME characteristics,

immune-related molecules’ expression levels, gene mutation frequencies,
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response to immunotherapy, and drug sensitivity. Besides, NETRS was more

powerful than 20 published gene signatures in predicting LUAD patients’ survival.

Nine independent cohorts confirmed that NETRS is also valuable in predicting

the prognosis of all NSCLC patients. Finally, six NRGs’ expression was confirmed

using three independent datasets, qRT-PCR and immunohistochemistry.

Conclusion: NETRS can serves as a valuable prognostic indicator for patients

with NSCLC, providing insights into the tumor microenvironment and predicting

the response to cancer therapy.
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Introduction

Human lung cancer is among the most deadly types of cancer

and is associated with a high mortality rate and morbidity (1, 2).

Lung cancer can be classified as SCLC (Small-Cell Lung Cancer) or

NSCLC (Non-Small-Cell Lung Cancer). Among lung cancer cases,

NSCLCs constitute the majority, and lung adenocarcinomas

(LUADs) are the most common NSCLC type (3). The growth

rate of LUAD is generally slower than that of squamous lung cancer

(LUSC). However, it begins metastasizing earlier than LUSC (4).

Molecular-targeted agents and immunotherapies are currently used

to treat NSCLC, which are more effective and less harmful than

traditional chemotherapy and radiotherapy (5). Although

immunotherapy and targeted treatments offer advantages for a

small proportion of patients, survival rates remain low.

Consequently, finding reliable prognosticators for LUAD, or all

NSCLC in general, is imperative.

NETs (Neutrophil Extracellular Traps) are histone and

proteases-coated DNA structures released by neutrophils to trap

microbes, and they are formed through a process known as NETosis

(6, 7). NETs may play a role in non-infectious diseases, including

autoimmune disease, coagulation disorders, acute injury, and

cancer. There has also been research investigating its role in

malignancies such as venous thromboembolism, invasive growth,

and metastasis (8). Additionally, it’s also known that NETs increase

tumor cells’ ability to metastasize within the bloodstream by

enhancing the cell cycle (9). Researchers have demonstrated that

NET-DNA, which is a component of NETs, promotes cancer

metastasis through CCDC25, which is a transmembrane protein

(10); and it has been shown that NETs formation triggers

protumorigenic inflammatory responses and activates HCC

metastasis (11). NETs are also reported to shield cancer cells

from immune system’s attack and reduce immunotherapy’s

efficacy (12, 13). Despite the growing importance of NETosis in

cancer diagnosis and treatment, studies about its role in LUAD

are limited.

Due to the importance of NETosis to LUAD, our research

focused on developing a genetic pattern involving NETosis-
02
associated genes. In the single-cell dataset, neutrophils scored

highest for NETosis. Based on the NETosis score, all the cells

were divided into two classes, and the class with higher NETosis had

more active cell communication. Based on 61 prognostic related

differently expressed NRGs, we identified two NETosis-related

subtype, exhibited distinct prognosis and TME features. Then a

novel NETosis-related Riskscore consist of eignteen NRGs was

developed by the Enet algorithm. Significant variations were

observed among LUAD patients in different NETRS categories in

terms of immune cell infiltration, clinical features, prognosis, SNV

and CNV variation frequencies, responsiveness to immunotherapy,

and sensitivity to drug. By comparing NETRS with 20 published

gene signatures, we found that NETRS was more powerful in

predicting LUAD patients’ prognosis. Additionally, NETRS was

able to predict the prognosis of patients with various types of

NSCLC. The findings of this study suggest that NETosis may play a

crucial role in developing therapeutic approaches for individuals

diagnosed with LUAD, and could offer fresh perspectives and

sources for future investigations into the function of NETosis

in NSCLC.
Materials and methods

Data acquisition

Clinical information and bulk RNA sequencing data for LUAD

and all NSCLC patients, and data on single nucleotide variations

(SNV) and copy number variations (CNV) for LUAD patients, were

downloaded from the TCGA website (https://portal.gdc.cancer.gov/)

(14). SNV data was processed by the maftools package, and CNV data

were analyzed using GISTIC2.0 (15). Ten GEO datasets for NSCLC

patients, including GSE72094-LUAD, GSE31210-LUAD, GSE8894-

NSCLC, GSE42127-NSCLC, GSE68465-NSCLC, GSE41271-NSCLC,

GSE74777-NSCLC, 3141-NSCLC, GSE30219-NSCLC, and

GSE37745-NSCLC, were obtained from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/) (16). The TCGA-NSCLC dataset

comprises clinical and RNA sequencing information for LUAD
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and LUSC patients. The GSE72094 and GSE31210 datasets

exclusively contain data for LUAD patients. Among the remaining

eight GEO datasets, GSE74777 is the only one that solely includes

data for LUSC patients, while the others all encompass data for

patients with various types of NSCLC. These types include LUAD,

LUSC, lung basal cell carcinoma, lung large cell carcinoma, and other

NSCLC subtypes. It is important to note that the majority of these

NSCLC subtypes are LUAD and LUSC. The GSE127465 dataset

includes single-cell RNA-sequencing information for 7 primary

LUAD samples. That data was downloaded from TISCH (17) and

processed as described in previous (18). Gene sets for NETosis were

compiled from previously published studies (Table S1) (19–21).

Based on the AUCell method, the fraction of enrichment for

NETosis-related gene expression was calculated in single cells (22).

The TIDE score, which is an ICB response predictor for LUAD

patients, was calculated on the TIDE website (http://

tide.dfci.harvard.edu) (23), and an Immunotherapy cohort

phs000452 was downloaded from the TIGER database (http://

tiger.canceromics.org/#/) (24). From Thorsson V’s study (25), we

acquired data on multi-omics, such as neoantigen load

and aneuploidy.
Cell - cell communication analysis

A comparison of intercellular communication frequencies and

intensities between high and low networks was carried out in R-

package ‘CellChat’ (26).
Consensus clustering

Based on the expression of the 61 prognosis-related NETosis-

Related Genes (NRGs), the R package ConsensusClusterPlus was

used to effectively cluster the LUAD patients into different clusters.

All LUAD patients could be clustered into two clusters,

demonstrating prognostic and immunoinfiltration differences.
Differential analysis

Using Seurat’s “FindAllMarkers” function, genes differentially

expressed (DEGs) between two NETRS classes were identified, and

genes had |log2 (fold change)| > 0.25 with adjusted p-value (Padj)

<0.01 were considered as DEGs. DESeq2 package was used to

identify DEGs between normal and LUAD tumor samples, and

genes with Padj < 0.01 and |log2(Fold-change)|> 1 were included.
Enrichment analysis

In order to understand the biological functions and potential

signaling pathways associated with genes related to NETosis, GO

and KEGG enrichment analysis were utilized. In order to uncover

potential prognostic mechanisms related to NETRS, we performed

enrichment analyses using GO, KEGG, and GSVA for genes with
Frontiers in Oncology 03
significant associations. GO and KEGG analyses were performed

with the R package ‘ClusterProfiler’ (27), and GSVA was

performed by ‘GSVA’ package (28). The sets of reference were

named ‘c5.all.v7.0.symbols.gmt’.
Immune infiltration analysis

A total of six algorithms were used to measure the extent of

immune cell infiltration in the TCGA-LUAD dataset. TIMER,

quantTIseq, MCP-counter, EPIC, and ESTIMATE algorithms are

implemented using the R package ‘IOBR’ (29), while the ssGSEA

algorithm is implemented by the R package “GSVA”. We also

compared immune-related molecule expression between patients

with high and low NETRS in the TCGA-LUAD dataset.
Construction of the NETosis-related
Riskscore

Genes associated with survival prognosis are identified through

univariate Cox analysis, and NETRS was constructed through

elastic network (Enet) algorithm. According to the C-Index, we

adjust the a value in the Enet algorithm between 0.1 and 0.9, and

finally determined 0.1 as the optimal a value. Based on the median

NETRS value, patients with NSCLC were categorized into groups of

high risk and low risk. PCA analysis was performed using the R

package ‘status’, while the generation of time-dependent ROC curve

was accomplished using the ‘survminer’ and ‘timeROC’ packages.

In addition, through the R package ‘rms’, we construct a nomogram

by combining NETRS with clinical factors. The calibration curve,

time-ROC curve, and DCA curve were used to evaluate

the nomogram.
Predicting potential drugs target NETRS

The GDSC1 database (https://www.cancerrxgene.org/) (30)

provides information about drug sensi t ive data and

corresponding gene expression matrix. Based on the R package

‘oncoPredict’ (31), we calculated the IC50 value, chich is an

indicator of drug sensitivity, for each sample.
Validation of six NRGs’ expression

Sample Collection: Two datasets (GSE19188 and GSE43458)

containing LUAD tissues and paracancerous tissues were

downloaded from the GEO database. In addition, anatomical

samples involving 8 pairs of LUAD and corresponding

paracancerous tissues were collected from the First Affiliated

Hospital of Fujian Medical University. All patients provided

written informed consent, and the study protocol was approved

by the Ethics Committee of the First Affiliate Hospital of Fujian

Medical University. qRT-PCR analysis: Total RNA was extracted

using an RNA extraction kit (Vazyme, China) following the
frontiersin.org
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manufacturer’s instructions. The extracted RNA was then reverse

transcribed into cDNA using the All-in-One First-Strand Synthesis

MasterMix kit (iScience, China). For qRT-qPCR analysis, triplicate

aliquots of each cDNA sample were prepared using Taq SYBR®
Green qPCR Premix (iScience, China). The internal reference gene

used in this study was b-Actin. The primers of the six NRGs and the

internal reference gene were shown in Table S3.
Statistic analysis

R (version 4.1.1) was used for all statistical analysis. Using the

Wilcoxon test or the t-test, the disparity between two groups was

compared. In correlation analyses, Pearson or Spearman correlation

coefficients were used. The K-M analysis was employed to forecast

the disparity in overall survival between the low and high NETRS

categories. Multivariate Cox regression analysis was conducted to

examine the pred ic t i ve s ign ificance o f NETRS and

clinicopathological features. If Ns- P is greater than or equal to

0.05, *- P is less than 0.05, **- P is less than 0.01, and ***- P is less

than 0.001.
Results

Exploring NETosis-related cell type

In the GSE127465 single-cell sequencing dataset, we obtained a

total of 26,655 cells after initial quality control. Based on the UMAP

map, we observed seven samples with a relatively uniform

distribution of cells, indicating no obvious batch effects

(Figure 1A). The cells were then clustered into 25 clusters

(Figure 1B), and the meta-data from TISCH database was utilized

to identify 12 cell types (Figure 1C). Further analysis using the

AUCell algorithm revealed that neutrophils exhibited the highest

NETosis Score (Figures 1D, E). Subsequently, we divided each cell

population into two groups, High-AUC and Low-AUC, based on

their mean NETosis Score (Figure 1F). Examination of cell-cell

communication showed that cells with a high NETosis Score

demonstrated more frequent and stronger communication

compared to cells with a low NETosis score (Figures 1G, H).
Consensus clustering identified two
NETosis-related subtypes

With the help of the ‘FindAllMarkers’ function in the Seurat

package, we identified differently expressed genes (DEGs) between

high and low NETosis classes. GO analysis shows that these DEGs

are mainly involved in functions related to “neutrophil activation”,

“myeloid leukocyte migration”, “neutrophil chemotaxis”,

“neutrophil migration”, “immune response-regulating signaling

pathway” and “cytokine mediated signaling pathway” (Figure 2A);

KEGG shows that these DEGs related signaling pathways including
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“neutrophil extracellular trap formation”, “TNF signaling pathway”,

“Th17 cell differentiation”, “Apoptosis”, “IL-17 signaling pathway”,

and “Leukocyte transendothelial migration” (Figure 2B). As a result,

these DEGs have a close connection to NETosis. To identify key

genes among these DEGs, we intersected them with DEGs between

normal tissues and LUAD in bulk datasets, and also with genes

whose P-value in univariate cox regression were less than 0.04, and

finally acquired 61 genes (Figure 2C). Most of the 61 genes were

positively correlated, but some were negatively correlated,

according to the correlation heatmap (Figure 2D). Next, we

observed that the clustering effect was most optimal when k=2

(Figure 2E), allowing us to group all LUAD patients into two

clusters based on these 61 genes. Most of these 61 genes exhibited

high expression in cluster 1 (Figure 2F), which was associated with

significantly better prognosis (Figure 2G), earlier stages, and lower

mortality events (Figure 2H) compared to cluster 2. Furthermore,

ssGSEA analysis indicated that cluster 1 had significantly higher

infiltration of immune cells compared to cluster 2 (Figure 2I).

Therefore, patients in these two NETosis clusters exhibited

distinct characteristics.
Construction and validation of the
NETosis-related Riskscore

To better predict patients’ survival based on NETosis-related

genes, we performed Elastic Network on these 61 prognostic related

genes. By utilizing the TCGA-LUAD as the training dataset, it was

observed that the prognostic model achieved its highest C-Index

when the a value was set to 0.1 (Figure 3A). Therefore, we obtain a

NETosis-Related Riskscore (NETRS) consisting of 18 NETosis-

Related Genes (Figure 3B) and their corresponding coefficients

(Figure 3C) by the Enet algorithm (a=0.1).

NETRS=ALDH2*(−0:01837867)+ALOX5AP*(−0:01871386)+CCT6A*

(0:05085945)+CD69*(−0:01867372)+CKAP4*(0:02313153)+DDIT4*

(0:05508357)+DOCK4*(−0:03075094)+ERO1A*(0:09426655)+FBP1*

(−0:03484596)+FKBP4*(0:07161017)+KRT8*(0:06435152)+LDHA*

(0:10353750)+MS4A1*(−0:05941937)+S100P*(0:02683835)+SEC14L4*

(−0:02788501)+SLC16A3*(0:03103659)+SNX30*(−0:03191062)+UBE2S*

(0:01091161)

The median NETRS value was used to categorize patients into

two groups. This showed that patients in the high-NETRS group

had a significantly worse prognosis than patients in the low-NETRS

group, not only in the training set TCGA-LUAD (Figure 3D), but

also in two external validation sets, namely GSE72094-LUAD

(Figure 3E), and GSE31210-LUAD (Figure 3F). Based on the

time-ROC curves, NETRS was able to predict patients' prognoses

at 1, 3, and 4 years with an AUC value greater than 0.7, indicating

satisfactory predictive ability (Figure 3G-I). Additionally, patients

with high NETRS experienced a higher rate of mortality (Figure 3J-

L), and the PCA analysis revealed noticeable differences between

patients with a high and low NETRS (Figure 3M-O).
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NETRS strongly correlates with LUAD
patients’ clinical characteristics

The heatmap illustrates the expression patterns of the 18 genes

comprising NETRS in the TCGA (Figure 4A), GSE72094

(Figure 4B), and GSE31210 (Figure 4C) datasets. We observed

that in all datasets, ALDH2, ALOX5AP, CD69, DOCK4, FBP1,

MS4A1, SEC14L4, and SNX30 were highly expressed in the low-

NETRS group, while the remaining 10 genes were highly expressed

in the high-NETRS group. In the TCGA-LUAD cohort, patients in
Frontiers in Oncology 05
the high-NETRS group exhibited a higher proportion of advanced T

Stage (Figure 4D), N Stage (Figure 4E), Clinical Stage (Figure 4F),

and deceased Survival status (Figure 4G). Furthermore, in the

GSE72094 and GSE31210 cohorts, NETRS also increased with

advanced stages (Figures 4H, J) and deceased status (Figures 4I,

K). Additionally, we discovered that in the TCGA cohort, patients’

Progress Free Survival (PFS) decreased as their NETRS increased

(Figure 4L). Similarly, in the GSE31210 cohort, patients’ Relapse

Free Survival (RFS) followed a similar trend (Figure 4M).

Surprisingly, in the GSE31210 cohort, NETRS achieved an
B

C

D

E

F

G H

A

FIGURE 1

Identification of NETosis related active cells. (A) The UMAP plot shows the distribution of cells from 7 samples. (B, C) Cells were clustered into 25
clusters (B) and identified as 12 different types (C). (D) The distribution of NETosis Score at the UMAP map. (E) Violin plot shows that neutrophils has
highest NETosis Score. (F) Cells were classified into two clusters based on their NETosis score. (G, H) Comparison of the number and intensity of
interaction between high and low NETosis Scores’ cells using the bar plot (G) and the network diagram (H).
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impressive predictive power for patients’ 1-year RFS, with a score of

0.943 (Figure 4M), highlighting its excellent predictive capability.
Comparison of NETRS with previously
published prognostic models

In order to demonstrate the superiority of NETRS, we compared

its predictive power with 20 previously published prognostic gene
Frontiers in Oncology 06
signatures for LUAD. These signatures consisted of functional genes

related to lactic acid metabolism (PMID:36275729), mitotic spindle

(PMID:37266661), autophagy (PMID:35529878), inflammation

(PMID:35069695), cuproptosis (PMID:36353226), pyroptosis

(PMID:36437954), and apoptosis (PMID:35571020). Genes’

coefficients and calculation formulas for each signature can be

found in the respective articles. Then we extracted the gene

signatures from the found candidate studies and applied them to

our three study cohorts (TCGA-LUAD, GSE72094-LUAD, and
B C

D E F

G H

I

A

FIGURE 2

Consensus clustering identified two NETosis-related clusters. (A, B) GO (A) and KEGG (B) analysis on DEGs between high- and low- NETosis classes.
(C) The Venn diagram. (D) The correlation heatmap illustrates the 61 genes’ relationship with each other. (E) When k=2, the cluster effect was best.
(F) The 61 genes’ expression map between two clusters. (G) Two cluster patients’ different prognosis. (H) The sankey graph shows clusters’
association with clinical features. (I) Comparison of the immune infiltration level between cluster1 and cluster2, ‘*’ means P value is less than 0.05,
‘***’ means P value is less than 0.001.
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GSE31210-LUAD). By calculating the C-Index for each gene

signature, it was observed that NETRS exhibited the highest C-

Index among the three cohorts (Figures 5A, D, G). Univariate Cox

regression analysis revealed that NETRS exhibited the highest HR

value, indicating a higher risk compared to these signatures
Frontiers in Oncology 07
(Figures 5B, E, H). Moreover, in terms of predicting patients’

prognosis at 1- and 2- years, NETRS outperformed almost all

signatures, as indicated by the higher AUC value (Figures 5C, F, I).

In the GSE31210 cohort, NETRS demonstrated slightly weaker

performance than Li, Zhao et al.’s signatures in predicting patients’
B C

D E F

G H I

J K

M N

A

L

O

FIGURE 3

The NETRS was identified and confirmed. (A) When setting the a value as 0.1, the Enet model gets its highest C-index. (B, C) The Enet algorithm
(a=0.1) identified 18 NETosis-related genes (B) and their corresponding coefficients (C). (D–F) Patients’ different prognosis between high- and Low-
NETRS groups in TCGA (D), GSE72094 (E), and GSE31210 (F) sets. (G–I) The time-ROC curves shows the AUC value of NETRS in predicting patients’
survival in TCGA (G), GSE72094 (H), and GSE31210 (I) sets. (J–L) Patients’ different OS events between high- and low- NETRS groups in TCGA (J),
GSE72094 (K), and GSE31210 (L) sets. (M–O) The PCA analysis showed that two NETRS group patients’ characteristics differed extinct in the TCGA
(M), GSE72094 (N), and GSE31210 () sets.
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1-year survival (Figure 5I). However, in other cohorts, the

performance of Li, Zhao et al.’s signatures were significantly lower

than that of NETRS, suggesting a chance effect. Additionally, by

utilizing two machine learning algorithms, namely RandomForest

and Boruta, we have further validated the importance of NETRS.

Both algorithms consistently ranked NETRS as the most significant

feature among all 21 signatures (Figures 5J–O). In general, NETRS

exhibited superior predictive capabilities for the prognosis of LUAD

patients compared to the other 20 gene signatures, thereby

establishing itself as a more dependable prognostic indicator.
Frontiers in Oncology 08
Construction and validation
of a nomogram

NETRS was evaluated as an independent prognostic factor using

univariate and multivariate Cox regression analysis. The results

demonstrated that even after accounting for clinical factors, NETRS

still significantly impacted the prognosis of LUAD patients. This

suggests that NETRS can serve as an independent prognostic

indicator, not only in the TCGA-LUAD cohort (Figures 6A, B), but

also in the GSE72094 (Table 1) and GSE31210 (Table 2) cohorts. By
B C

D E F G

H I J K

L M

A

FIGURE 4

NETRS strongly correlates with LUAD patients’ clinical features. (A–C) Heatmaps showed the expression pattern of the 18 genes that make up
NETRS in the TCGA (A), GSE72094 (B), and GSE31210 (C) sets. (D–G) LUAD patients in the high-NETRS group exhibited higher proportion of
advanced T (D), N (E), pathologic Stage (F), and lethal OS event (G) in the TCGA-LUAD cohort. (H, I) In GSE72094 cohort, patients’ NETRS increased
with Stage progression (H) and lethal OS event (I). (J, K) In GSE31210 cohort, patients’ NETRS increased with Stage progression (J) and lethal OS
event (K). (L) NETRS’s efficacy in predicting LUAD patients’ PFS in TCGA cohort. (M) NETRS’s efficacy in predicting LUAD patients’ RFS in GSE31210
cohort. ‘*’ means P value is less than 0.05, ‘***’ means P value is less than 0.001.
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combining NETRS with clinical factors like TNM Stage, age, and

gender, we developed a nomogram to predict the prognosis of LUAD

patients. The nomogram had a C-Index of 0.729 in TCGA (Figure 6C),

and its calibration curve (Figure 6D) and time-ROC curve (Figure 6E)

confirmed its reliable predictive ability. Additionally, the DCA curves
Frontiers in Oncology 09
indicated that when integrated with clinical characteristics, NETRS

exhibited a more robust predictive capability (Figures 6F–H). Finally,

based on the time-AUC curve, we can conclude that the nomogram

had the strongest predictive power, followed by NETRS and TNM

Stage, while age and gender had the least predictive impact (Figure 6I).
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FIGURE 5

Comparing NETRS with previously published 20 gene signatures. (A, D, G) Comparison of the C-Index of NETRS and 20 gene signatures in TCGA
(A), GSE72094 (D), and GSE31210 (G) cohorts. (B, E, H) Comparison of the HR value of NETRS and 20 gene signatures in TCGA (B), GSE72094 (E),
and GSE31210 (H) cohorts. (C, F, I) Comparison of the AUC value of NETRS and 20 gene signatures in TCGA (C), GSE72094 (F), and GSE31210 (I)
cohorts. (J–L) Exploring the importance of the 21 gene signatures in predicting patients’ survival in TCGA (J), GSE72094 (K), and GSE31210 (L)
cohorts using RandomForest. (M–O) Exploring the importance of the 21 gene signatures in predicting patients’ survival in TCGA (M), GSE72094 (N),
and GSE31210 (O) cohorts using Boruta.
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Exploring NETRS associated
biological functions

In order to clarify the mechanism behind NETRS’ excellent

predictive abilities, further studies were carried out. Correlation

analysis was performed to identify genes associated with NETRS,

and we visualized the top 50 correlated genes (Table S2; Figure 7A).

Genes positively correlated with NETRS were mainly involved in
Frontiers in Oncology 10
biological processes, such as ‘Cell cycle’, ‘DNA replication’,

‘chromosome segregation’, ‘nuclear division’, and ‘p53 signaling

pathway’ (Figure 7B); while genes negatively correlated with NETRS

were mainly concentrated in some immune-related functions such as

‘macrophage activation’, ‘immune receptor activity’, ‘chemokine

binding’, ‘MHC protein complex assembly’, and ‘mononuclear cell

differentiation’ (Figure 7C). Besides, cell cycle associated gene sets had

higher activity in the high-NETRS group (Figure 7D), while immune-
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FIGURE 6

Construction of the Nomogram. (A, B) Uni- (A) and Multi- (B) variable Cox regression analysis identified NETRS as an independent prognostic factor.
(C–E) The nomogram (C) and its calibration (D), and ROC (E) curves. (F–H) The DCA curves showed that the nomogram has stronger power for
predicting patients’ 1- (F), 2- (G), and 3- (H) years’ survival than single clinical factors and NETRS. (I) Time-AUC curves shows that after incorporating
clinical factors, NETRS has stronger power for predicting patients’ survival.
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function related gene sets scored higher in the low-NETRS group

(Figure 7E), which echoing the results of GO and KEGG analysis.
Exploring NETRS at single-cell level

Figures 8A, B illustrate the distribution of cellular expression for

18 NETRS genes. It was observed that LDHA was expressed in

seven different cell types, MS4A1 was exclusively expressed in B

cells, S100P only in neutrophils, and FBP1 exclusively in mono/

macrophages. SNX30, UBE2S, SEC14L4, FKBP4, and DOCK4

exhibited low expression levels across all cell types. Moving

forward, we performed NETRS calculations at the single-cell level,

which revealed that malignant cells exhibited the highest NETRS

values (Figure 8C). By categorizing all cells into two groups based

on the mean NETRS value (Figure 8D), we observed that the high

NETRS group consisted of a larger proportion of tumor cells

(Figure 8E), advanced T (Figure 8F) and N (Figure 8G) stages.

Additionally, we validated enrichment analysis results in bulk

datasets, demonstrating that cells with high NETRS scores

exhibited elevated EMT (Figure 8H), cell cycle (Figure 8I), and

DNA replication repair (Figure 8J) scores, indicative of more

malignant characteristics.
NETRS significantly affects the TME

Due to the immune-hot characteristics observed in patients

with low NETRS (Figure 7E), we conducted a comprehensive

investigation into the relationship between NETRS and the tumor
Frontiers in Oncology 11
microenvironment (TME). After verifying six algorithms, we found

that the low-NETRS group exhibited higher levels of immune cell

infiltration (Figure 9A). This pattern was also observed in the

single-cell dataset (Figure 9C). Furthermore, the low-NETRS

group displayed significantly higher expression of various TME

regulators, including immunoinhibitors, stimulators, chemokines,

and MHC molecules (Figure 9D). Remarkably, we observed a

significant positive correlation between most immune cells, while

a significant negative correlation was evident between NETRS and

the majority of immune cells (Figure 9B). Similar correlations were

observed among TME regulators, with NETRS demonstrating

significant negative associations with most of them (Figure 9E).

Additionally, patients with low NETRS showed a marked reduction

in the TIDE score, indicating a potentially greater benefit from

immune checkpoint blockade (ICB) therapy for these individuals

(Figure 9F). This hypothesis was validated in the ICB therapy

cohort phs000452, where patients with low NETRS exhibited a

higher proportion of ICB responders (Figure 9G) and showed

improved prognosis (Figure 9H).
Multi-omics comparison between
NETRS-high and NETRS-low
groups in TCGA- LUAD

The top 20 genes with the highest mutation frequency were

analyzed and visualized between groups with high and low NETRS

scores (Figures 10A, B). Patients in the high-NETRS group had

significantly higher gene mutation frequency (high-NETRS:

TP53:60%, TTN: 54%, CSMD3: 49%, MUC16: 47%, RYR2: 40%;
TABLE 1 The NETRS in GSE72094 cohort was analyzed using both univariable and multivariable Cox regression analysis.

Characteristics
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age (≤65 vs >65) 0.712 (0.464 - 1.093) 0.121 0.697 (0.451 - 1.075) 0.102

Gender (female vs male) 1.547 (1.065 - 2.246) 0.022 1.623 (1.110 - 2.374) 0.012

TNM Stage (I&II vs III&IV) 2.607 (1.736 - 3.914) < 0.001 2.655 (1.759 - 4.007) < 0.001

NETRS (low vs high) 3.218 (2.114 - 4.899) < 0.001 3.177 (2.082 - 4.849) < 0.001
The bold values means that the values were statistically significant, meaning that the p-value was less than 0.05.
TABLE 2 The NETRS in GSE31210 cohort was analyzed using both univariable and multivariable Cox regression analysis.

Characteristics
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age (≤65 vs >65) 2.583 (1.313 - 5.083) 0.006 4.409 (2.145 - 9.066) < 0.001

Gender (female vs male) 1.519 (0.780 - 2.955) 0.219 1.379 (0.703 - 2.707) 0.350

TNM Stage (I vs II) 4.232 (2.175 - 8.236) < 0.001 3.226 (1.583 - 6.575) 0.001

NETRS (low vs high) 7.016 (2.720 - 18.096) < 0.001 5.983 (2.251 - 15.898) < 0.001
The bold values means that the values were statistically significant, meaning that the p-value was less than 0.05.
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low-NETRS: TP53: 38%, TTN: 33%, CSMD3: 28%, MUC16: 32%,

RYR2: 31%). Besides, NETRS posotively correlated with TMB

(Figure 10C), and patients in high-NETRS group had higher

TMB (Figure 10D). Survival analysis showed that TMB didn’t

affect patients’ prognosis (Figure 10E). However, after combining

TMB with NETRS, it can better stratify patients’ survival

(Figure 10F), and patients with Low NETRS + High TMB had

relatively best prognosis. Patients in high-NETRS group had higher

neoantigen load (Figure 10G), higher gene mutation rate

(Figure 10H), high number of segments (Figure 10I), fraction

altered (Figure 10J), aneuploidy score (Figure 10K), and
Frontiers in Oncology 12
homologous recombination defect (Figure 10L). Besides, we

found that the CNV event also differed significantly between two

NETRS groups (Figures 10M, N). Patients in the high-NETRS

group had a higher frequency of CNV event, and most of them

were amplification; while patients in the low-NETRS group had

relatively lower frequency of CNV, and deletion had higher

proportion. In addition, we found from the ChromPlots that

patients in the high NETRS group had significantly higher G-

Scores than patients in the low NETRS group (Figures 10O, P).

Thus, high-NETRS patients with LUAD were more likely to display

malignant characteristics.
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FIGURE 7

Enrichment analysis of potential biological functions associated with NETRS. (A) The heatmap shows the top 50 genes which are most correlated
with NETRS. (B, C) GO and KEGG analysis showed the functions of genes positively (B) or negatively (C) correlated with NETRS. (D, E) GSVA analysis
revealed the gene sets with high activity in the high NETRS group (D) and the gene sets with high activity in the low NETRS group (E).
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Identification of potential drugs
targeting NETRS

Based on the drug information obtained from GDSC1, we

investigated the relationship between NETRS and commonly used

drugs for the clinical treatment of LUAD. Through correlation

analysis, we found a negative correlation between NETRS and the

IC50 values of 13 drugs (Figure 11A). These drugs, namely

Docetaxel, Gefitinib, Vinorelbine, Cisplatin, Vinblastine,

Paclitaxel, Gemcitabine, Etoposide, Methotrexate, Sorafenib,

Mitomycin-C, Doxorubicin, and Afatinib, exhibited significantly

lower IC50 values in the high-NETRS group compared to the low-

NETRS group. This suggests that patients in the high-NETRS group

may potentially benefit more from these drugs (Figures 11B–N).
Frontiers in Oncology 13
NETRS is also valuable in predicting all
NSCLC patients’ survival

In light of these analyses, NETRS is a superior and robust

prognosticator for patients with LUAD. However, NSCLC includes

many subtypes, including LUAD, LUSC (lung squamous cell

carcinoma), lung large cell carcinoma, lung basal cell carcinoma et al.

Aiming to assess how well NETRS predicts the prognosis of patients

with all forms of NSCLC, we collected nine independent datasets of

NSCLC patients. In these nine datasets, except for the GSE74777

dataset only includes data for LUSC patients, all datasets contain data

for patients with various NSCLC types. Figure 12A shows the

expression of 18 NETRS genes in the TCGA-NSCLC cohort. In this

cohort, NETRS increased with advanced T (Figure 12B), N
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FIGURE 8

Exploring NETRS’s distribution at cellular level. (A, B) The violin plot (A) and the dot plot (B) showed the 18 NETRS genes’ expression at different cell
types. (C) Different cells’ NETRS level. (D) On the UMAP plot, the distribution of cells in high and low NETRS groups is shown. (E–G) Different cell (E), T
Stage (F), and N Stage (G) proportion at different NETRS groups. (H–J) High-NETRS cells had higher EMT (H), Cell cycle (I), and DNA replication activity.
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(Figure 12C), and TNM stages (Figure 12D), and dead survival event

(Figure 12E), similar to the results in LUAD cohorts. Including the

TCGA-NSCLC cohort, nine independent cohorts found that NSCLC

patients with high NETRS had a significantly worse prognosis than

those with low NETRS (all P-value < 0.01), and the ROC curves

demonstrated that NETRS is highly predictive (Figures 12F–N).

Therefore, NETRS is also valuable in predicting the prognosis of

patients suffering from all types of NSCLC.
Frontiers in Oncology 14
Validation of six NRGs’ expression using
three datasets, qRT-PCR, and
Immunohistochemical staining

NETRS is comprised of 18 NRGs, of which six genes -

ALOX5AP, DOCK4, CCT6A, MS4A1, SEC14L4, and SNX30 -

have been minimally investigated in relation to LUAD. To further

explore the potential involvement of the six NRGs in LUAD, we
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FIGURE 9

The effects of NETRS on the TME. (A) Immunocytes infiltrated significantly different between high- and low- NETRS groups. (B) NETRS negatively
correlated with immune cells’ infiltration. (C) In sc-RNA set, low-NETRS group had higher immune cell level. (D) TME modulators expressed
significantly different between two NETRS groups. (E) NETRS negatively correlated with TME modulators’ expression. (F) Patients with low NETRS had
lower TIDE score. (G) The low-NETRS group had higher ICB responders’ proportion. (H) Patients receiving immunotherapy with lower NETRS had
better prognosis. ‘***’ means P value is less than 0.001.
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conducted a comparative analysis of their expression levels

between LUAD and normal tissues. In three separate datasets,

we observed high expression levels of DOCK4, ALOX5AP,

SNX30, and SEC14L4 in normal lung tissues. Conversely, LUAD

tissues showed high expression levels of CCT6A and MS4A1

(Figures 13A, C, E). Furthermore, the ROC curves demonstrated
Frontiers in Oncology 15
that all the six NRGs exhibited high diagnostic accuracy

(Figures 13B, D, F).

Although we have unveiled the differential expression of the six

NRGs, all the analyses were performed using publicly available

databases. To further validate the expression of six NRGs and

enhance the credibility of NETRS, we collected clinical samples
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FIGURE 10

The multi-omics landscape differences between high and low NETRS groups. (A, B) High- (A) and low- (B) NETRS patients’ somatic mutation
frequency. (C, D) NETRS’s correlation with TMB (C) and different NETRS groups patients’ TMB difference (D). (E, F) TMB (E) or TMB combined with
NETRS’s effect (F) on patients’ survival. (G–L) High- and low- NETRS group patients’ different neoantigen load (G), gene mutation rate (H), number of
segments (I), fraction altered (J), aneuploidy score (K), and homologous recombination defect (L). (M, N) The top 18 CNV events in high- (M) and
low- (N) NETRS groups. (O, P) ChromPlots show patients’ G-score in high- (O) and low- (P) NETRS groups. ‘***’ means P value is less than 0.001.
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and conducted qRT-PCR analysis. In line with the findings from

publicly available databases, DOCK4, ALOX5AP, SNX30, and

SEC14L4 exhibited high expression levels in normal lung tissues,

while CCT6A and MS4A1 were highly expressed in LUAD tissues

(Figure 13G). Finally, we selected ALOX5AP and CCT6A as

representatives and validated their localization and protein

expression in tissues by immunohistochemical staining.

Consistent with the previous findings, immunohistochemical

staining images demonstrated that ALOX5AP expression was

decreased in LUAD (Figure 13H), whereas CCT6A expression

was increased in LUAD (Figure 13I).
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Discussion

There has been considerable progress in treating lung cancer, but it

remains a very challenging tumor for medical professionals to treat

adequately. The development of high-throughput sequencing technology

has led to the discovery of more and more prognostic markers. The role

of A newly detected type of programmed cell death is NETosis. NETosis

in various tumor pathology is now well established, however it remains

unclear what their precise molecular mechanism is (32, 33). This study

comprehensively investigated NETosis-related genes in NSCLC due to

the limited research on the role of NETosis in this context.
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FIGURE 11

High-NETRS patients may more sensitivity to chemotherapy. (A) NETRS’s relationship with drugs’ IC50 value. (B–N) Comparison of the IC50 value of
Docetaxel (B), Gefitinib (C), Vinorelbine (D), Cisplatin (E), Vinblastine (F), Paclitaxel (G), Gemcitabine (H), Etoposide (I), Methotrexate (J), Sorafenib (K),
Mitomycin-C (L), Doxorubicin, (M) and Afatinib (N) between high- and low- NETRS groups’ patients.
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In the first step, the AUCell algorithm was used to calculate the

NETosis scores for various cell types. Our results indicated that

neutrophils had the highest NETosis score, it may due to the fact

that NETosis is a neutrophil-mediated programmed cell death. In

the next step, we divided each population into two groups based on

their mean NETosis score. According to cell-cell communication

analysis, cells with high NETosis Score communicate more
Frontiers in Oncology 17
frequently and strongly than those with low NETosis Score. This

suggests that cells with a high NETosis score may be more active in

the TME, leading to anti-disease or pathogenic mechanisms. We

then determined DEGs between high NETRS and low NETRS cells,

and enrichment analysis showed that these genes were significantly

correlated with NETosis. By intersecting DEGs between high and

low NETRS cell groups in single-cell dataset, with DEGs between
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FIGURE 12

The value of NETRS in predicting the prognosis of NSCLC patients. (A) The 13 NETRS genes’ expression pattern in TCGA-NSCLC cohort. (B–E)
NSCLC patients’ NETRS between different T (B), N (C), TNM (D) Stages, and survival events (E). (F–N) The prognosis of NSCLC patients among high-
and low- NETRS groups at TCGA-NSCLC (F), GSE8894 (G), GSE42127 (H), GSE68465 (I), GSE41271 (J), GSE74777 (K), 3141 (L), GSE30219 (M), and
GSE307745 (N) sets and the corresponding time-dependent ROC curves. ‘***’ means P value is less than 0.001.
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normal tissues and LUAD in bulk datasets, and also with prognostic

related genes, 61 NETosis-related Genes (NRGs) were identified.

Then based on these 61 NRGs, we identified two NETosis-related

clusters. Patients in cluster1 had better prognosis and more active

TME characteristics, and most of the 61 NRGs were highly

expressed in cluster1, which suggested that cluster1 may more
Frontiers in Oncology 18
like to be a NETosis-like cluster. Cluster1 also demonstrated a

significant improvement in prognosis, suggesting that higher NET

activity in LUAD patients’ TME may benefit tumor cell clearance.

After that, the NETRS comprised of 18 NRGS was obtained using

the Enet algorithm (a=0.1). NETRS proved superior predictive

efficacy and was an independent prognostic factor in both training
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FIGURE 13

Validation of six NRGs’ expression using three datasets and clinical samples. (A, B) Six NRGs’ differential expression between normal lung and LUAD
tissues (A), and their diagnostic value (B) in the TCGA dataset. (C, D) Six NRGs’ differential expression between normal lung and LUAD tissues (C), and
their diagnostic value (D) in the GSE19188 dataset. (E, F) Six NRGs’ differential expression between normal lung and LUAD tissues (E), and their
diagnostic value (F) in the GSE43458 dataset. (G) The differential expression of six NRGs between normal lung and LUAD tissues by qRT-PCR
analysis. (H–I) Immunohistochemical staining confirmed the decreased protein level of ALOX5AP (H) and increased protein level of CCT6A (I) in
LUAD tissues. ‘*’ means P value is less than 0.05, ‘**’ means P value is less than 0.01, and ‘***’ means P value is less than 0.001.
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TCGA-LUAD and test sets GSE72094-LUAD and GSE31210-

LUAD. Additionally, significant differences were observed

between patients categorized into high and low NETRS groups, as

determined by PCA analysis. Further exploration was conducted to

investigate the potential prognostic mechanism of NETRS, along

with the disparities in immune cell infiltration, expression of

immune-related molecules, SNV and CNV frequencies, TMB,

Neoantigen load, and response to immunotherapy, and drug

sensitivity among patients with high and low NETRS. The

construction of nomograms revealed that the prognostic ability of

NETRS was improved when integrated with clinical parameters,

offering a novel approach to predict the prognosis of patients with

LUAD. NETRS can also predict all NSCLC patients’ prognosis,

which is its another valuable feature: Among more than 2,000

NSCLC patients in nine independent cohorts, patients with high

NETRS all had significantly worse outcomes than those with low

NETRS, which demonstrated the multifaceted value of NETRS.

Lastly, the differential expression of the six identified NRGs was

verified using three independent datasets, along with clinical

samples gathered from our own collection. These six NRGs have

been relatively understudied in LUAD. This study is the first to

confirm their expression patterns. Specifically, DOCK4, ALOX5AP,

SNX30, and SEC14L4 showed elevated expression levels in normal

lung tissues, while CCT6A and MS4A1 exhibited high expression in

LUAD tissues. Therefore, this finding not only provides a basis for

future investigations on these NRGs in LUAD, but also reinforces

the efficacy and reliability of NETRS.

NETRS consisted of 18 NRGs: ALDH2, ALOX5AP, CCT6A,

CD69, CKAP4, DDIT4, DOCK4, ERO1A, FBP1, FKBP4, KRT8,

LDHA, MS4A1, S100P, SEC14L4, SLC16A3, SNX30, and UBE2S.

The lasso regression coefficient of UBE2S, CKAP4, S100P,

SLC16A3, CCT6A, DDIT4, KRT8, FKBP4, ERO1A, and LDHA is

greater than 0, which were risk factors; while the regression

coefficients of MS4A1, FBP1, SNX30, DOCK4, SEC14L4,

ALOX5AP, CD69, and ALDH2 were less than 0, which were

protective factors. Some of these genes have been extensively

studied in relation to LUAD. Overexpression of ALDH2

(protective factor in our study) decreased migration, and

proliferation in LUAD cells, but knockdown of ALDH2 increased

these properties (34); the growth rate of lung cancer cells

overexpressed with CKAP4 (risk factor in our study) was

increased in vivo, while an antibody against the protein inhibited

it (35); LUAD cells were impaired in their ability to invade,

metastasize, and proliferate after FBP1 (protective factor in our

study) was overexpressed (36); FKBP4 and S100P (risk factors in

our study) promotes proliferation and migration of NSCLC cells

and inhibits apoptosis, while promoting tumor growth in vivo (37,

38). Additionally, GO and GSVA enrichment analyses showed that

genes positively associated with NETRS were significantly enriched

in functions related to cell cycle. Studies shown that when EOR1A

(risk factor in our study, also known as ERO1L) was depleted from

NSCLC cells, the expression of factors associated with cell cycle is

dramatically reduced (39). Thus, cell cycle-related functions

enriched in patients with a high NETRS may as a result of these

risky factors such as ERO1A. Besides, enrichment analysis also

showed that genes negatively correlated with NETRS were distinctly
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enriched in functions related to the immune system. We found that

CD69 (protective factor in our study) was highly expressed in low-

NETRS groups. CD69 has been shown to play an important role in

regulating TME, and it may play a role in affecting PD-1 treatment

response (40). Thus, immune-related functions enriched in patients

with a low NETRS may as a result of these protective factors such

as CD69.

Cancer immunotherapy offers new hope to patients with

cancerous growths, but evading the immune system remains a

formidable challenge to treatment (41, 42). According to our

research, individuals belonging to the low NETRS category

exhibited elevated levels of immune cell infiltration, increased

expression of immune-related substances, including well-known

immune checkpoints like PDCD1, BTLA, CTLA4, along with

chemokines/receptors and MHC molecules. Consequently,

individuals with low levels of NETRS experience ‘immune hot’

symptoms accompanied by greater immune cell infiltration.

Moreover, it was discovered that individuals possessing a low

NETRS exhibited considerably reduced TIDE scores, which

means that the TIDE algorithm anticipated that patients with a

low NETRS would display heightened responsiveness to

immunotherapy. This hypothesis was confirmed in the phs000452

immunotherapy cohort. Furthermore, we compared the sensitivity

of patients in different NETRS groups to a number of drugs

commonly used to treat NSCLC in clinics. These was a number

of chemotherapy agents can effectively treat patients with NSCLC,

such as paclitaxel, docetaxel, cisplatin, vincristine, and vinorelbine.

Interestingly, these chemotherapy agents’ IC50 value in patients

with high-NETRS patients, which means patients with higher

NETRS may more sensitive to these drugs. In addition, the IC50

value of gefitinib and afatinib, which target NSCLC patients with

EGFR mutation, remain low in patients with high NETRS (43, 44).

Thus, patients with high NETRS would likely benefit more from

targeted and chemotherapy therapies, while those with low NETRS

would benefit more from immunotherapy.

In spite of the fact that NETosis is a PCD mode which strongly

associated with neutrophils, this is the first study to investigate how

NETosis-related genesets are expressed by the cells of LUAD

tissues, and confirmed that neutrophils has the highest NETosis

score in LUAD. Through this, we gained a deeper understanding of

NETosis, and provided some novel insights into the effects of

NETosis on TME for future studies. This study is also the first to

systematically investigate the prognostic role of NETosis-related

genes in NSCLC, and the NETRS consisting of 18 NRGs

demonstrated its powerful predictive power in 12 cohorts of

nearly 3,300 NSCLC patients. In comparison to 20 previously

published gene signatures, NETRS had higher C-Index, HR value,

and greater accuracy in predicting 1- and 2-year survival of LUAD

patients. According to two machine learning algorithms, NETRS

had the greatest impact on the survival of LUAD patients compared

to these 20 signatures. Thus, we have developed a gene signature

that more accurately predicts LUAD prognoses. In addition, we

found that when our predecessors applied single-cell sequencing to

construct prognostic models, they didn’t combined functional

phenotypes, such as the study of Song et al. (PMID:35757748,

PMID:35152302) and the study of Zhang et al. (PMID:37507593).
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In these studies, prognostic models were only constructed based on

the markers genes of B cells, NK cells, and DCs, while the

relationship between functional phenotypes and cells wasn’t

explored. Besides, some studies that targeting functional

phenotypes didn’t utilize single-cell sequencing sets, such as the

study of Zhao et al. (PMID:36275729) and the study of Li et al.

(PMID:35529878). Therefore, we believe that combining single-cell

sequencing with functional phenotypes to construct prognostic

models can provide new insights into future prognostic studies.

Although the study demonstrated NETRS’s remarkable

capability in forecasting prognosis and gauging therapy response

in LUAD patients, it still has certain constraints. Initially, all the

information in this research originated from publicly accessible

databases, and the effectiveness of NETRS was not validated using

our own group of subjects. A second reason is that our study only

validated the expression patterns of six NRGs and did not

extensively investigate their role in LUAD. In our future study,

we will confirm the effectiveness of NETRS in larger groups, and

additionally investigate the NRGs’ risky or protective role in

LUAD further.

To sum up, this research has devised a novel NETRS (NETosis-

related Riskscore) which can accurately forecast the prognosis of

patients with NSCLC and their reaction treatment. It offers fresh

perspectives for future investigations on genes associated with

NETosis and the combining use of bulk- and single-cell RNA-

sequencing data.
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