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Background: Acute myeloid leukemia (AML) is a malignant disease originating from

myeloid hematopoietic stem cells. Recent studies have shown that certain gene

mutations promote tumor cell survival and affect the prognosis of patients by

affecting metabolic mechanisms in tumor cells. RAS gene mutations are prevalent

in AML, and the RAS signaling pathway is closely related to many metabolic

pathways. However, the effects of different RAS gene mutations on AML cell

metabolism are unclear.

Objectives: The main purpose of this study was to explore the effect of RAS gene

mutation on the metabolic pathway of tumor cells.

Methods: In this study, we first used a retrovirus carrying a mutant gene to

prepare Ba/F3 cell lines with RAS gene mutations, and then compared full-

transcriptome data of Ba/F3 cells before and after RAS gene mutation and found

that differentially expressed genes after NRASQ61K and KRASG12V mutation.

Results: We found a total of 1899 differentially expressed genes after NRASQ61K

and KRASG12V mutation. 1089 of these genes were involved in metabolic

processes, of which 167 genes were enriched in metabolism-related pathways.

In metabolism-related pathways, differential genes were associated with the lipid

metabolism pathway. Moreover, by comparing groups, we found that the

expression of the DGKzeta and PLA2G4A genes in the glycerophospholipid

metabolism pathway was significantly upregulated.

Conclusion: In conclusion, our study revealed that RAS gene mutation is closely

related to the glycerophospholipid metabolism pathway in Ba/F3 cells, which

may contribute to new precision therapy strategies and the development and

application of new therapeutic drugs for AML.

KEYWORDS

acute myeloid leukemia, NRAS Q61K, KRAS G12V, glycerophospholipid metabolism,
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1 Introduction

Acute myeloid leukemia (AML) is a heterogeneous

hematologic malignancy originating from hematopoietic stem

cells and is characterized by clonal proliferation and abnormal

differentiation of myeloid cells in bone marrow and peripheral

blood (1). AML is the most common leukemia in adults and the

second most common acute leukemia in children, with high

mortality and low overall survival in both adults and children

(2). AML is accompanied by many kinds of cytogenetic

abnormalities, and different cytogenetic abnormalities can

significantly affect prognosis in AML (3). During AML

pathogenesis, metabolic mechanisms are altered to meet the

high demands of metabolic models established by cloning

malignant tumor cells (4). By using different sources of

nutrients for energy and biomass supply, AML cells exhibit

metabol ic plast ic i ty and rapidly outcompete normal

hematopoietic cells, leading to their high involvement in disease

progression and resistance to treatment (5). The RAS oncogene

has been identified as a key factor in the regulation of cell

proliferation induced by retroviruses (6). The RAS protein

encoded by this gene is a specialized guanine nucleotide-binding

and hydrolyzing molecule that belongs to the small G-protein

superfamily (7). Mutant Ras proteins differentially activate the

RAF/MEK/ERK kinase cascade and other noncanonical

downstream signaling molecules, which are closely related to

tumorigenesis (8). In addition, studies have shown that the RAS

protein family can significantly affect the metabolism of tumor

cells and exert a significant impact on the metabolism of various

organic compounds in tumor cells (9). Statistical analyses revealed

a high incidence of RAS gene mutations in AML, especially in

children (10). However, whether RAS gene mutations affect the

metabolism of AML cells remains unclear.

In our study, by comparing changes in the transcriptome before

and after RAS gene mutation, we identified key pathways and genes

related to cell metabolism that are affected by RAS gene mutation,

which may lead to the identification of new targets and strategies for

the treatment of AML.
2 Materials and methods

2.1 Cell culture

Ba/F3 is an IL-3 dependent mouse pre B-cell line. Because it can

survive independently of IL-3 after the introduction of a driving

mutant gene, it has been used as a common tool to study the role of

secondary mutant genes (11). In the published literature, Ba/F3 cell

line was also used as a model cell to study AML (12–14). In our

study, Ba/F3 cells were maintained in RPMI (Gibco, Thermo Fisher

Scientific, USA) supplemented with 10% fetal bovine serum (FBS,

FBS-S500), 100 U/ml penicillin, 100 µg/ml streptomycin (Gibco,

Thermo Fisher Scientific, USA) and 1 ng/ml IL-3 (PeproTech, USA)

at 37°C in a humidified atmosphere containing 5% CO2.
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2.2 Generation of RAS gene-mutated
Ba/F3 cells

Following the experimental method described by Chen et al

(15), we used a retrovirus carrying a mutant gene to prepare Ba/F3

cell lines with RAS gene mutations. Retroviruses carrying the

pMSCV-IRES-GFP plasmid vector harboring full-length KRAS-

G12V and NRAS-Q61K were used, along with the pVSV-G

plasmid, to transfect GP2-293 cells (16, 17). Recombinant

retroviruses were isolated by centrifugation at 20000×g for 2 h,

and these viruses were used to infect Ba/F3 cells in the presence of 5

mg/ml polybrene (Sigma–ldrich, USA) under centrifugation at

1800×g for 2 h at room temperature. Infected Ba/F3 cells were

cultured in RPMI with 10% FBS in the presence of IL-3 for 24 h and

then seeded in semisolid medium containing RPMI, 10% FBS, and

1% methylcellulose but not IL-3. Single colonies were selected after

8-10 days in culture and expanded in IL-3-free liquid medium. Ba/

F3 cells successfully producing RAS gene mutations can grow

independently of IL3.
2.3 Transcriptome analysis

After cultivation and further amplification, stable Ba/F3

parental, KRASG12V and NRASQ61K cell lines were obtained. The

cells were collected in lyophilization tubes and frozen in liquid

nitrogen for 10 minutes. Raw data and normalized gene expression

data are deposited in the sequence read archive database under

accession numbers PRJNA1006527. The isolation of RNA and next-

generation sequencing were performed by Beijing Genomics

Institute (Beijing, China). Gene Ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway, Venn

diagram and heatmap analyses were performed with OmicShare

tools, a free online platform used for data analysis (https://

www.omicshare.com/tools/).
2.4 Statistical analysis

Data visualization and statistical analysis were carried out using

GraphPad Prism 8.0 software (GraphPad Software Inc., CA, USA).

Differences between experimental groups were analyzed for

significance by unpaired Student’s t test. A P value <0.05 was

considered significant.
3 Results

3.1 Mutations in the RAS gene significantly
affect metabolic pathways in Ba/F3 cells

We performed transcriptome analysis in 3 strains of cell lines,

including the Ba/F3 parental strain, Ba/F3 KRASG12V strain and Ba/

F3 NRASQ61K strain. Flow cytometry showed that KRASG12V and
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NRASQ61K mutant cell lines were successfully prepared.

(Figure 1A). Heatmap analysis and principal component analysis

revealed large intergroup variability and small intragroup variability

before and after RAS gene mutation (Figures 1B, C). These data

indicate an ideal cell line model for our transcriptome analysis. To

explore the effect of RAS gene mutation, we analyzed whole-genome

and full-transcriptome sequencing data of the Ba/F3 parental,

KRASG12V and NRASQ61K cell lines. A volcano map shows that
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many genes were differentially expressed before and after the

induction of the KRASG12V and NRASQ61K mutants. After

KRASG12V induction, 963 genes were upregulated, and 1216 genes

were downregulated. In addition, after NRASQ61K induction, 979

genes were upregulated, and 1310 genes were downregulated

(Figures 2A–C; Supplementary Tables S1–S4). According to a

Venn analysis, there were 1899 common differentially expressed

genes (Figure 2D; Supplementary Table S5).
A B

DC

FIGURE 2

Differentially expressed genes after RAS gene mutation. (A) Differentially expressed genes after KRASG12V mutation. (B) Differentially expressed genes
after NRASQ61K mutation. (C) Bar charts showing the number of significantly different genes between the two groups (FDR < 0.05, multiple
differences greater than or equal to 2). (D) Venn diagram showing common differentially expressed genes.
A B

C

FIGURE 1

Changes in cellular characteristics after RAS gene mutation. (A) After the removal of IL-3, apoptosis occurred in wild-type Ba/F3 cells, and Ba/F3
cells with RAS gene mutations continued to grow. The heatmap (B) and principal component analysis (C) were used to analyze the intergroup
variability before and after RAS gene mutation.
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3.2 Genes after KRASG12V and NRASQ61K

induction mainly affect the metabolism-
related pathways of Ba/F3 cells

We analyzed the differentially expressed genes after induction

of KRASG12V and NRASQ61K via Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.

Finally, we found that a total of 1089 genes were involved in

metabolic processes (Supplementary Table S6), of which 167

genes were enriched in metabolism-related pathways (P<0.05)

(Figures 3A, B) (Supplementary Table S7).
3.3 Metabolism-related genes mainly
affected glycerophospholipid metabolism
after KRASG12V and NRASQ61K induction

A total of 167 genes related to metabolic pathways were identified

in Ba/F3 cells with RAS genemutations. The GO analysis showed that

these genes mainly affected the small molecule metabolic process in

cells. To identify a specific metabolic pathway, we carried out a KEGG

analysis. The results showed that these genes were enriched in

multiple metabolic pathways, of which 12 genes were enriched in

the glycerophospholipid metabolism pathway (P<0.05) (Figures 4A,

B; Supplementary Table S8).
3.4 DGKzeta and PLA2G4A were key genes
in the glycerophospholipid metabolism of
Ba/F3 cells with RAS mutations

There are 12 genes involved in the regulation of

glycerophospholipid metabolism, and the heatmap shows the

differences in their expression among the Ba/F3 parental group,

KRASG12V group and NRASQ61K group (Figure 5A). Through Venn

analysis, 2 of the 12 genes involved in glycerophospholipid
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metabolism were found to be significantly upregulated and

coexpressed in the KRASG12V and NRASQ61K mutant cell lines

(FPKM>100) (Figure 5B). Gene expression analysis showed that the

DGKzeta and PLA2G4A genes were increased significantly in both

the KRASG12V and NRASQ61K mutant cell lines, and a significant

difference was found between the Ba/F3 parental groups (P<0.05)

(Figures 5C, D).
4 Discussion

Studies have shown that the original metabolic patterns in

tumor cells change to meet the increased bioenergetic and

biosynthetic demand during tumorigenesis and progression and

to mitigate oxidative stress during the proliferation and survival of

tumor cells (18). Studies on the metabolic mechanisms of tumor

cells are helpful to explore the occurrence, progression, diagnosis

and treatment of tumors. It has been proven that the fatty acids

produced by lipid decomposition enter the tricarboxylic acid (TCA)

cycle and oxidative phosphorylation (OXPHOS) metabolic pathway

after oxidation by mitochondrial b-oxidation, thus producing ATP
and NADPH to provide energy (5). More importantly, some special

lipids produced by lipid metabolism can be used as essential lipid

signaling molecules to regulate the biological processes of tumor

cells. Meanwhile, the two upregulated genes DGKzeta and

PLA2G4A found in our study are involved in lipid signal

regulation, suggesting that RAS gene mutations in AML may

have biological effects by affecting lipid signals.

Diacylglycerol (DAG) is a key secondary lipid messenger in

signal transduction downstream of many receptors and plays an

important role in driving adaptive and innate immune cell

activation, proliferation, migration and effector functions (19).

Diacylglycerol kinases (DGKs) can regulate the DAG signaling

pathway by phosphorylating DAG and converting it into

phosphatidic acid (PA) (20). DGK has 10 different isoforms,

which are composed of five different classes of DGKs, each of
A B

FIGURE 3

Differentially expressed genes were associated with metabolic processes and pathways. (A) Biological process significantly affected metabolic
process. (B) Differentially expressed genes after RAS mutation were found to mainly affect metabolic pathways.
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which regulates different cellular functions according to its different

structure and location in different cells. Studies have confirmed that

DGKa is highly expressed in several refractory cancer cells, such as

melanoma, hepatocellular carcinoma and glioblastoma. It can slow

tumor cell apoptosis and promote cell proliferation (21). As an

isoform of DGKa, DGKzeta is highly expressed in lymphoid tissues

(22), which affects tumor cell apoptosis and cell cycle arrest. In

human AML HL-60 cells, knockout of DGKzeta can induce

apoptosis and G2/M phase arrest through the MAPK/survivin/

caspase pathway (23). Our study found that the expression of

DGKzeta was significantly upregulated after RAS gene mutation,

indicating that DGKzeta may be the key factor affecting the

regulation of AML cell proliferation after RAS gene mutation.
Frontiers in Oncology 05
DGKzeta has a negative regulatory effect on T cells (19), which

can suppress the development of natural regulatory T cells and

predominantly mediates Ras and Akt signaling downstream of the

TCR (24). Interestingly, DGKzeta expression was also significantly

upregulated after RAS gene mutation in our study, and whether it

affects the immune escape of tumor cells needs to be further studied.

Phospholipase A2 enzymes (PLA2s) are the key enzymes of

phospholipase metabolism. According to their location in the body,

substrate specificity and differences in physiologic function, PLA2s

can be divided into six subfamilies. Its function is to hydrolyze the

sn-2 acyl bond of glycerol phospholipids (GPLs), release

lysophospholipids (LPLs) and generate free fatty acids (25). These

fatty acids are important energy sources for AML cells. PLA2G4A
A B

DC

FIGURE 5

DGKzeta and PLA2G4A were candidate genes in glycerophospholipid metabolism. (A) The heatmap shows the expression of genes in different
strains of cell lines. (B) The shared key genes were found by Venn analysis (FPKM>100). (C, D) Expression of key genes related to
glycerophospholipid metabolism was detected by RNA-seq.
A B

FIGURE 4

Metabolic-related genes mainly affect glycerophospholipid metabolism (A) Biological process of related genes affected small molecule metabolic
process. (B) Related genes were found to mainly affect glycerophospholipid metabolism by KEGG enrichment analysis.
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(cPLA2-IVA) belongs to a kind of cPLA2. In tumor cells, its

activation is mainly regulated by the MAPK signaling pathway,

and it is a key enzyme in AA metabolism (26). Overexpression of

PLA2 can increase the release of AA and enhance the protumoral

effects mediated by eicosanoids in promoting tumor survival,

proliferation, antiapoptosis, transformation and metastasis (27).

Studies have shown that cPLA2 plays a carcinogenic role in most

cancers except colon cancer (28). Downregulation or deletion of

cPLA2 can significantly inhibit the formation of small intestinal

tumors induced by Apc(Min) and lung tumors induced by urethane

(29, 30). Moreover, the inactivation of cPLA2 inhibits the

occurrence of liver cancer (31) and the formation of prostate

tumors (32). Using weighted gene coexpression network analysis

to analyze the RNA sequencing data and clinicopathological

characteristics of large samples of AML patients, it was found

that the high expression of PLA2G4A was related to adverse

overall survival (33). It was also found that PLA2G4A can be

used as an independent prognostic marker in some specific types

of AML. For example, in non-M3/nucleophosmin (NPM1) wild-

type AML, patients with high expression of PLA2G4A had a

significantly shorter overall survival rate. Moreover, some

proteins with well-characterized oncogenic properties in AML,

such as RUVBL2, CAP1, STAT3 and MYCBP, can physically

interact with PLA2G4A (34). It has also been found that the high

expression of PLA2G4A in FLT3-mutated AML is not only an

indicator of poor prognosis but also related to drug resistance to

tyrosine kinase inhibitors and changes in the tumor

microenvironment of AML (35). Our study found that the

expression of PLA2G4A was significantly upregulated after RAS

gene mutation, which may be a potential therapeutic target for the

treatment of AML with RAS gene mutation.

In conclusion, our study revealed that RAS gene mutations may

affect cell metabolism. This effect may be achieved by altering the

glycerophospholipid metabolism pathway. Among these candidate

genes, DGKzeta and PLA2G4A were identified as key to cell

metabolism. These results may provide a new strategy and

therapeutic target for AML therapy with RAS gene mutations.
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