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Multi-parametric MRI-based
radiomics for preoperative
prediction of multiple
biological characteristics in
endometrial cancer
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Qihao Xu1,2, Shifeng Tian1,2, Lihua Chen1,2, Nan Wang1,2,
Qingwei Song1,2, Liangjie Lin4, Jiazheng Wang4 and Ailian Liu1,2*

1Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China, 2Medical
Imaging Articial Intelligence Engineering Technology Research Center, Dalian, China, 3Dalian Women
and Children’s Medical Group, Dalian, China, 4Clinical & Technical Support, Philips Healthcare,
Beijing, China
Purpose: To develop and validate multi-parametric MRI (MP-MRI)-based

radiomics models for the prediction of biological characteristics in endometrial

cancer (EC).

Methods: A total of 292 patients with EC were divided into LVSI (n = 208), DMI

(n = 292), MSI (n = 95), and Her-2 (n = 198) subsets. Total 2316 radiomics features

were extracted from MP-MRI (T2WI, DWI, and ADC) images, and clinical factors

(age, FIGO stage, differentiation degree, pathological type, menopausal state,

and irregular vaginal bleeding) were included. Intra-class correlation coefficient

(ICC), spearman’s rank correlation test, univariate logistic regression, and least

absolute shrinkage and selection operator (LASSO) were used to select radiomics

features; univariate and multivariate logistic regression were used to identify

clinical independent risk factors. Five classifiers were applied (logistic regression,

random forest, decision tree, K-nearest neighbor, and Bayes) to construct

radiomics models for predicting biological characteristics. The clinical model

was built based on the clinical independent risk factors. The combined model

incorporating the radiomics score (radscore) and the clinical independent risk

factors was constructed. The model was evaluated by ROC curve, calibration

curve (H-L test), and decision curve analysis (DCA).

Results: In the training cohort, the RF radiomics model performed best among

the five classifiers for the three subsets (MSI, LVSI, and DMI) according to AUC

values (AUCMSI: 0.844; AUCLVSI: 0.952; AUCDMI: 0.840) except for Her-2 subset

(Decision tree: AUC=0.714), and the combined model had higher AUC than the

clinical model in each subset (MSI: AUCcombined =0.907, AUCclinical =0.755; LVSI:

AUCcombined =0.959, AUCclinical =0.835; DMI: AUCcombined = 0.883, AUCclinical

=0.796; Her-2: AUCcombined =0.812, AUCclinical =0.717; all P<0.05). Nevertheless,

in the validation cohort, significant differences between the two models

(combined vs. clinical model) were found only in the DMI and LVSI subsets
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(DMI: AUCcombined =0.803, AUCclinical =0.698; LVSI: AUCcombined =0.926,

AUCclinical =0.796; all P<0.05).

Conclusion: The radiomics analysis based on MP-MRI and clinical independent

risk factors can potentially predict multiple biological features of EC, including

DMI, LVSI, MSI, and Her-2, and provide valuable guidance for clinical

decision-making.
KEYWORDS

endometrial cancer, microsatellite instability, human epidermal growth factor receptor-
2, deep myometrium invasion, lympho-vascular space invasion, radiomics
Introduction

Endometrial cancer (EC) is the sixth most common cancer in

women and the most common malignant tumor of the female

reproductive system (1, 2). Over the last two decades, its incidence

has been increasing, particularly in young women (3). The main

clinical symptoms of EC include vaginal bleeding after menopause,

bleeding during and between menstrual periods, and pelvic pain;

other important risk factors include obesity, no history of

pregnancy, and longer menstruation (4). Different biological

characteristics of EC may lead to different treatment efficacies

and prognoses.

The expression of the human epidermal growth factor receptor-

2 (Her-2) gene in patients with EC was found to be associated with

tumor tissue differentiation, deep myometrium invasion (DMI),

lymph node metastasis (LNM), and lympho-vascular space invasion

(LVSI), which affects clinical treatment decisions (5). Microsatellite

instability (MSI) is caused by the defection of mismatch repair

(MMR) protein (6), which leads to uncorrectable mismatch bases

and the accumulation of gene mutations, and, ultimately, a

malignant cell transformation (7). In EC patients, the MSI status

prediction has been useful for Lynch syndrome monitoring and

disease progress estimation (8). Moreover, DMI is a key factor that

determines the surgical approach, affects the prognosis of patients,

and is closely related to LNM (9). LVSI is defined as the presence of

cancer cells within lymphatics and/or blood vessels and has an

essential role in the spread of tumor cells. LVSI-positive EC has a

significantly worse prognosis, and LVSI-positive stage I EC patients

are at risk for disease recurrence. Since LVSI is associated with

LNM, preoperative assessment of LVSI status may aid treatment

decisions (10, 11). Thus, identifying the biological characteristics of
ellite instability; Her-2,
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and selection operator;

02
EC may contribute to the tailored treatment and increase survival

rates in EC patients.

Histopathology and molecular sequencing are the main

methods for determining biological characteristics (12). However,

the dynamic process of tumour genesis and progression exhibits

spatial and temporal heterogeneity, which may have a significant

impact on tumor metastasis and its response to treatment (13).

Invasive sampling methods such as puncture biopsy are risky,

invasive and potentially complicating, all of which limit their

application in real-time monitoring of disease progression and

tumour biology (12, 14). At the same time, the puncture biopsy

sample size does not allow for a comprehensive assessment of the

biology of the entire tumour region, thus ignoring some of the

heterogeneity of the tumor, also limiting the application of these

methods. Magnetic resonance imaging (MRI) is a comprehensive,

non-invasive, and repeatable assessment of tumor biology that can

be used to monitor tumor response to therapy almost in real-time.

In particular, multi-parametric MRI (MP-MRI) can reveal

phenotypic differences in tumors to a certain extent by displaying

a signal intensity and/or enhancement features.

Radiomics is a quantitative process that can simultaneously

provide data on tissue composition and spatial tumor heterogeneity

by analyzing a large number of radiomics features from medical

images to generate imaging biomarkers for evidence-based clinical

decision-making. This approach has the advantages of high data

dimension and the ability to perform quantifiable analysis and

convert image data into high-resolution spatial features, thereby

realizing lesion feature extraction and model building. Currently,

radiomics is applied in tumor segmentation (15), preoperative

evaluation of DMI (16), LNM (17), and LVSI (18), prediction of

immune-histochemical indicators (19), efficacy evaluation, and

prognosis prediction (20) in EC. Recently, a systematic review and

meta-analysis (21)suggested that pre-operative MRI-radiomics

analyses in patients with EC is a good predictor of tumor grading,

DMI, LVSI, and LNM. At present, there are few comprehensive

reports of radiomics studies involving the prediction of biological

features of EC. More importantly, previous related studies between

radiomics and tumor biological features mainly focused on the

evaluation of a single indicator. However, the occurrence and

development of tumors and the treatment response are affected by
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multiple biological characteristics of tumors, so comprehensive

analysis and evaluation of multiple biological characteristics are

urgently required.

In this study, we aimed to develop and evaluate MP-MRI-based

radiomics models as a non-invasive diagnostic method to predict

several biological characteristics of EC. To further explore whether

the construction of combined models integrating clinical

independent risk factors and radscore can improve the accuracy

of decision-making in the clinical treatment of EC.
Materials and methods

Patients and data collection

The ethics committee approved this retrospective study and

waived the requirement for informed consent. Our research was a

case-control study. A total of 366 patients confirmed with EC by

postoperative pathology between January 2012 and June 2022 were

retrospectively analyzed. Inclusion criteria were the following: (1)

postoperative pathologically confirmed EC; (2) patients underwent

pelvic MRI examination within two weeks before surgery, including

T2-weighted imaging (T2WI), and diffusion-weighted imaging

(DWI); (3) patients without other malignancies in the

reproductive system. Exclusion criteria were as follows: (1) no

history of surgery (n = 12); (2) the maximum diameter of the

tumor was < 1 cm (n = 41); (3) the image quality was poor (n =16);

(4) patients with previous antitumor treatment, including

neoadjuvant therapy, conversion therapy, or palliative therapy

(n = 5). Finally, 292 patients were included in this study.

Patients were classified into 4 analysis subsets, including the

followings: (1) the MSI subset, from which 197 cases were excluded

because of the absence of MRR protein expression in the

immunohistochemical indexes; (2) the Her-2 subset excluded 94

cases due to the absence of data about Her-2 gene expressions in the

immunohistochemical indices; (3) the LVSI subset, from which 84
Frontiers in Oncology 03
cases were excluded due to the absence of LVSI in the pathological

information; and (4) the DMI subset, where all enrolled patients were

included. In each subset, the patients were divided into two layers

according to their positive or negative indicators, after which random

sampling was conducted from each layer according to the ratio of 8:2

(training cohort: validation cohort) in MSI and Her-2 subsets or the

ratio of 7:3 (training cohort: validation cohort) in DMI and LVSI

subsets. Figure 1 illustrates the recruitment pathways for patients.

General clinical information, including age, irregular vaginal

bleeding (IVB), pathological type, Federation International of

Gynecology and Obstetr (FIGO) stage, and menopausal state,

were collected within one week before surgery.
MR data acquisition

MRI examination was performed using a 1.5T MR system

(Signa, HDXT, GE Healthcare) with an 8-channel phased array

body coil and a 3.0T MR system (Ingenia CX, Philips Healthcare,

Best, the Netherlands) with a 32-channel abdominal coil (GE 1.5T

MR system: n= 236; Philips 3.0T MR system: n=56). Before the

examination, the patients were instructed to empty the bladder, and

their intrauterine device (IUD) were taken out one day before the

examination. The patients were scanned in the supine position, with

legs and knees relaxed and not overstretched. MRI sequences

included T2WI and DWI. The original DWI images were

transmitted to the ADW 4.6 Workstation, and the Functool

function was applied to generate apparent diffusion coefficient

(ADC) images. The detailed scanning parameters are shown in

Supplementary Data S1.
Biological characteristics assessment

The diagnosis of DMI and LVSI was determined by

hematoxylins and eosin staining. Histopathology was performed
FIGURE 1

Flowchart of the recruitment pathway for patients. EC, endometrial cancer; MSI, microsatellite instability; Her-2, human epidermal growth factor
receptor-2; DMI, deep myometrium invasion; LVSI, lympho-vascular space invasion.
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to determine the status of immunohistochemical characteristics,

including MSI and Her-2. Two pathologists were blinded to the

clinical and imaging data, evaluated the biological characteristics.

All inconsistencies were resolved by discussion; in addition, a third

pathologist (senior pathologist with 10 years of pathology

experience) was invited to confirm the data. The criteria for each

biological characteristic were as follows: (1) MSI: the expression of

mismatch repair (MMR) protein (MLH-1, MSH-2, MSH-6, and

PMS-2) was defined as MSS when all four MMR proteins were

expressed, and MSI with at least one MMR protein was not

expressed (22); (2) Her-2: immune-histochemical images were

taken under a high-magnification microscope. The three fields of

view were randomly selected for each tissue section, and the

percentage of positive cells was divided into the four following

grades: 0 points for < 10%, 1 point for 10%-25%, 2 points for 25%-

50%, 3 points for 50%-75%, and 4 points for >75%. Scoring was

performed according to the degree of coloration, where 0 was used

if there was no color, 1 point for light yellow, 2 points for brownish

yellow, and 3 points for tan. For comprehensive judgment, the

percentage of positive cells and the degree of staining was

calculated: 0, 1+, 2+, 3+, 4+ points (0-1+ was considered negative,

≥2+ was considered positive) (23); (3) LVSI: LVSI was defined in

accordance with the three-grade system as follows: none (no LVSI),

focal (a single focus of LVSI was recognized around a tumor), and

substantial (diffuse or multifocal LVSI was recognized around the

tumor, or massive LVSI was recognized in the myometrium with a

spray-like growth, regardless of the degree of myometrium

invasion) (24); (4) DMI: DMI was defined as an infiltration 50%

of myometrium wall thickness, which was considered as the most

important single morphological prognostic factor.
Tumor segmentation and radiomics
feature extraction

The T2WI, DWI, and ADC images stored in digital imaging and

communications in medicine (DICOM) format were exported from

the picture archiving and communication system (PACS) and used

for image preprocessing and tumor segmentation. To avoid data

heterogeneity bias, all MRI data were performed for image

normalization (the intensity of the image was scaled to 0-100)

and resampled to the same resolution (1 × 1 × 1 mm3) before tumor

segmentation using A.K. software (Artificial Intelligence Kit,

Version 3.2.5, GE Healthcare). The ITK-SNAP software

(Version3.6, open-source software, http://www.itksnap.org) was

used to delineate the region of interest (ROI) around the tumor

margin on each slice of T2WI, DWI, and ADC images by two

experienced radiologists (Tian SF and Ma CJ, with 8 years and 3

years of experience in uterine MRI, respectively) who were blinded

to the clinical and pathological information of the patients. The

ROIs were placed to avoid including nearby normal myometrium

or endometrium. To assess the intra-observer and inter-observer

reproducibility, reader 1 performed the segmentation of 30

randomly selected patients twice at the one-month interval, and

reader 2 independently performed the segmentation of 30 patients

following the same procedure. The segmentation of the remained
Frontiers in Oncology 04
patients was performed by reader 1. Finally, 772 radiomics features

of each sequence, including 14 shape features, 66 first-order

features, 306 texture features, and 386 Gaussian transform

features, were extracted from the VOIs by using A. K. software.

Details of radiomics features are listed in Supplementary Data S2.

The Synthetic Minority Oversampling Technique (SMOTE)

method was used because of unbalance of positive/negative LVSI

samples in the training and validation cohort. Positive LVSI

(minority class) was oversampled and negative LVSI (majority

class) was under sampled to balance the training cohort to

improve the classification performance.
Feature selection, model construction and
model evaluation

A four-step procedure was devised for dimensionality reduction

(Figure 2). Firstly, in order to ensure the robustness and

reproducibility of the model, the radiomics features with high

stability in both intra-observer and inter-observer stability

(ICC≥0.9) were selected for subsequent analysis. Secondly,

Spearman’s rank correlation test was applied to exclude the

redundant features (correlation coefficient values≥0.9), after

which the features with significant differences between the two

groups were selected using univariate logistic regression. Finally, the

least absolute shrinkage and selection operator (LASSO) was used

to select non-zero coefficient features associated with DMI, LVSI,

MSI, and Her-2 in EC patients with 5-fold cross-validation by the

penalty parameter to avoid overfitting. Five kinds of classifiers,

including logistic regression, random forest (RF), decision tree, K-

nearest neighbor (KNN), and Bayes, were used to construct MP-

MRI radiomics models for predicting biological characteristics in

EC. The best k value (number of neighbors) for KNN was found by

training in the range of 3–10. For random forest, decision tree, and

Bayes, the maximum tree depth was constrained to avoid overfitting

(25). The parameters used in the construction of MP-MRI models

were listed in Supplementary Data S3. The univariate and

multivariate analyses were used to assess the association between

the clinical characteristics and DMI, LVSI, MSI, or Her-2. The

significant clinical risk factors were used to develop and validate

clinical models for DMI, LVSI, MSI, and Her-2. Meanwhile, clinical

independent risk factors were integrated into the corresponding

MP-MRI radiomics models to construct the combined models.

Finally, we built a radiomics nomogram with both the radscore

and clinical independent risk factors. Calibration curves (Hosmer-

Lemeshow H test) were used to evaluate the calibration of the

model, and receiver operating characteristic (ROC) curves were

used to assess the diagnostic efficiency. The clinical useful of the

combined nomograms were evaluated with decision curve

analysis (DCA).
Statistical analysis

All statistical analyses were conducted with R software (Version

4.0.2; http://www.r-project.org). A two-sided P value < 0.05 was
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http://www.itksnap.org
http://www.r-project.org
https://doi.org/10.3389/fonc.2023.1280022
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ma et al. 10.3389/fonc.2023.1280022
considered statistically significant. Student’s t-test or Mann-

Whitney U test was used to compare quantitative variables, and

the Chi-squared test or Fisher’s exact test was used to compare

qualitative variables. The discrimination performances of radiomics

models, clinical models, and combined models for predicting

biological characteristics in EC were evaluated according to the

area under the receiver operator characteristic (ROC) curve (AUC)

in both training and validation cohorts. Delong’s test was used to

assess the difference between the AUC values of the model.

Calibration curve was used to assess the goodness of fit of the

radiomics nomogram in the training and validation cohorts.

Decision curve analysis (DCA) was performed to determine the

clinical usefulness of the prediction models by quantifying the net

benefits at different threshold probabilities.
Results

Patient profiles

A total of 292 EC patients were included in the study. According

to their pathological results, they were divided into four subsets:

DMI (n = 292), LVSI (n = 208), MSI (n = 95), and Her-2 (n = 198).

Clinical and histopathological characteristics of patients with EC in

the training and validation cohorts are summarized in Table 1.

There were 32 (33.68%) patients in the MSI group and 63 (66.32%)

in the microsatellite stabilization (MSS) group. In addition, 198
Frontiers in Oncology 05
patients were assigned to the Her-2 subset, including 81 in the Her-

2 positive group and 117 in the Her-2 negative group. For the DMI

subset, 95 (32.53%) were in the DMI positive group and 197

(67.47%) were in the DMI negative group. For the LVSI subset,

208 patients were assigned to the LVSI subgroup, including 45

(21.63%) in the LVSI positive group and 163(78.37%) in the LVSI

negative group. No significant differences were observed in the

clinical and histopathological characteristics between the training

and validation cohort (P>0.05), except for menopausal state in Her-

2 subset, differentiation degree in DMI subset, differentiation degree

and FIGO stage in LVSI subset between training and

validation cohorts.
Feature selection and radiomics
model building

First, features with ICC values < 0.9 were excluded, and the

radiomics features of DMI, LVSI, MSI, and Her-2 subsets were

reduced from 2316 to 1199. Details of ICC values were listed in

Supplementary Data S4. Among the remaining features, 409, 366,

390, and 409 features of DMI, LVSI, MSI, and Her-2 subsets were

retained with correlation coefficients > 0.9 by Spearman’s correlation

test. Next, 174, 122, 61, and 23 features of DMI, LVSI,MSI, and Her-2

subsets were retained using univariate analysis. Finally, 3, 7, 2, and 2

features were selected via LASSO regression (Figure 3 and Figure 4).

The intra-observer and inter-observer reproducibility was high.
FIGURE 2

The workflow of radiomics analysis in our study.
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TABLE 1 Patient profiles of each subset.

Parameters Training cohort Validation cohort

MSI subset n = 76 n = 19

Age 58.33 ± 10.37 60.53 ± 12.16 0.427

Differentiation degree n/%

High 20/26.32% 4/21.05%

Median 32/42.11% 12/63.16% 0.244

Low 24/31.57% 3/15.79%

Pathological type n/%

Type I 62/81.58% 16/84.21% 1.000

Type II 14/18.42% 3/15.79%

FIGO Stage n/%

I 46/60.53% 13/17.11%

II 17/19.77% 2/10.53% 0.598

III 11/14.47% 3/15.79%

IV 2/2.63% 1/5.26%

Menopausal state n/%

Before 24/31.58% 3/15.79% 0.256

After 52/68.42% 16/84.21%

IVB n/%

Yes 47/61.84% 11/57.89% 0.796

No 29/38.16% 8/42.11%

Her-2 subset n = 158 n = 40

Age 57.63 ± 10.63 61.10 ± 9.94 0.064

Differentiation degree n/%

High 41/25.95% 12/30.00%

Median 78/49.37% 17/42.50% 0.741

Low 39/24.68% 11/27.50%

Pathological type n/%

Type I 138/87.34% 34/85.00% 0.793

Type II 20/12.66% 6/15.00%

FIGO Stage n/%

I 110/69.62% 30/75.00%

II 27/17.09% 5/12.50% 0.871

III 18/11.39% 4/10.00%

IV 3/1.90% 1/2.50%

Menopausal state n/%

Before 57/36.08% 6/15.00% 0.013

After 101/63.92% 34/85.00%

(Continued)
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TABLE 1 Continued

Parameters Training cohort Validation cohort

IVB n/%

Yes 101/63.92% 27/67.50%

No 57/36.07% 13/32.50%

DMI subset n = 204 n = 88

Age 58.73 ± 10.42 56.81 ± 10.90 0,156

Differentiation degree n/%

High 70/34.31% 16/18.18%

Median 85/41.67% 40/45.45% 0.010

Low 49/24.02% 32/36.37%

Pathological type n/%

Type I 167/81.86% 77/87.50% 0.302

Type II 37/18.14% 11/12.50%

FIGO Stage n/%

I 155/75.98% 57/64.77%

II 22/10.78% 16/18.18% 0.057

III 25/12.25% 11/12.50%

IV 2/0.99% 4/4.55%

Menopausal state n/%

Before 62/30.39% 34/38.64% 0.177

After 142/69.61% 54/61.36%

IVB n/%

Yes 138/67.65% 62/70.45% 0.682

No 66/32.35% 26/29.55%

LVSI subset n = 146 n = 62

Age

Differentiation degree n/%

High 48/32.88% 9/14.52%

Median 57/39.04% 33/53.23% 0.018

Low 41/28.08% 20/32.26%

Pathological type n/%

Type I 118/80.82% 50/80.65% 1.000

Type II 28/19.18% 12/19.35%

FIGO Stage n/%

I 114/70.08% 32/51.61%

II 12/8.22% 14/22.58% 0.001

III 19/13.01% 12/19.35%

IV 1/0.69% 3/4.84%

(Continued)
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Performance of radiomics models on
different classifiers

The predictive performance of five classifiers (logistic

regression, RF, decision tree, KNN, and Bayes) is listed in

Table 2. In general, the performance of the RF was the best

according to AUC values, so the RF was chosen as the best
Frontiers in Oncology 08
prediction model for the three subsets (MSI: AUCtraining = 0.844,

AUCvalidation= 0.897; LVSI: AUCtraining = 0.952, AUCvalidation=

0.908; DMI: AUCtraining = 0.840, AUCvalidation= 0.739). As for the

Her-2 subset, the performance of the decision tree was relatively

higher (AUCtraining = 0.714, AUCvalidation = 0.708), so a decision tree

with a polynomial kernel function was selected as the optimal

classifier for the Her-2 subset.
TABLE 1 Continued

Parameters Training cohort Validation cohort

Menopausal state n/%

Before 46/31.51% 18/29.03% 0.406

After 100/68.49% 44/70.97%

IVB n/%

Yes 91/62.33% 47/75.81% 0.077

No 55/37.67% 15/24.19
frontier
P

MSI, microsatellite instability; Her-2, human epidermal growth factor receptor-2; DMI, deep myometrium invasion; LVSI, lympho-vascular space invasion; FIGO, Federation International of
Gynecology and Obstetrics; IVB, Irregular vaginal bleeding.
The meaning of bold and italic values are the number of patients in each subgroup and statistically significant data.
B

C D

A

FIGURE 3

Correlation coefficient figures of the remaining features. (A) DMI; (B) LVSI; (C) MSI; (D) Her-2. EC, endometrial cancer; MSI, microsatellite instability;
Her-2, human epidermal growth factor receptor-2; DMI, deep myometrium invasion; LVSI, lympho-vascular space invasion.
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Performance of clinical and
combined models

After the univariate and multivariate logistic analysis, two

characteristics were included for MSI (differentiation degree and

IVB), two for Her-2 (IVB and FIGO stage), two for DMI (age and

FIGO stage), and three for LVSI (differentiation degree, IVB, and

FIGO stage) (Table 3). Clinical characteristics were then added to

the optimal MP-MRI radiomics model to construct the

combined models.

The calibration curve of the combined model of the four subsets

demonstrated that the predicted values were in good agreements with

the observed values (Figure 5). The Hosmer-Lemeshow H test showed

that the statistical results in the training cohort (MSI: P=0.619, Her-2:

P=1.000, DMI: P=0.549, LVSI: P=0.250) and validation cohort (MSI:

P=0.125, Her-2: P=0.925, DMI: P=0.209, LVSI: P=0.102) were not

significant. In the training cohort, the AUCs of the combined model

were significantly higher than the clinical model for predicting MSI,

Her-2, DMI, and LVSI (MSI, AUCcombined = 0.907 vs. AUCclinical =

0.755, P = 0.002; Her-2, AUCcombined = 0.812 vs. AUCclinical = 0.717, P =

0.011; DMI, AUCcombined = 0.883 vs. AUCclinical = 0.796, P = 0.004;

LVSI, AUCcombined = 0.959 vs. AUCclinical = 0.835, P<0.05). In the

validation cohort, there were significant differences in the AUCs of the

two models only for the prediction of DMI and LVSI (DMI,

AUCcombined =0.803 vs. AUCclinical =0.698, P = 0.033; LVSI,

AUCcombined = 0.926 vs. AUCclinical = 0.796, P = 0.002) (Table 4,
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Table 5, and Figure 6). The DCA for the combined models is

presented in Figure 7. The DCA indicated that the combined models

have more benefits than the “treat-all strategy” and “treat-none

strategy” when the range of threshold probability was >21%.

Nomogram visualizes the combined model to show the likelihood of

the occurrence of various biological characteristics of individual

EC (Figure 8).
Discussion

In the present study, we constructed radiomics models based on

MP-MRI (T2WI, DWI, and ADC) using five classifiers to predict

four prognosis-related biological characteristics (DMI, LVSI, MSI,

and Her-2) in EC patients. Our study showed that the optimal

radiomics models obtained moderate to positive performances in

the training cohort (AUC:0.714 - 0.952) and in the validation cohort

(AUC:0.704 - 0.908). Furthermore, we added several clinical

characteristics to the optimal radiomics models for the combined

models building, and our combined models showed a satisfactory

performance. To the best of our knowledge, among all the reported

radiomics studies for predicting risk factors of EC, our study is the

first study that assess the expression of Her-2 gene in EC based on

MP-MRI radiomics approach.

The challenge in preoperative staging and surgical planning of EC

is the assessment of biological risk factors such as DMI, LVSI, etc.
B

C D

A

FIGURE 4

LASSO regression figures. Radiomics features were selected by LASSO regression. (A) DMI; (B) LVSI; (C) MSI; (D) Her-2. EC, endometrial cancer; MSI,
microsatellite instability; Her-2, human epidermal growth factor receptor-2; DMI, deep myometrium invasion; LVSI, lympho-vascular space invasion.
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TABLE 2 Discriminative performance of different MP-MRI radiomics classifiers for predicting the four biological characteristics.

Different models Training cohort Validation cohort

AUC SEN SPE ACC AUC SEN SPE ACC

MSI

Logistic regression 0.747 0.640 0.725 0.697 0.782 0.500 0.923 0.789

Random forest 0.844 0.560 0.902 0.789 0.897 0.667 1.000 0.895

Decision tree 0.825 0.480 1.000 0.829 0.776 0.500 0.846 0.737

KNN 0.753 0.440 0.843 0.711 0.705 0.500 0.769 0.684

Bayes 0.784 0.520 0.843 0.737 0.769 0.500 0.846 0.737

Her-2

Logistic regression 0.636 0.602 0.646 0.620 0.669 0.708 0.562 0.650

Random forest 0.747 0.742 0.554 0.665 0.690 0.708 0.500 0.625

Decision tree 0.714 0.634 0.692 0.658 0.704 0.708 0.625 0.675

KNN 0.704 0.645 0.631 0.639 0.651 0.833 0.500 0.700

Bayes 0.626 0.570 0.508 0.544 0.641 0.625 0.562 0.600

DMI

Logistic regression 0.726 0.576 0.819 0.740 0.724 0.517 0.864 0.750

Random forest 0.840 0.561 0.899 0.789 0.739 0.448 0.932 0.773

Decision tree 0.773 0.636 0.848 0.779 0.726 0.517 0.864 0.750

KNN 0.800 0.409 0.928 0.760 0.713 0.414 0.898 0.739

Bayes 0.702 0.485 0.826 0.716 0.743 0.552 0.780 0.705

LVSI

Logistic regression 0.831 0.800 0.823 0.811 0.831 0.735 0.914 0.826

Random forest 0.952 0.937 0.888 0.912 0.908 0.943 0.765 0.855

Decision tree 0.858 0.862 0.747 0.805 0.823 0.882 0.657 0.768

KNN 0.868 0.772 0.812 0.792 0.856 0.771 0.882 0.826

Bayes 0.801 0.612 0.861 0.736 0.792 0.647 0.771 0.710
F
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MSI, microsatellite instability; Her-2, human epidermal growth factor receptor-2; DMI, deep myometrium invasion; LVSI, lympho-vascular space invasion; AUC, area under the curve; SEN,
sensitivity; SPE, specificity; ACC, accuracy; KNN, K-nearest neighbor; RF, Random Forest.
The meaning of bold values are the best performance classifiers.
TABLE 3 Statistical analysis of univariate and multivariate logistic analyses.

Subgroups Parameters Univariate Analysis Multivariate Analysis

OR (95%CI) P OR (95%CI) P

MSI Age 1.053 (1.001 - 1.107) 0.044 / /

Differentiation degree 2.345 (1.168 - 4.706) 0.017 2.325 (1.130 - 4.784) 0.022

Menopausal state 3.387 (1.012 - 11.336) 0.478 / /

IVB 3.555 (1.156 - 10.936) 0.027 3.492 (1.092 - 11.170) 0.035

Pathologic type 3.530 (1.067 - 11.678) 0.039 / /

Her-2 FIGO stage 0.576 (0.376 - 0.883) 0.011 0.537 (0.340 - 0.850) 0.008

IVB 0.242 (0.114 - 0.510) 0.000 0.223 (0.103 - 0.484) 0.000

Differentiation degree 0.664 (0.422 - 1.046) 0.078 / /

(Continued)
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Radiomics approaches can provide a comprehensive, non-invasive,

and reproducible assessment of tumor biology. Recently, the research

on the evaluation of multiple tumor biological characteristics based

on MP-MRI radiomics had been carried out in rectal cancer (12) and

prostate cancer (25). However, to the best of our knowledge, only a

few studies reported on the comprehensive prediction of various

biological characteristics of EC. Lefebvre et al. (26) recently evaluated

the performance of MP-MRI (T2WI, DWI, and CE-T1WI sequences)

radiomics models for differentiating low- from high-risk

histopathologic markers-DMI, LVSI, and high-grade status and

advanced-stage EC. Moreover, Otani et al. (27) evaluated radiomics

classifiers based on MP-MRI (T2WI, DWI, and CE-T1WI sequences)

in the pretreatment assessment of risk factors (DMI, LNM, LVSI, and
Frontiers in Oncology 11
histological grade) of EC patients. Yet, these studies did not

comprehensively evaluate the aggressiveness of EC. In this study,

we further assessed various immunohistochemical markers

associated with tumor aggressiveness of EC. Therefore, our

comprehensive radiomics models made it possible to predict more

critical biological characteristics of EC and improve the prediction

accuracy of some biological characteristics compared with previous

radiomics models in published studies.

In this study, the selected radiomics features after the four-step

dimensionality reduction method are dominated by first-order

features, and the radiomics features of ADC images accounted for

a large part, which could be due to the following reasons: (1) since

the ADC map is derived from the DWI sequence, it mainly reflects
TABLE 3 Continued

Subgroups Parameters Univariate Analysis Multivariate Analysis

OR (95%CI) P OR (95%CI) P

DMI Age 1.062 (1.028 - 1.096) 0.000 1.065 (1.030
- 1.102)

0.000

Differentiation degree 1.658 (1.116 - 2.465) 0.012 / /

Menopausal state 2.557 (1.250 - 5.229) 0.010 / /

FIGO stage 2.351 (1.565 - 3.529) 0.000 2.469 (1.596 - 3.821) 0.000

LVSI FIGO stage 2.208 (1.539 - 3.169) 0.000 2.278 (1.532 - 3.386) 0.000

IVB 3.491 (1.709 - 7.130) 0.001 3.466 (1.576 - 7.623) 0.002

Differentiation degree 1.952 (1.280 - 2.976) 0.002 1.759 (1.108 - 2.791) 0.017

Pathologic type 3.652 (1.577 - 8.461) 0.003 / /
MSI, microsatellite instability; Her-2, human epidermal growth factor receptor-2; DMI, deep myometrium invasion; LVSI, lympho-vascular space invasion; FIGO, Federation International of
Gynecology and Obstetr; OR, odds ratio; CI, confidence interval.
The meaning of bold and italic values are statistically significant data.
FIGURE 5

Calibration curves of combined models in the training cohort (1) and the validation cohort (2). Calibration curves showed the calibration of the
predictive model for the risk of biological characteristics in EC: (A) DMI; (B) LVSI; (C) MSI; (D) Her-2. EC, endometrial cancer; MSI, microsatellite
instability; Her-2, human epidermal growth factor receptor-2; DMI, deep myometrium invasion; LVSI, lympho-vascular space invasion.
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TABLE 4 Discriminative performance of optimal models for each biological characteristic.

Different models Training cohort Validation cohort

AUC (95%CI) SEN SPE ACC AUC (95%CI) SEN SPE ACC

MSI

Radiomics model 0.844 (0.756 – 0.918) 0.560 0.902 0.789 0.897 (0.731 – 1.000) 0.667 1.000 0.895

Clinical model 0.755 (0.654 – 0.848) 0.440 0.902 0.750 0.731 (0.469 – 0.949) 0.433 1.000 0.789

Combined model 0.907 (0.829 – 0.969) 0.600 1.000 0.868 0.744 (0.455 – 0.974) 0.500 1.000 0.842

Her-2

Radiomics model 0.714 (0.650 – 0.777) 0.634 0.692 0.658 0.704 (0.567 – 0.834) 0.708 0.625 0.675

Clinical model 0.717 (0.655 – 0.777) 0.903 0.354 0.677 0.745 (0.611 – 0.871) 0.958 0.500 0.775

Combined model 0.812 (0.752 – 0.866) 0.742 0.769 0.753 0.686 (0.549 – 0.820) 0.750 0.562 0.675

DMI

Radiomics model 0.840 (0.787– 0.890) 0.561 0.899 0.789 0.739 (0.629 – 0.823) 0.448 0.932 0.773

Clinical model 0.796 (0.737 – 0.848) 0.303 0.993 0.770 0.698 (0.595 – 0.796) 0.310 0.915 0.716

Combined model 0.883 (0.839 – 0.920) 0.530 0.957 0.819 0.803 (0.717 – 0.886) 0.414 0.898 0.739

LVSI

Radiomics model 0.952 (0.924 – 0.977) 0.937 0.888 0.912 0.908 (0.844 – 0.963) 0.943 0.765 0.855

Clinical model 0.835 (0.782 – 0.885) 0.772 0.712 0.742 0.796 (0.702 – 0.884) 0.714 0.824 0.768

Combined model 0.959 (0.935 – 0.981) 0.962 0.862 0.912 0.926 (0.871 – 0.968) 0.914 0.824 0.870
F
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MSI, microsatellite instability; Her-2, human epidermal growth factor receptor-2; DMI, deep myometrium invasion; LVSI, lympho-vascular space invasion; AUC, area under the curve; SEN,
sensitivity; SPE, specificity; ACC, accuracy.
The meaning of bold and italic values are different subsets.
TABLE 5 Comparison of different models for evaluating the biological characteristics of EC.

Training cohort Validation cohort

MSI

Radiomics model VS Clinical model 0.202 0.346

Combined model VS Clinical model 0.002 0.843

Combined model VS Radiomics model 0.153 0.403

Her-2

Radiomics model VS Clinical model 0.952 0.742

Combined model VS Clinical model 0.011 0.374

Combined model VS Radiomics model 0.015 0.851

DMI

Radiomics model VS Clinical model 0.319 0.706

Combined model VS Clinical model 0.004 0.033

Combined model VS Radiomics model 0.104 0.148

LVSI

Radiomics model VS Clinical model 0.000 0.086

Combined model VS Clinical model 0.000 0.002

Combined model VS Radiomics model 0.634 0.632
The data in the table represents the p-value; EC, endometrial cancer; MSI, microsatellite instability; Her-2, human epidermal growth factor receptor-2; DMI, deep myometrium invasion; LVSI,
lympho-vascular space invasion.
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the fluidity of water molecules around the lesion, which is affected

by various factors, such as cell density, membrane integrity, and

microstructural heterogeneity, and is more accurate in reflecting

aggressive of tumor lesions; (2) the radiomics features of T2WI and

DWI are extracted based on image signal intensity, and the

advantage of image signal intensity is usually the ability to

distinguish tumors from surrounding normal tissues, rather than

describing the internal characteristics of tumors. Therefore, the

ADC value is an objective quantitative indicator often used to reflect

the internal characteristics of tumors, especially tumor

aggressiveness (28). In additional, among the five classifiers

(KNN, RF, decision tree, logistics regression, and Bayes) included

in this study, the classification performance of RF was generally the

best, this may be because that RF classifiers can reduce the model’s

dependence on specific features and samples by combining multiple

decision trees for prediction, and the problem of overfitting of a

single decision tree can be reduced, at the same time, RF classifiers

have strong robustness to deal with noisy data (29, 30).

The use of radiomics methods to evaluate Her-2 gene

expression has been widely explored in breast cancer (31), gastric

cancer (32), and other diseases (33). Our study explored the role of

radiomics in predicting Her-2 status in EC patients and constructed

a clinical model based on clinical-pathological information. Our

study further integrated independent risk factors and radscore to

establish a combined model with an AUC of 0.812 in the training

cohort, which was higher than clinical model and the radiomics

model. In our study, two clinical-pathological features, including

IVB and differentiation degree, as independent risk factors for

predicting Her-2 gene expression in EC, were highly correlated
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with Her-2 gene status, which was consistent with the finding of

Morrison et al. (5). However, in the validation cohort, the clinical

model obtained the highest AUC among the three models, which

was owing to the small sample size of validation cohort and

heterogeneity of tumors. In actual fact, the expression of Her-2

gene was mainly related to clinicopathological characteristics, such

as LVSI, LNM, and differentiation degree. Furthermore, the

differentiation degree of pathological indexes was included in the

construction of clinical model in our study, which was attributed to

their response to tumor heterogeneity, thus increased the evaluation

effectiveness of clinical model to a certain extent.

Detection of MSI status in EC patients can help screen the

Lynch syndrome and evaluate disease progress, thus provide

personalized and precise treatments (8). For example, PD-1/PD-

L1 are highly expressed in EC patients with MSI, both of which can

inhibit the proliferation and differentiation of T cells, owing to

inactivate the T cell function and diminish the inhibitory effect on

tumor cells (34). PD-1/PD-L1 inhibitors can restore the inhibitory

effect of T cells on tumor cells, and can be targeted to EC patients

with MSI (35). At the same time, MSI as one of the molecular types

of endometrial cancer (36), recent evidence suggests that the

evaluation of molecular and genomic profiling provides an

accurate method to assess the prognosis of endometrial cancer

patients (37). Bogani et al. (38) linked radiomics features to

molecular/genomic analyses to classify prognosis. In the present

study, five different classifiers were used to predict the MSI status of

EC based on MP-MRI. The RF classifier showed the best

performance with AUC values of 0.844 and 0.897 in the training

and validation cohorts, respectively. The RF is composed of many
FIGURE 6

ROC curves for the clinical model, radiomics model, and combined model in the training cohort (1) and validation cohort (2). (A) DMI; (B) LVSI; (C)
MSI; (D) Her-2. EC, endometrial cancer; MSI, microsatellite instability; Her-2, human epidermal growth factor receptor-2; DMI, deep myometrium
invasion; LVSI, lympho-vascular space invasion; ROC, Receiver operating characteristic.
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decision trees, and their prediction results are averaged by all the

tree predictions, and thus effectively avoided overfitting. At the

same time, we found that among the remaining features after

dimensionality reduction, ADC_original_firstorder_Skewness and

ADC_original_firstorder_Kurtosis of first-order features were

significantly correlated with MSI status, which was consistent

with the results of the studies by Fan et al. (39) and Pernicka et
A

C

FIGURE 8

The interpretation of the radiomics nomogram. (A) Combined nomogram of
nomogram of Her-2 subset; (D) Combined nomogram of MSI subset.
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al. (40). The results of their studies showed that the MSI status was

associated with kurtosis and intensity histograms. Our results

showed the potential value of MP-MRI radiomics features for

assessing genetic information of EC, although the underlying

mechanism for radiomics reflecting MSI status remained unclear,

we speculated that radiomics may represent tumor heterogeneity

and thus predict genetic alterations (41, 42). Previous studies have
FIGURE 7

Decision curve analysis for the clinical model, radiomics model, and combined model in the training cohort (1) and the validation cohort (2). (A) DMI;
(B) LVSI; (C) MSI; (D) Her-2. The y-axis represents the net benefits, and the x-axis represents the threshold probability. EC, endometrial cancer;
MSI, microsatellite instability; Her-2, human epidermal growth factor receptor-2; DMI, deep myometrium invasion; LVSI, lympho-vascular
space invasion.
B

D

DMI subset; (B) Combined nomogram of LVSI subset; (C) Combined
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reported that EC patients with MSI status are commonly associated

with higher tumor grade, deeper myometrium invasion, and a

higher incidence of LNM (43, 44). These pathological features

suggested that the heterogeneity of MSI tumors may be higher

than that of MSS tumors histologically, which could be captured on

imaging using radiomics.

LVSI is the main histopathologic criterion for higher-risk EC,

and radiomics method allows for a more comprehensive assessment

of LVSI in EC patients. For detecting LVSI, our radiomics and

combined models both obtained satisfactory performances.

Compared to prior studies (18, 45, 46), our study had the highest

AUC values in the training (AUC: radiomics, 0.952; combined,

0.959) and validation cohorts (AUC: radiomics, 0.908; combined,

0.926). Meanwhile, our study constructed radiomics models using

five different classifiers (logistic regression, RF, decision tree, KNN,

and Bayes) to choose the best classifier, which was more

comprehensive and rational. About assessing the DMI of EC, we

integrated the radscore and clinical independent risk factors into

the combined model with the satisfactory performances

(AUC=0.883 and 0.803, respectively) in the both cohorts. A

previous study constructed the RF classifier for prediction of DMI

(47), which achieved an AUC of 0.940 in the testing cohort.

However, the RF classifier only obtained an AUC of 0.840 in our

study. Because of the small number of samples and single sequence

in the previous study, which made the radiomics model less

generalizable. Other studies (26, 48, 49) obtained a DMI

prediction performance with AUCs of 0.680, 0.810, and 0.790,

respectively, from their testing datasets, which were lower than or

closer to our results.

Comparison with non-radiomics-based efficacy prediction models,

for example, one study (50) to investigate amide proton transfer

weighting (APTw) imaging combined with intravoxel incoherent

motion (IVIM) in the assessment of MSI in EC, obtaining a higher

level of effectiveness(AUC = 0.973) than the present study. Meanwhile,

another study (51) aimed to compare the value of DWI, diffusion

kurtosis imaging (DKI), and APTw imaging in the assessment of risk

stratification factors for stage I EC including histological subtype, grade,

stage, and LVSI, accepting optimal predictive performance (AUC =

0.906). However, the small sample size of these study (n=34; n= 72)

resulted in a low generalisability of the model and did not combine

general clinical data to provide a comprehensive assessment of

biological characteristics in EC.

There are several limitations in the current study. Firstly, owing to

the relatively small number of cases in this single-center retrospective

study, it is necessary to expand the sample size and include prospective

data from multiple centers to test the generalizability of the prediction

models. Secondly, our radiomics models are only based on plain MRI

sequences (T2WI and DWI sequences, and ADC map). Incorporating

more functional MRI sequences may improve the predictive

performance of the model, which is worth future exploration. Finally,

radiologists performed the tumor volume segmentation layer-by-layer,

which is time-consuming and labor-intensive. Thus, a fully automatic

and high-precision tumor segmentation method should be explored to

replace manual segmentation.
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Conclusion

This study associated the radiomics features of MP-MRI with

four biological characteristics (DMI, LVSI, MSI, and Her-2) related

to the aggressiveness of EC. The established comprehensive models

could predict more critical biological characteristics of EC and

achieve promising prediction abilities. Therefore, they may be

useful for the risk stratification of EC and provide valuable

guidance for clinical decision-making.
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