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Tertiary lymphoid structures (TLSs), referred to as tertiary lymphoid organs and

lymphoid tissue neogenesis, are aggregates of immune cells that occur in

nonlymphoid tissues. In recent years, it has been found that TLSs within the

tumor microenvironment have been associated with local adaptive immune

immunity against cancer and favorable prognosis in several human solid tumors,

including gynecological cancers. The issue of the prognosis of gynecological

cancers, including endometrial, cervical, and ovarian cancer, is an enormous

challenge that many clinical doctors and researchers are now facing. Concerning

the predictive prognostic role of TLSs, effective evaluation, and quantification of

TLSs in human tissues may be used to assist gynecologists in assessing the

clinical outcome of gynecological cancer patients. This review summarizes the

current knowledge of TLSs in gynecological cancers, mainly focusing on the

potential mechanism of TLS neogenesis, methods for evaluating TLSs, their

prognostic value, and their role in antitumor immune immunity. This review

also discusses the new therapeutic methods currently being explored in

gynecological cancers to induce the formation of TLSs.

KEYWORDS

tertiary lymphoid structures, gynecological cancers, favorable prognosis, antitumor
immunity, therapeutic induction
Background

Gynecological cancers, mainly include uterine corpus, cervical, and ovarian cancer,

rank as the leading cause of female death and are an essential barrier to increasing life

expectancy worldwide (1). Uterine corpus cancer is often referred to as endometrial cancer,

as over 90% of cases have lesions arising in the endometrium, and its survival rate has not
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substantially improved since the mid-1970s (2). Ovarian cancer is

the second most common cause, and cervical cancer is the fourth

most common cause of cancer deaths among females worldwide (3,

4). The issue of the prognosis of gynecological cancers is an

enormous challenge that many clinical doctors and researchers

are now facing. In recent years, it has been found that tertiary

lymphoid structures (TLSs) within the tumor microenvironment

(TME) have been associated with clinical survival and outcomes in

several human solid tumors (5–7).

TLSs frequently occur in many pathological conditions, such as

inflammatory and infectious diseases, autoimmune diseases, and

cancers (8–11). In autoimmune diseases, TLSs exacerbate local

autoimmune-mediated inflammation and tissue damage, and the

increased severity of the disease is associated with more or larger

TLSs in the affected tissue (12–14). TLSs also develop in

atherosclerotic arterial segments and correlate with plaque

development (15, 16). However, TLSs, identified in several solid

tumor types, are associated with enhanced immune control of

cancer growth and favorable clinical outcomes (17, 18).

Moreover, the presence of TLSs acts as a favorable prognostic

feature in many malignant tumors, regardless of the stage of the

disease (5, 19–22). Concerning the predictive prognostic role of

TLSs, effective evaluation, and quantification of TLSs in human

tissues may be used to assist gynecologists in assessing the clinical

outcome of gynecological cancer patients.

The emergence of immunotherapy provides more opportunities

for cancer treatment (23–25). However, not all cancer patients

treated with immunotherapy show satisfactory response rates (26,

27), and biomarkers to select ideal patients who could benefit from

immunotherapy are urgently needed. It has been reported that TLSs

act as predictive biomarkers of the response to cancer

immunotherapy in melanoma, soft tissue sarcoma, and renal cell

carcinoma (22, 28–30). This predictive role of TLSs was

independent of PD-L1 expression status and CD8+T cell-density

in a large-scale retrospective analysis (31). Notably, accumulating

evidence suggests that TLSs are capable of generating or enhancing

adaptive immune immunity and improving the efficacy of

immunotherapy in humans and mice (17). Therefore, a

hypothesis that TLS induction may provide a new opportunity for

cancer therapy was proposed, and it has been confirmed in mouse

models of ovarian cancer that TLS induction could inhibit tumor

progression (32, 33).

This review briefly summarizes the current knowledge of TLSs

in gynecological cancers, mainly focusing on the potential

mechanism of TLS neogenesis, methods for evaluating TLSs, their

prognostic value, and their role in antitumor immune immunity.

This review also discusses the new therapeutic methods currently
Abbreviations: TLSs, Tertiary lymphoid structures; TME, tumor microenvironment;

SLOs, secondary lymphoid organs; DCs, dendritic cells; LNs, lymph nodes; GCs,

germinal centers; fDCs, follicular DCs; HEVs, high endothelial venules; LTi, lymphoid

tissue inducer cells; HPV, human papillomavirus; HGSOC, high-grade serous ovarian

cancer; HE, hematoxylin-eosin; IHC, immunohistochemistry; ADCC, antibody-

dependent cellular cytotoxicity; Tfh, T follicular helper cell; CIN2/3, cervical

intraepithelial neoplasia.
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being explored in gynecological cancers to induce the formation

of TLSs.
The potential mechanism
of TLS neogenesis

TLSs, also referred to as tertiary lymphoid organs and lymphoid

tissue neogenesis, are aggregates of lymphocytes that occur in

nonlymphoid tissues (17, 34). TLSs mainly consist of B-cell

follicles with/without typical germinal centers (GCs) distinguished

by interdigitating networks of CD21+ follicular DCs (fDCs),

adjacent T-cell regions that contain CD4+ T cells and CD8+ T

cells, and PNAd+ high endothelial venules (HEVs) (35–

37) (Figure 1).

To date, the mechanism of lymphoid neogenesis in the TME

remains incompletely understood. Some studies suggest a parallel

relationship between the neogenesis of TLSs and SLOs in that TLS

neogenesis might require the local accumulation of the homeostatic

chemokines CXCL13, CCL19, CCL21, and IL-7, which mediate the

migration and activation of lymphoid tissue inducer cells (LTi) (38–

41). LTi cells interact with stromal organizer cells and promote the

recruitment of lymphocytes and the organization of TLS structures,

resulting in the induction of lymphoid neogenesis (42, 43). Unlike

SLOs that form during embryogenesis, TLSs form after birth. Other

molecular and cellular interactions of local chronic inflammatory

stimuli also induce the neogenesis of TLSs. The accumulation of

local cytokines and lymphoid chemokines and the formation of

vascular structures also promote the recruitment and activation of B

and T cells, which sustains the formation and assembly of TLSs (11,

44–46). Current research also suggests that neoantigens are

recognized by B and T cells and can promote the neogenesis of

TLSs in human tumors (47, 48). For instance, in uterine cancer,

POLE-EDM and MSI tumors with a higher neoantigen burden

show a significantly increased number of TLSs compared with MSS

tumors, which have a lower number of mutations and neoantigens

(48). In HGSOC omental metastases and esophagogastric

adenocarcinoma, antigen-specific B-cell responses within TLSs

include clonotype selection and expansion of B cells and somatic

hypermutation and isotype switching of immunoglobulins (21, 49).
Methods for evaluating TLSs in
gynecological cancers

Concerning the favorable prognostic role of TLSs, effective

evaluation, and quantification of TLSs in human tissues may be

used to assist clinicians in assessing the clinical outcomes of

gynecological cancer patients. It should be noted that the

methods and markers used to evaluate TLSs often differ in

existing studies of gynecological cancer (17, 50) (Table 1).

Hematoxylin-eosin (HE) staining is the most straightforward

strategy to count/quantify TLSs based on morphology. This stain is

also easily obtained in clinical pathological analysis. In our previous

study, TLSs were counted in HE-stained sections of HGSOC
frontiersin.org
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FIGURE 1

The composition of TLSs in gynecological cancers. Morphologically, TLSs are heterogeneous and vary from simple, diffuse lymphoid aggregates
to dense, highly organized structures similar to lymph nodes. Mature TLSs mainly consist of B-cell follicles with typical GCs distinguished by
interdigitating networks of CD21+ fDCs, adjacent T-cell regions that contain CD4+ T cells, CD8+ T cells, T follicular helper cells, and PNAd+ HEVs.
In terms of cell distribution, B cells gradually occupy the center of TLSs, while the central distribution of T cells in early-stage TLSs changes to the
periphery over time. TLSs, tertiary lymphoid structures; GCs, germinal centers; fDCs, follicular DCs; HEVs, high endothelial venules.
TABLE 1 Methods for Evaluating TLSs and the prognostic role of TLSs in gynecological cancers.

Primary or
metastasis
tumors

Cancer
types

Cases Stage HE IHC Gene expression
Prognostic
value

Refs

Primary cancer
patients

Cervical
cancer

93 I-II –
CD20, CD3, CD21,
and PNAd

– favorable (51)

Endometrial
cancer

378 I-III HE L1CAM – favorable (19)

Endometrial
cancer

116 I-IV – CD20 – – (48)

Endometrial
cancer

104 I-IV HE – – favorable (52)

Endometrial
cancer

85 – HE – – negative (53)

Ovarian
cancer

60 – – CD20 and CD3
CETP, CCR7, SELL, LAMP3, CCL19,
CXCL9, CXCL10, CXCL11, and
CXCL13

favorable (54)

HGSOC 376 I-IV HE – 12-chemokine genes favorable (20)

HGSOC 185 I-IV HE CD20, CD4 and CD8 –

favorable (in the
presence of
CXCL13)

(55)

HGSOC 97 I-IV HE CD21 – No value (PFS) (32)

HGSOC 81+66 I-IV – LAMP and CD20 – No value (OS) (56)

(Continued)
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patients based on morphology (20). Nanda Horeweg et al. detected

rounded aggregates of organized lymphocytes in the myometrial

wall or at the tumor-invasive border as mature TLSs in endometrial

cancer (19). However, TLSs counted by HE-stained sections could

be potentially underestimated, easily subjected to objective bias, and

poorly reproducible between pathologists (60). The literature also

suggests that it is difficult to determine whether lymphocyte

aggregates common in human and mouse cancers are real TLSs

or just an area containing dense lymphocyte infiltration (61).

Immunohistochemistry (IHC) staining of markers of TLS-

associated components, such as CD4+ and CD8+ T cells, CD20+

B cells, and PNAd+ HEVs, in consecutive tumor sections is

commonly used to quantify TLSs (62). Then, quantitative digital

pathological software is used to analyze the density, size, and cell

content of TLSs on scanned images. Ying Zhang et al. detected the

presence of TLSs in cervical cancer through IHC staining of CD20,

CD3, CD21, and PNAd (51). However, research using

multiparametric analysis emphasized the potential of “duplicate

counting” or being hampered by section-to-section variability when

studying single molecules in complex environments (63). In

HGSOC, David R et al. performed multicolor IHC, which could

simultaneously detect CD8, CD4, CD20, CD21, CD208, and PNAd

(57). The staining results of the four types of lymphocyte aggregates

also indicated that the development of TLSs followed a continuous

maturation stage and ultimately produced a GC reaction. IHC

staining of other biomarkers may also be used to quantify TLSs.

In endometrial cancer, L1CAM was only expressed in mature TLSs

with GCs, suggesting that L1CAM may serve as a specific marker

for quantifying mature TLSs in clinical practice (19).

Gene signatures of TLSs, for instance, genes from multiple cell

populations of TLSs and lymphoid chemokines, are used to evaluate

TLSs at the transcriptome level. A 12-chemokine signature (CCL2,

CCL3, CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9,

CXCL10, CXCL11, and CXCL13) was initially derived from a set

of genes that were biologically related to inflammation and the

immune response in colorectal carcinoma (64). It is also considered

highly correlated with developing and maintaining TLSs and

clinical prognosis in tumors, such as CCL19, CCL21, and
Frontiers in Oncology 04
CXCL13, the homeostatic chemokines that likely organize TLSs

(45, 65). Recent studies quantified the presence of TLSs in tumors

based on the transcriptome signatures of 12 chemokines in

malignant tumors, including melanoma metastases, hepatocellular

carcinoma, and invasive breast cancer (20, 66–69). A bioinformatics

analysis also constructed a TLS signature of ovarian cancer with

prognostic value, including CXCL11, CXCL13, and CCL19, which

was further validated in another ovarian cancer dataset. In this

review, we quantified the abundance of TLSs in gynecological

cancer based on the 12-chemokine transcriptome signature

(Figure 2). The highest 12-chemokine signature score was

observed in cervical cancer, the medium score in endometrial

cancer (Kruskal−Wallis test, p < 0.0001), and the lowest score in

ovarian cancer, indicating the existence of abundant TLSs in

cervical and endometrial cancer, while the lowest TLSs were

observed in ovarian cancer.

Collectively, the methods and markers used to evaluate TLSs

often differ in existing studies of gynecological cancer. In the future,

it is necessary to explore more efficient and accurate methods for

evaluating TLSs in different cancer types. Although the range of

cellular and molecular markers used to evaluate TLSs has been

variable, significant evidence suggests that these structures are

markers of good prognosis in gynecological cancer.
TLSs: a prognostic biomarker in
gynecology cancers

Accumulating studies indicate that the presence of TLSs is

associated with clinical prognosis in gynecological cancers. In

cervical cancer, patients with mature TLSs show significantly

higher overall survival rates than those with no or early TLSs

(51). The number of TLSs also correlates with the depth of tumor

invasion, preoperative chemotherapy, human papillomavirus

(HPV) infection, and high levels of PD-1 (51). In endometrial

cancer, both the number and presence of TLSs are strongly related

to the reduction in recurrence risk, and TLSs act as a significantly

favorable predictor of recurrence, independent of other
TABLE 1 Continued

Primary or
metastasis
tumors

Cancer
types

Cases Stage HE IHC Gene expression
Prognostic
value

Refs

HGSOC 30 – –

CD4, CD8, CD20,
CD21, CD208 and
PNAd

– – (57)

mouse model
Ovarian
cancer

20 – – CD19 and CD3 – favorable (33)

Ovarian
cancer

20 – HE – –
favorable (along
with CXCL13)

(58)

metastasis cancer
patients

HGSOC
omental
metastases

41 III-IV –

CD4, CD8,
MECA79, Ki67 and
CD45RO

– – (21)

Vaccinated patients
HPV16+
CIN2/3

12 – HE – – TLS neogenesis (59)
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clinicopathological and molecular factors (19). In ovarian cancer,

the TLSs-positive group showed better overall and progression-free

survival rates than the TLSs-negative group (54). TLSs in mouse

ovarian cancer models can also inhibit tumor growth (33). In high-

grade serous ovarian cancer (HGSOC), the coexistence of CD8+ T

cells and the B-cell lineage significantly improves the clinical

prognosis and is related to the presence of TLSs (71). Another

study indicated that the combination of TLSs and CXCL13 is

associated with prolonged overall survival rates in HGSOC

patients (55).

There is a hypothesis that TLS location may affect its prognostic

value in tumors. As reported in hepatocellular carcinoma,

intratumoral TLSs reflect the existence of ongoing, effective

antitumor immunity and are associated with a lower risk of early

relapse (5), while TLSs in nonneoplastic liver tissue promote tumor

development and are associated with adverse outcomes (67).

However, in gynecological cancer, there is limited exploration of

the relationship between TLSs at different locations and prognosis.

Only a single-center, retrospective cohort study of type II

endometrial cancer found that peritumoral lymphocytes with

band-like structures in the forefront of endometrial cancer are

associated with fatal outcomes (19). Therefore, it is necessary to

conduct more detailed research on the location of TLSs in

gynecology cancers to explore the relationship between TLS
Frontiers in Oncology 05
location and prognosis. Collectively, TLSs could serve as a novel

predictive biomarker to stratify the overall survival risk of

gynecology cancer patients.
Role of TLSs in the regulation of
immune responses

The generation and regulation of adaptive immune responses

against cancers generally occur in secondary lymphoid organs

(SLOs), such as regional lymph nodes and the spleen (72–75).

Further research on the TME has found that TLSs represent the

local initiation and expansion sites of antigen-specific T and B cells

directly in tumor tissues, indicating that antitumor adaptive

immunity also occurs in TLSs (7, 36, 76, 77) (Figure 3). Here, we

summarize the antitumor immune effects of TLSs in ovarian cancer.

TLSs represent well-organized clusters of tumor-infiltrating

lymphocytes, mainly consisting of B-cell follicles, adjacent T-cell

regions, and PNAd+ HEVs (35, 36). The previous consensus of the

field was that T cells are the primary mediator of antitumor

immunity, as CD8+ T cells can directly mediate cytolytic activity

against tumors (78, 79). However, it has been found in human and

mouse tumors that the prominent component of TLSs is B-cell

follicles. Recently, the contribution of B cells to the antitumor
FIGURE 2

The 12-chemokine transcriptome signature of gynecological cancers. RNA-seq data of EC (n=543), CC (n=304), and OV (n=376) patients were
downloaded from The Cancer Genome Atlas [https://www.portal.gdc.cancer.gov/]. The raw data (FPKM form) was transformed into the log (FPKM
+1) for further analysis. Based on the RNA-seq data of gynecological cancer patients, the 12-chemokine transcriptome signature was calculated by
the GSVA method (70) as processed in the Sangerbox platform [https://vip.sangerbox.com/home.html]. The 12-chemokine signature of each sample
is listed in Supplementary Table 1. The Kruskal−Wallis test was used to compare whether there were significant differences in the 12-chemokine
transcriptome signature among the three groups, and the Wilcoxon test was used to compare whether there were significant differences in the 12-
chemokine transcriptome signature between each pair of groups. EC, endometrial cancer; CC, cervical cancer; OV, ovarian cancer; FPKM, fragments
per kilobase million; GSVA, gene set variation analysis.
frontiersin.org
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immune response has been increasingly investigated. B cells have

been associated with a better clinical prognosis in human primary

and metastatic ovarian cancer (21, 80, 81). B cells in GCs within

mature TLSs can undergo clonotype selection, expansion, somatic

hypermutation, affinity maturation, and isotype switching,

suggesting active humoral antitumor immunity in these

structures (71). Then, these B-cell clones differentiate into plasma

cells, also known as effector B cells, that can produce mature,

oligoclonal IgG transcripts, potentially leading to antibody-

dependent cellular cytotoxicity (ADCC) and opsonization (57). A

strong B-cell memory response within TLSs found in HGSOC
Frontiers in Oncology 06
omental metastases, including a restricted repertoire of antigens

and production of tumor-specific IgG transcripts by plasma cells,

supported the development of antitumor immunity (21). It has also

been found that immune complexes with IgG transcripts promote

CD86 expression on in vitro-generated APCs, suggesting that IgG

transcripts might promote antitumor responses by enhancing DC

priming (21). These findings suggest that B-cell differentiation and

the production and accumulation of antitumor antibodies are

critical components of the effective antitumor immunity of TLSs.

In autoimmune diseases, infiltrating B cells can serve as effective

APCs to initiate and activate T cells, thereby influencing and
FIGURE 3

The antitumor immune responses of TLSs and their components in the TME. In the T-cell region of TLSs, DCs capture and process tumor antigens
and present the processed antigens to CD4+ and CD8+ T cells, resulting in the priming and activation of effector T-cell responses against tumors. In
the B-cell region of TLSs, follicular DCs present tumor antigens in the form of immune complexes to follicular B cells, leading to the proliferation
and activation of B cells and the differentiation of memory B cells and plasma cells. Plasma cells migrate to the tumor nest and produce antitumor
antibodies, directly forming immune complexes with tumor antigens and leading to ADCC and opsonization. In the tumor nest, CD8+ T cells directly
mediate cytolytic activity against tumors, and NK cells and macrophages with Fc receptors kill target tumor cells by recognizing the Fc segment of
the antibody. In addition, the killing of cancer cells releases tumor antigens that can be captured and processed by DCs in the TME, which migrate
to TLSs. TLSs, tertiary lymphoid structures; TME, tumor microenvironment; DCs, dendritic cells; ADCC, antibody-dependent cellular cytotoxicity; NK
cell, natural killer cell.
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regulating autoimmune processes (82–84). Consistent with this, in

primary HGSOC, CD20+ B cells express costimulatory molecules

associated with APCs, such as CD80, CD86, CD40, MHC class I,

and MHC class II (71). B cells are also involved in recruiting and

supporting DCs and neutrophils in TLSs of omental metastases by

secreting CXCL8 (21). These findings suggest that B cells may

enhance cellular immunity against tumors in an APC-dependent

manner. In addition, it has previously been shown in many studies

that CD20+ B cells and CD8+ T cells often colocalize in TLSs within

and adjacent to tumor islets (21, 57, 71) and significantly improve

the prognosis of HGSOC. Another study of primary HGSOC found

that CD8+ T cells carried prognostic benefits with the presence of

PCs, CD20+ B cells, and CD4+ T cells (57). Therefore, a novel

cooperative interaction between B cells and T cells that reflects a

supportive role of B cells in cytolytic immune responses is proposed

(71, 80). As sites for the infiltration and proliferation of T and B

cells, TLSs orchestrate cellular and humoral immunity to promote a

synergistic antitumor immune response.

Although most research focuses on T and B cells in TLSs, other

components also play a role in antitumor immunity—for example,

CD21+ DCs and PNAd+ HEVs. The majority of mature DCs were

localized in the stroma of the tumor and associated with TLSs. DCs

in TLSs contribute to the local initiation/activation of T-cell

dependent antitumor immunity, characterized by TH1

polarization and cytotoxic functions, and correlate with improved

prognosis in HGSOC patients (56). CD21+ DCs in mature TLSs can

also produce CXCL13, which is known to recruit and activate

immune cells and promote the formation of TLSs in tumors (32).

As the characteristic component that is only found within TLSs in

tumors (45), PNAd+ HEVs play a critical role in orchestrating

antitumor immunity, as they mediate both the type of lymphocyte

and the site of entry into lymphoid tissues through the expression of

vascular addressins (85). PNAd+ HEVs are also associated with an

improved prognosis in many cancers (86–88) and are thought to

actively modulate antitumor immune activity.

Taken together, TLSs create an organized immune structure

where tumor-infiltrating B and T cells and DCs interact and activate

each other, promoting a local sustained immune response, and TLSs

promote the cooperative antitumor response of cellular and

humoral immunity.
The induction of TLSs in
gynecological cancer therapy

Since TLSs represent the main site of the immune response

aga in s t tumors in the TME, induc ing TLSs a s an

immunomodulatory target to enhance antitumor immunity seems

to be a new strategy for gynecological cancer therapy. To date,

research on the induction of TLSs in cervical and endometrial

cancer has been limited. In contrast, the feasibility of local TLS

induction has been explored in murine models of ovarian cancer.

Immunocompetent mouse recombinant CXCL13 showed a

significantly increased area of TLSs per tumor area, increased

infiltration of CD8+ T cells around TLSs, and prolonged survival
Frontiers in Oncology 07
time compared with the control group (32). In contrast, CXCL13

blockade abrogated TLS formation in intraperitoneal tumor-

bearing mice, increasing tumor growth (33). The literature also

found that CXCL13 shapes an immunoreactive TME by facilitating

the maintenance of CXCR5+CD8+ T cells in TLSs, and the

combination of CXCL13 and anti-PD-1 significantly inhibited

tumor growth in subcutaneous murine models of ovarian

cancer (55).

Other immunotherapies can also induce the formation of TLSs in

murine models of ovarian cancer. T follicular helper (Tfh) cell

differentiation promoted by silencing Satb1 was shown to be

sufficient to drive TLS assembly in mouse models of ovarian

cancer, and mice with TLSs induced by Tfh cell differentiation

showed decreased tumor growth (33). Combining an oral FAK

inhibitor with TIGIT-blocking antibody immunotherapy increased

TILs and CXCL13 levels, leading to TLS formation and prolonged

survival in experimental mouse models of aggressive ovarian cancer

(58). Moreover, the cancer vaccine was shown to promote TLS

formation in cervical intraepithelial neoplasia (CIN2/3) lesions.

Patients with high-grade CIN2/3 showed induced TLSs and

increased infiltration of tumor-infiltrating lymphocytes after

undergoing peripheral vaccination with HPV antigens (59). Our

previous research speculated that TLSs are also associated with a

good response to immune checkpoint block therapy in HGSOC

patients. However, clinical samples are lacking to validate this

inference (20). These data support the strategy of inducing TLSs to

improve the efficacy of antitumor responses and provide more

opportunities to control and treat gynecological cancer in the future.

As mentioned above, TLSs are usually associated with increased

disease severity and adverse prognostic outcomes in many cases of

autoimmunity (12–14). Inducing TLSs enhances antitumor

immunity and enhances autoimmune B and T-cell responses in

other parts, which are detrimental to autoimmunity. However, there

are limited data on the role of TLSs in immune-related adverse

events. Therefore, further exploration of the potential of TLS

induction is necessary to enhance antitumor immunity and affect

autoreactive T and B cells. The risk-benefit ratio of this method

needs to be carefully evaluated in the future.
Concluding remarks

In conclusion, TLSs serve as a novel predictive biomarker to

stratify the overall survival risk of gynecology cancer patients.

Although the range of cellular and molecular markers used to

evaluate TLSs has been variable, significant evidence suggests that

these structures are markers of good prognosis in gynecological

cancers. TLSs serve as local sites for the presentation of tumor

antigens by DCs and the expansion and activation of tumor-

infiltrating T and B cells, resulting in tumor antigen-specific

cytotoxic T cells and the production of antibodies by plasma cells.

Regarding cancer therapy, ovarian cancer studies have found that

inducing TLS formation through various methods, such as

immunotherapy, can inhibit tumor growth. Meanwhile, the cancer

vaccine can also induce the formation of TLSs in CIN2/3 patients.
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Therefore, the induction of TLSs may provide more opportunities to

control and treat gynecological cancers in the future.
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