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Introduction: Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with

limited response to both chemotherapy and immunotherapy. Pre-treatment

tumor features within the tumor immune microenvironment (TiME) may

influence treatment response. We hypothesized that the pre-treatment TiME

composition differs between metastatic and primary lesions and would be

associated with response to modified FOLFIRINOX (mFFX) or gemcitabine-

based (Gem-based) therapy.

Methods: Using RNAseq data from a cohort of treatment-naïve, advanced PDAC

patients in the COMPASS trial, differential gene expression analysis of key

immunomodulatory genes in were analyzed based on multiple parameters

including tumor site, response to mFFX, and response to Gem-based

treatment. The relative proportions of immune cell infiltration were defined

using CIBERSORTx and Dirichlet regression.

Results: 145 samples were included in the analysis; 83 received mFFX, 62

received Gem-based therapy. Metastatic liver samples had both increased

macrophage (1.2 times more, p < 0.05) and increased eosinophil infiltration

(1.4 times more, p < 0.05) compared to primary lesion samples. Further analysis

of the specific macrophage phenotypes revealed an increased M2 macrophage

fraction in the liver samples. The pre-treatment CD8 T-cell, dendritic cell, and

neutrophil infiltration of metastatic samples were associated with therapy

response to mFFX (p < 0.05), while mast cell infiltration was associated with

response to Gem-based therapy (p < 0.05). Multiple immunoinhibitory genes

such as ADORA2A, CSF1R, KDR/VEGFR2, LAG3, PDCD1LG2, and TGFB1 and

immunostimulatory genes including C10orf54, CXCL12, and TNFSF14/LIGHT

were significantly associated with worse survival in patients who received
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mFFX (p = 0.01). There were no immunomodulatory genes associated with

survival in the Gem-based cohort.

Discussion: Our evidence implies that essential differences in the PDAC TiME

exist between primary andmetastatic tumors and an inflamed pretreatment TiME

is associated with mFFX response. Defining components of the PDAC TiME that

influence therapy response will provide opportunities for targeted therapeutic

strategies that may need to be accounted for in designing personalized therapy

to improve outcomes.
KEYWORDS

PDACpancreatic ductal adenocarcinoma1, CIBERSORT2, FOLFIRINOX3, immunomodulator
(s)4, RNA sequencing5
1 Introduction

Overall survival for pancreatic adenocarcinoma (PDAC)

remains dismal with 5-year survival less than 10% (1, 2). Effective

conventional cytotoxic chemotherapeutic regimens are limited;

however, combinations such as FOLFIRINOX or gemcitabine/

nab-paclitaxel have demonstrated efficacy and can prolong

survival for PDAC patients by months (3, 4). Immune checkpoint

inhibitors (ICI) have had dramatic success in malignancies such as

melanoma (5) non-small cell lung cancer (6), and biliary tract

cancer (7). Unfortunately, ICIs as monotherapy have essentially

failed in PDAC (8), prompting investigations into strategies to

potentiate PDAC immunotherapy.

A wide body of preclinical data (9–16) supports the concept that

chemotherapy favorably modifies the tumor immune

microenvironment (TiME) through a variety of mechanisms. For

example, one of the components of FOLFIRINOX, oxaliplatin,

causes DNA damage (17) and can induce immunogenic cell death

(ICD) via release of damage-associated molecular patterns in

tumors, uptake of tumor debris and neoantigens by antigen-

presenting cells, and ultimately, induction of an adaptive immune

response and cytotoxic T cell activity (12, 13, 18, 19). Similarly, 5FU

is thought to selectively kill myeloid-derived suppressor cells

(MDSCs) to enhance T cell mediated anti-tumoral immunity

(20). Results from phase III trials across a wide range of cancers

have demonstrated that chemotherapy such as oxaliplatin

combined with ICI (chemo-ICI) leads to improved overall

survival and outcome compared with chemotherapy alone (21–

35). Currently, the two main chemotherapy regimens for PDAC are

FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, oxaliplatin)

(3) and gemcitabine with nab-paclitaxel (4). These treatments have

widespread applicability in the treatment of PDAC and are

administered both as systemic chemotherapy in unresectable and

metastatic PDAC (3, 36) as well as in a neoadjuvant fashion to

improve cancer resectability and survival (37, 38). While

FOLFIRINOX is typically favored as the initial chemotherapeutic

strategy (3), it is associated with increased toxicity compared with

Gem-based regimens (3, 4). In practice, there is currently no
02
indications to guide clinicians in choosing between the two

chemotherapy regimens beyond the patient’s performance status

(39, 40). However, in the clinic, FOLFIRINOX delivery is associated

with increased tumor-infiltrating CD8+ T lymphocytes (TILs),

decreased circulating regulatory T cells (Tregs), and can increase

tumoral PD-L1 expression (41–43). Thus, FOLFIRNOX holds

potential to augment ICI therapy in PDAC patients. Studies of

combination chemo-ICI in advanced PDAC patients demonstrate

improved survival compared to chemotherapy alone (44). mRNA

vaccines have also been used in combination with FOLFIRINOX

and anti-PD1 therapy, demonstrating the presence of persistent

vaccine-expanded tumor-specific T-cells (45). These recent

developments underscore the importance of understanding the

dynamic interplay of the PDAC TiME and chemotherapy.

Classically, PDAC has been described to have a “cold” TiME,

including multiple immunosuppressive cell lines such as Tregs,

MDSCs, and M2-phenotypic tumor-associated macrophages

(TAMs) (46–52). However, a growing body of evidence supports

that the PDAC TiME is heterogeneous, and represented by a diverse

milieu of immune cell phenotypes (53). While such heterogeneity has

been well-described across a variety of cancers and associated with

survival, available data in PDAC is limited. For example, the

Immunoscore, which is based on quantification of CD3+/CD8+

lymphocyte heterogeneity at the core and boundary of tumors (54),

can outperform traditional TNM staging in predicting disease-free

survival and overall survival in colorectal cancer (54, 55) and other

cancers (56, 57). Recent investigations have also described significant

differences in the TiME between metastatic and primary lesions (58–

60). It has been shown that PD-L1 expression is decreased in immune

cells of metastatic lesions of triple negative breast cancer (61) and

differences exist in PD-1+ TIL infiltration between metastatic and

primary lung cancer lesions (62).

The association between chemotherapy response and the PDAC

TiME has not been well characterized and the influence of disease

site has not been investigated thoroughly. We evaluated publicly

available data from the COMPASS trial, a prospective study of

treatment-naïve patients with a diagnosis of locally advanced or

metastatic PDAC who had core needle biopsies obtained prior to
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treatment used for whole genome sequencing and RNA sequencing

(63, 64). By analyzing the unique genomic dataset from patients

with advanced disease, we investigated what molecular and cellular

determinants are associated with chemotherapy response. A

secondary goal was to characterize the TiME based on the

primary versus metastatic site for PDAC. Considering the

biologic differences between metastatic and primary lesions, as

well as the established influence of chemotherapy on the TiME,

we hypothesized that the components of the pre-treatment TiME

would differ between metastatic and primary lesions and would be

associated with therapy response and survival in a cohort of

advanced PDAC patients. Going forward, these findings may

have important implications for personalized therapies and for

designing next-generation immunotherapy combination strategies.
2 Methods

2.1 COMPASS trial

Institutional Review Board approval and written consent for the

COMPASS trial (63, 64) was obtained from participating

institutions (University Health Network, Toronto, Ontario,

Canada; MUHC Centre for Applied Ethics, Montreal, Quebec,

Canada; and Queen’s University Health Sciences and Affiliated

Teaching Hospitals Research Ethics Board, Kingston, Ontario,

Canada) (63, 64), and a data use agreement was completed by

Baylor College of Medicine with the Ontario Institute for Cancer

Research for use of the data within this study. Briefly, image-guided

percutaneous core needle biopsies were obtained, and patients then

received modified FOLFIRINOX (mFFX), gemcitabine/nab-

paclitaxel, or a combination of these along with investigational

drugs as standard first line therapy and had therapy response data

by RECIST 1.1 (65). For our analysis, chemotherapy response data

was defined based on tumor size change to therapy. “Responders”

were patients whose measured tumor decreased in size, while

“nonresponders” no change or an increase in tumor size while on

therapy (Figure 1A). Patients included in our subsequent analysis

were comprised of those who had a confirmed diagnosis of PDAC,

had a biopsy obtained from either the liver or pancreas, had longer

than 30-day survival from time of trial enrollment, had received at

least one cycle of either mFFX or gemcitabine-based (Gem-based)

therapy as treatment, and had RECIST data available for evaluation

of therapy response.
2.2 Immunomodulatory differential gene
expression analysis

Raw count data of RNA sequencing data of patients included in the

COMPASS trial were downloaded from EGAD00001004548 (https://

ega-archive.org/datasets/EGAD00001004548) and EGAD00001006081

(https://ega-archive.org/datasets/EGAD00001006081). Gene

quantification was performed by TPMCalculator (66) and using

GENCODE Human Release 43 version of gene annotation GTF file

(67). As the immunomodulatory genes which influence immune cell
Frontiers in Oncology 03
infiltration into the TiME (68) can mediate chemoresistance to

gemcitabine (69, 70) or platinum-based therapies (71), we evaluated

the immunomodulatory genes within these samples as well. Tumor-

Immune System Interactions Database (TISIDB) is an online

repository of integrated data of tumor-immune interactions (72),

including a curated list of genes encoding immunomodulators based

on data from 30 non-hematologic cancer types from The Cancer

Genome Atlas (TCGA). The raw count data were processed using

edgeR v3.42.4 (73) by filtering to remove lowly expressed genes

using the “filterByExpr” function, normalization by trimmed mean

of M values (74), and dispersion estimation using the negative

binomial distribution method. Differential gene expression analysis

was calculated using the quasi-likelihood pipeline with a nominal

log fold change threshold of 0.5 and a false discovery rate correction

(73) set at a nominal value of 0.05 using genes of interest were

obtained from TISIDB. Immunomodulatory genes were divided

into immunoinhibitory, immunostimulatory, and MHC genes.
2.3 In silico cytometry based
on transcriptomics

The leukocyte composition of each sample was then

characterized as an immune cellular fraction using CIBERSORTx,

which estimates proportions of immune cell populations from

deconvoluted bulk transcriptomic data (67). CIBERSORTx

analysis was performed using the following settings: the LM22

signature matrix was used, consisting of 547 genes to distinguish

22 mature immune cell populations; B-mode batch correction was

used; quantile normalization was disabled; 1000 permutations were

performed for significance analysis. Only CIBERSORTx results with

a p-value < 0.05 were included in subsequent analyses. To increase

abundance of more comprehensive immune cell phenotypes,

immune cell fractions obtained through LM22 were aggregated as

outlined in “Aggregate 2” of the Supplementary Materials in

Thorsson et al. (75) to obtain 9 immune cell aggregate

phenotypes. Differences in immune cell infiltration proportions

were analyzed using Mann-Whitney tests.
2.4 Dirichlet regression and
statistical analysis

As the output from CIBERSORTx is considered compositional

data that carries relative information as proportions of the total

amount of immune cell infiltration, summing to 1 for each sample,

traditional data analysis may violate modeling assumptions, such as

homoscedasticity (76, 77). Therefore, Dirichlet regression was also

performed comparing immune cell fractions between groups of

interest using DirichletReg v0.7-1 (76), R version 4.3.0 (78) using

the common parametrization model. The regression estimate

coefficients obtained using this method can be interpreted

similarly to odds ratios if taken as exponentiated coefficients (76).

Differences in clinical characteristics of patients were analyzed using

Chi-square test or ANOVA, where appropriate. Survival

probabilities for each RECIST group were estimated using the
frontiersin.org
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Kaplan-Meier method and the log-rank test. Univariate cox

proportional hazards for immunomodulators was performed in R

using the survival package v3.5-5 (79). Visualization was performed

using GraphPad PRISM v9.5.0 and R 4.3.0.
3 Results

3.1 Clinical parameters of included PDAC
patients from the COMPASS trial

In total, 145 of the 195 patients from the COMPASS trial dataset

met inclusion criteria for our secondary analysis (Table 1).

Compared with patients who received Gem-based therapy, mFFX
Frontiers in Oncology 04
treated patients were significantly younger, predominantly male,

and were more likely to have locally advanced disease rather than

metastatic disease. However, there was no statistically significant

difference in terms of site of biopsy or chemotherapy response

between patients receiving mFFX and Gem-based therapy. Similar

to previous studies in the efficacy standard chemotherapy regimens

in PDAC (3, 64), we observed an improvement in median overall

survival (OS) in patients who received FOLFIRINOX compared to

Gem-based therapy, although this did not reach significance

(median OS 307 vs 254 days, p-value = 0.12, Supplemental

Figure 1). For the entire cohort, chemotherapy response

correlated with overall survival (Figure 1B, p-value < 0.0001),

similar to previous studies utilizing RECIST in a metastatic

PDAC setting (80, 81). As expected, patients with tumors that
B

A

FIGURE 1

(A) Waterfall plot of tumor response of patients included in the analysis from the COMPASS trial. Patients were recoded from PD (Progressive
Disease), SD (Stable Disease), and PR (Partial Response) to those with a decrease in tumor size on treatment as “responders”, and patients with an
increase in tumor size on treatment as “nonresponders”. (B) Kaplan-Meier estimate of responders and nonresponders.
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progressed or demonstrated no change with treatment

(nonresponder) had significantly shorter median survival

compared to the patients with tumors that decreased in size

following treatment (responder) (199 vs 359 days).
3.2 Tumor site-specific variations in the
PDAC tumor immune microenvironment

Considering the unique pre-treatment patient samples within

our cohort, we initially sought to determine whether site-specific

differences existed in the cellular components of the PDAC TiME
Frontiers in Oncology 05
(68) between primary pancreatic tumor biopsies and metastatic

liver samples. Compared with pancreatic tumor samples, metastatic

liver biopsies had significantly higher expression of multiple

immunomodulatory genes. Immunoinhibitory genes such as

ADORA2A (log fold-change 0.92, p-value < 0.0001) (82, 83),

CSF1R (log fold-change 0.62, p-value = 0.003) (84, 85), and

CD274/PD-L1 (log fold-change 0.72, p-value 0.03) had

significantly higher expression in the liver biopsy samples

compared with pancreatic samples (Figure 2). We also noted

differences in immunostimulatory and MHC genes based on site

of biopsy. A total of 12 immunostimulatory genes within the

annotation (CD70, CD80, CD86, CD276, IL2RA, MICB, NT5E,
B CA

FIGURE 2

Volcano plots of differential expression of (A) immunoinhibitors, (B) immunostimulators, and (C) MHC genes from TISIDB based on site of biopsy.
The threshold for log2 fold change is set at 0.5, and the threshold for false discovery rate is set at 0.05.
TABLE 1 Clinical characteristics of patients from the COMPASS trial included in analysis.

CIBERSORT Cohort All mFFX Gem-based P-value

# Included 145 83 62

Age

Mean (SD) 62.7 (9.3) 60.0 (8.6) 66.0 (9.2) <0.0001

Median [Min, Max] 64 [29, 84] 61 [35, 77] 67 [29, 84]

Gender (%)

M 81 (55.8) 54 (66.7) 27 (33.3) 0.0099

F 64 (44.2) 29 (45.3) 35 (54.7)

Disease Status (%)

Locally Advanced 20 (13.8) 16 (80.0) 4 (20.0) 0.0267

Metastatic 125 (86.2) 67 (53.6) 58 (46.4)

Biopsy Site (%)

Pancreas 46 (31.7) 25 (54.3) 21 (45.7) 0.6312

Liver 99 (68.3) 58 (58.6) 41 (41.4)

Therapy Response (%)

Responders 94 52 42 0.4820

Nonresponders 50 31 19
Bolded values are those with p-values below a cutoff of 0.05, suggesting significance.
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PVR, TNFSF14, TNFRSF14, TNFRSF18, ULBP1) were significantly

differentially expressed between liver and pancreatic biopsy

samples. Of these, only TNFRSF14, a membrane-bound receptor

(86) with both pro-inflammatory and anti-inflammatory immune

signaling pathways (87), was downregulated in the liver biopsy

samples compared to the pancreatic biopsy samples (log

fold-change -0.43, p-value = 0.003), while the other

immunostimulatory genes were upregulated. Similarly, of the

MHC genes that were significantly differentially expressed (TAP2,

HLA-DOB, TAP1, HLA-DQA1), all were upregulated in the liver

biopsy samples compared to the pancreatic biopsy samples. Taken

together, this data suggests that the TiME of liver metastases in

PDAC undergoes more dynamic regulation compared to that of

primary pancreatic lesions.
3.3 Pre-treatment PDAC TiME differences
associated with chemotherapy response

Next, we investigated the association of pre-treatment PDAC

tumor immune cell infiltration with response to either mFFX or

Gem-based therapy. We first compared the initial immune cell

infiltration of each treatment group to determine if there were

upfront differences in immune populations that may bias

downstream analyses. While patients who received mFFX had

decreased infiltration by the CD4 T cell aggregate compared to the

Gem-based group, there were no statistical differences in immune

infiltration by the individual CD4 T cell phenotypes included in the

aggregate (Supplementary Table 1), suggesting a similar initial immune

cell phenotypic infiltration between treatment groups.Chemotherapy

response was associated with variations in expression of tumor pre-

treatment immunomodulating genes (Figures 3A, B). The

immunoinhibitory gene TGFB1 was downregulated in responders to

mFFX compared to nonresponders (log fold-change -0.55, p-value <

0.005), while the immunostimulator CD70 (88) was significantly
Frontiers in Oncology 06
upregulated (log fold-change 2.2, p-value < 0.05). In the metastatic

liver-cohort, only the upregulation of CD70 remained significantly

increased among responders (log fold-change 2.8, p-value < 0.05).

There were no significantly upregulated or downregulated genes

associated with Gem-based therapy response (Supplementary

Figures 2A, B).
3.4 Clinical impact of immunomodulatory
genes between biopsy sites

We wanted to evaluate the impact of immunomodulator gene

expression on clinical outcomes within our patient cohort. As therapy

response strongly correlated with overall survival in this patient cohort

from the COMPASS trial, we investigated the association between

immunomodulatory gene expression and survival in the different

therapy cohorts based on treatment response (Figures 4A-D). Across

all biopsies, the immunoinhibitors ADORA2A, CSF1R, KDR/

VEGFR2, LAG3, PDCD1LG2, and TGFB1 were significantly

associated with worse survival in patients who received mFFX

(Figures 4A, C). A subset of these immunoinhibitors including

ADORA2A, CSF1R, LAG3, and TGFB1 were also significantly

associated with worse survival in the subset of liver biopsies from

patients who received mFFX. There were no immunoinhibitors

associated with either improved or worsened survival in the Gem-

based cohort for all samples and the liver subset.

Multiple immunostimulatory genes were also associated with

worse survival in the mFFX cohort across all samples (Figure 4B),

including C10orf54, CXCL12, and TNFSF14/LIGHT. While there

was an overlap in significant immunostimulators between all samples

and the liver sample subset (Figure 4D), TNFSF15/TL1A was only

significantly associated with improved survival in liver samples (HR

0.46, p-value = 0.03). Again, we found no immunostimulatory genes

that were significantly associated with response to Gem-based

therapy in either all samples or the liver subset.
BA

FIGURE 3

Volcano plots of differential expression of immunomodulatory genes from TISIDB for (A) patients who received mFFX, and (B) patients who received
mFFX and had metastatic liver biopsies.
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3.5 Quantification of immune cell
infiltration using CIBERSORTx

Similar to our immunomodulatory analysis, we observed

significant differences using CIBERSORTx in infiltrating immune

cell proportions on comparison of the primary lesion pancreatic

samples compared with metastatic liver biopsies (Table 2). Metastatic

liver samples had both increased macrophage (1.2 times more, p-

value < 0.05) and increased eosinophil infiltration (1.4 times more, p-

value < 0.05) compared to pancreatic biopsies from the primary

lesion. Further analysis of the specific macrophage phenotypes

revealed an increased M2 macrophage fraction in the liver samples,

indicating a more immunosuppressed metastatic TiME compared to

the primary lesion.

For the entire cohort of treated patients, increased infiltration

by 8 out of the 9 immune cell aggregate phenotypes except NK cells

were significantly associated with response to mFFX treatment. Pre-

treatment tumor immune cell populations were not associated with

response to Gem-based treatment (Table 3A). On subset analysis of

PDAC patients with liver metastasis, only increased pre-treatment

CD8 T-cell, dendritic cell, and neutrophil infiltration were only
Frontiers in Oncology 07
significantly associated with therapy response to mFFX (Table 3B).

Conversely, increased total mast cell infiltration was only associated

with response to Gem-based therapy in the liver TiME.

Taken together, these data suggest that pre-treatment

infiltration by different immune cell phenotypes differs based on

site and are associated with therapy response in both a site-specific

and therapy-specific fashion. Response to mFFX was more

associated with increased infiltration by CD8 T-cells compared to

Gem-based regimens, indicating that the pre-treatment TiME may

be more impactful for patients receiving mFFX.
4 Discussion

Across cancers, the TiME is a well described mediator of patient

survival and can influence treatment response (89). A growing body

of evidence supports the ability of FOLFIRINOX to augment

tumoral immunity. However, the influence of pre-treatment

TiME on FOLFIRINOX response is not well described. Insight

into tumor microenvironment features associated with

chemotherapy response may help to identify key mediators of
B

C D

A

FIGURE 4

Forest plot of univariate Cox proportional hazard analyses based on chemotherapy received. (A) Reports hazard ratios for immunoinhibitors in all
biopsies, (B) reports hazard ratios for immunostimulators in all biopsies. (C) Reports hazard ratios for immunoinhibitors in metastatic liver biopsies,
and (D) reports hazard ratios for immunostimulators in metastatic liver biopsies.
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efficacy and point to future opportunities in designing next

generation chemo-ICI strategies. Utilizing access to a unique

dataset of treatment-naïve biopsy samples of advanced or

metastatic PDAC patients from the COMPASS trial, we

hypothesized that the components of the pre-treatment TiME

would differ between metastatic and primary lesions and would

be associated with therapy response and survival in a cohort of

advanced PDAC patients.

In the present study, we identified key site-specific differences in

the cellular and genomic components of the PDAC TiME. Our

analysis identified that PDAC metastatic liver biopsies had more

variable expression of immunomodulatory genes compared to
Frontiers in Oncology 08
pancreas biopsies. Multiple immunoinhibitory genes such as

CSF1R (84, 85) and components of immune checkpoint signaling

pathways such as CD86-CTLA4 (90), PD-1/PD-L1 (91), and PVR-

TIGIT (92) were upregulated in liver metastatic samples. Notably,

no immunomodulatory genes were identified that were significantly

upregulated in the primary lesion TiME relative to the metastatic

tumor samples. Compared to the TiME of primary lesion pancreatic

biopsies, the metastatic liver biopsies also demonstrated increased

infiltration by M0 and M2 macrophages. M0 macrophages are

considered undifferentiated macrophages that can be polarized into

different functional phenotypes such as M1 and M2 (93). However,

a growing body of evidence suggests that M0 macrophages are not a

benign member of the TiME. They are associated with worse

outcomes in multiple cancers such as breast (94), prostate (95),

and lung cancer (96), and possess a transcriptional profile similar to

that of M2 macrophages (97, 98). This, combined with an increased

infiltration of the immunoinhibitory M2 macrophage (46–52) and

the immunomodulatory findings stated above, suggests that the

metastatic liver TiME is more dynamically regulated and overall

immunosuppressed compared to the TiME of the primary lesion.

An inflamed pre-treatment TiME has been recognized as a

predictor of response to neoadjuvant chemotherapy in various

cancers (99, 100). One of the earlier markers used to predict

response was the systemic immune-inflammatory index (SII) (101),

based on peripheral neutrophils, platelets, and lymphocytes that

portended survival in NSCLC (102), gastric (103, 104), and

colorectal (105) cancer. Similarly, the Immunoscore, which was

initially developed in colorectal cancer (106) and is based on CD3

+/CD8+ lymphocyte quantification in tumors, predicts disease-free

survival and overall survival in colorectal cancer (54, 55) and other

cancers (56, 57). Notably, standard chemotherapy regimens for

colorectal cancer have significant overlapping antineoplastic agents

with FOLFIRINOX, including FOLFOX, XELOX, FOLFIRI,

FOLFOXIRI, or CAPIRI (107), implying that a pre-treatment

immune contexture can impact therapy response in PDAC as well.

This is supported by retrospective studies in PDAC, which have
TABLE 3A Comparison of immune infiltration in responders versus nonresponders for patients treated with mFFX and Gem-based therapy.

Responders vs Nonresponders mFFX (n = 83) Gem-based (n = 62)

Immune Cell Phenotype Odds Ratio CI P-value Odds Ratio CI P-value

B cells 1.40 1.12- 1.68 0.018 1.10 0.76 - 1.43 0.587

T cell CD8 1.56 1.25 - 1.86 0.004 1.30 0.94 - 1.66 0.152

T cell CD4 1.46 1.12 - 1.80 0.030 1.12 0.73 - 1.51 0.560

NK cells 1.26 0.96 - 1.57 0.135 0.97 0.61 - 1.33 0.867

Macrophages 1.41 1.16 - 1.67 0.008 1.14 0.84 - 1.45 0.387

Dendritic cells 1.48 1.18 - 1.79 0.011 1.13 0.77 - 1.50 0.495

Mast cells 1.40 1.15 - 1.66 0.009 1.34 1.03 - 1.65 0.063

Eosinophils 1.57 1.18 - 1.96 0.023 0.99 0.54 - 1.45 0.974

Neutrophils 1.56 1.18 - 1.94 0.023 1.23 0.76 - 1.70 0.383
fro
Bolded values are those with p-values below a cutoff of 0.05, suggesting significance.
TABLE 2 Comparison of immune infiltration of liver vs pancreas
biopsies.

Liver vs Pancreas

Immune Cell Pheno-
type

Odds
Ratio CI

P-
value

B cells 1.06 0.84 - 1.28 0.613

T cell CD8 1.03 0.79 - 1.26 0.816

T cell CD4 1.01 0.75 - 1.27 0.955

NK cells 1.09 0.85 - 1.33 0.472

Macrophages 1.23 1.03 - 1.43 0.043

Dendritic cells 1.15 0.92 - 1.39 0.239

Mast cells 1.11 0.91 - 1.31 0.313

Eosinophils 1.48 1.17 - 1.79 0.013

Neutrophils 1.24 0.94 - 1.55 0.161

Macrophages M0 1.54 1.17 - 1.90 0.022

Macrophages M1 1.14 0.78 - 1.49 0.487

Macrophages M2 1.69 1.32 - 2.06 0.005
Bolded values are those with p-values below a cutoff of 0.05, suggesting significance.
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demonstrated associations between survival and various pre-

treatment TIL populations. For example, increased CD8 TIL

presence correlated with improved survival (108, 109), while M2

macrophage infiltration correlated with worsened survival (110–112).

However, limited data exist in PDAC directly addressing the effect of

the pre-treatment immune contexture on chemotherapy. In this

study, we show that key members of the pre-treatment TiME are

also significantly associated with treatment response. Notably,

increased infiltration by mutually exclusive immune cell

phenotypes were associated with response to different

chemotherapeutic regimens. Increased CD8 T-cell infiltration was

significantly associated with tumor response to mFFX in the entire

cohort and on subset analysis of patients with liver metastasis.

Previous reports have demonstrated that mFFX treatment is

associated with an increased infiltration of CD8+ T cells and

reduced Tregs (41–43, 113) suggesting that mFFX can augment the

PDAC TiME. However, our analysis demonstrates that the pre-

treatment CD8 T-cell infiltration status of the PDAC TiME may

also impact response to FOLFIRINOX. This opens the question of

whether the observed increase in CD8+ T cells post-mFFX and the

associated favorable response were due to the presence of a high CD8

+ T cell population pre-treatment. Our findings implicate the tumor

immune status and favorable biology of the treatment-naive tumor

may influence response. It is highly likely that both the pre-treatment

TiME and chemotherapy-induced CD8+ T cells contribute to a

favorable response with mFFX. In contrast, Gem-based regimens

were not associated with the presence of any immune cell population

across all samples, and only mast cell aggregates in the liver subset.

While mast cell infiltration is typically associated with tumor growth

(114, 115), higher mast cell infiltration was significantly correlated

with overall survival and response to gemcitabine in a cohort of

biliary tract cancer patients (116).

These treatment-specific patterns in the TiME were also seen

when analyzing immunomodulators associated with therapy

response and survival. For example, the immunoinhibitory and
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pro-tumorigenic (117) cytokine TGFB1 was significantly

downregulated in responders and associated with worse survival

in the mFFX treatment cohort. Other genes such as ADORA2A,

CSF1R, and LAG3 were significantly associated with worse survival

in patients in the mFFX cohort across all samples and liver-only

samples. No immunomodulatory genes were associated with

therapy response in the Gem-based therapy cohort when

comparing either all biopsies or focusing solely on liver biopsy

samples (Supplementary Figures S2A, B). Similarly, no

immunomodulatory genes were associated with survival within

the Gem-based cohort (Figures 4A–D). In the context of pre-

clinical studies which demonstrate that FOLFIRINOX (18–20)

and gemcitabine (118, 119) impact tumor immunity, our data

suggest that the interactions between the cellular and genomic

components of the pre-treatment PDAC TiME with

FOLFIRINOX and gemcitabine may be mechanistically different.

As reflected within this patient cohort, overall survival for

patients with advanced stage PDAC remains abysmal, with 5-year

survival of less than 10% (2) and highlights the need for strategies to

improve outcomes for this large subset of PDAC patients.

Currently, aside from the patient’s performance status there are

no indications for administering one regimen over the other (41,

42). Our data suggest that FOLFIRINOX-based chemotherapy

approach may be advantageous in select patients with a favorable

pre-existing TiME. In such patients, and in patients of borderline

performance status that may sway a clinician against the use of

FOLFIRINOX (41, 42), an immune-based indication for

chemotherapy may provide a more nuanced approach to cancer

therapy and improve patient outcomes. Furthermore, the

implication of a dynamically regulated, immunosuppressed

metastatic TiME in PDAC suggests potential avenues for targeted

therapies and implies the need to incorporate stage of disease into

future design of immune-targeted PDAC therapeutic strategies. For

example, the presence of multiple upregulated immune checkpoint

pathways in the metastatic PDAC TiME may be targeted via
TABLE 3B Comparison of immune infiltration in responders versus nonresponders for patients treated with mFFX and Gem-based therapy, metastatic
liver biopsies only.

Responders vs Nonresponders Liver_mFFX (n = 58) Liver_Gem-based (n = 41)

Immune Cell Phenotype Odds Ratio CI P-value Odds Ratio CI P-value

B cells 1.31 0.98 - 1.64 0.104 1.24 0.86 - 1.63 0.267

T cell CD8 1.57 1.21 - 1.92 0.013 1.33 0.91 - 1.75 0.181

T cell CD4 1.36 0.95 - 1.76 0.142 1.28 0.84 - 1.72 0.272

NK cells 1.25 0.89 - 1.60 0.228 1.11 0.69 - 1.54 0.616

Macrophages 1.24 0.94 - 1.54 0.156 1.32 0.97 - 1.68 0.123

Dendritic cells 1.48 1.12 - 1.83 0.032 1.33 0.91 - 1.74 0.182

Mast cells 1.33 1.03 - 1.63 0.061 1.61 1.25 - 1.97 0.010

Eosinophils 1.55 1.10 - 2.00 0.057 1.33 0.81 - 1.86 0.279

Neutrophils 1.69 1.25 - 2.14 0.020 1.49 0.94 - 2.03 0.151
fro
Bolded values are those with p-values below a cutoff of 0.05, suggesting significance.
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existing checkpoint blockade therapies (84, 120–122) and may

represent a potential therapy target to improve outcomes for

patients with metastatic PDAC. Another consideration would be

to capitalize on the impact of a pre-treatment TiME on

chemotherapy through immunological priming. For example,

preclinical studies show administration of immunomodulatory

cytokines such as interferon sensitize PDAC cell lines to

gemcitabine (123, 124). Another strategy could combine

chemotherapy with the prior use of mRNA vaccines to expand

tumor-specific T-cells (45). As multiple immunomodulatory genes

were only associated with survival in the mFFX cohort, adjunctive

immunotherapeutic strategies could improve mFFX response in

either a chemotherapy-only or chemo-ICI regimen. Potential

candidates include the use of antibodies or bispecific molecules to

target TGFB, which are in clinical testing (125). Agents to block

CSF1R, such as surufatinib, are also in testing, and have

demonstrated anti-tumoral efficacy in phase III trials (126).

Limitations exist within this study. The COMPASS trial

included only patients with advanced or metastatic PDAC, and

the results may not be valid in a stage I/II, resectable cohort.

CIBERSORTx only provides relative proportions of immune cell

infiltration and may not be reflective of absolute infiltration

especially for inter-sample comparison (127); as such, we are

unable to quantify how potential differences in the absolute

immune infiltration may impact chemotherapy response, and will

require further study. Additionally, the LM22 signature matrix used

in deconvolutional analysis was derived from microarray-derived

data from PBMCs (128) and may not be reflective of the totality of

immune cell phenotypes within the PDAC TiME. However, this

study utilized a large, unique dataset of treatment-naïve PDAC

samples to analyze the TiME; future efforts would investigate the in

silico analysis in both in vitro and in vivo PDAC models to validate

the results and advance our understanding of the PDAC

tumor biology.
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Kaplan-Meier estimate of overall survival of patients who received mFFX
versus Gem-based therapy.

SUPPLEMENTARY FIGURE 2

Volcano plots of differential expression of immunomodulatory genes from
TISIDB for (A) patients who received Gem-based therapy, and (B) patients
who received Gem-based therapy and had metastatic liver biopsies.
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Comparison of immune infiltration of mFFX versus Gem-based therapy.
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