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TICRR serves as a prognostic
biomarker in lung
adenocarcinoma with
implications in RNA epigenetic
modification, DDR pathway,
and RNA metabolism
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Respiratory and Critical Illness Medicine, the First Hospital of Putian City, Putian, China, 3Beijing
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Purpose: TOPBP1 interacting checkpoint and replication regulator (TICRR), a

hub gene of the Cdk2-mediated initiation step of DNA replication, has been

shown an essential role in tumorigenesis by accelerating the DNA replication of

tumor cells.

Methods: RT-qPCR was used to detect the mRNA expression of TICRR in LUAD

tumors and adjacent normal tissues. The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) database of LUAD were acquired to analyze the

critical role of TICRR expression in survival prognosis and clinicopathology

characters in LUAD. Gene ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG), and gene set enrichment analysis (GSEA) were performed

using the R package. The correlation of TICRR expression with immune

cell infiltration, RNA epigenetic modification, DNA damage repair (DDR)

pathway, and cell metabolism of LUAD was further explored to verify

significant conclusions.

Results: TICRR was significantly upregulated in most cancer types, including

LUAD, lung squamous cell carcinoma (LUSC), and others. Cox regression analysis

indicated the overexpression of TICRR was associated with poor survival in

several cancers. In LUAD, TICRR expression was positively correlated with

tumor stage and was increased in smoking, male, and high tumor mutational

burden (TMB) patients. Enrichment analysis revealed that TICRR could influence

tumor proliferation and prognosis via activating pathways involving cell cycle,

DNA repair, DNA replication, cysteine metabolism, oxidative phosphorylation,

and ubiquitin-mediated proteolysis pathways. Interestingly, high TICRR

expression correlated with DDR pathway signature (34 genes), 37 m6A/m5C

regulated genes, and some metabolism-regulated genes. Silencing the TICRR

gene affects cysteine metabolism and modifies cancer-related pathways, with
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decreased cell cycle and increased B/T cell receptor signaling. Our TICRR risk

model accurately predicts LUAD patient prognosis, validated across GEO

datasets, and is integrated with clinical characteristics via a nomogram,

fac i l i t a t i ng per sona l i zed t rea tment s t r a teg ies and enhanc ing

patient management.

Conclusions: Taken together, TICRR has emerged as a promising prognostic

biomarker in lung adenocarcinoma (LUAD), with implications in immune

activation, cell cycle regulation, RNA modification, and tumor energy

metabolism. These findings suggest that TICRR could serve as a viable

therapeutic target and a reliable prognostic indicator for LUAD.
KEYWORDS
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1 Introduction

Global cancer data shows lung cancer is the leading cause of

cancer mortality (1). Non-small cell lung cancer (NSCLC) accounts

for approximately 85% of lung cancer cases based on histological

classification, and the remaining 15% are small cell lung cancer

(SCLC). The two most prevalent subtypes of NSCLC are lung

adenocarcinoma (LUAD) and lung squamous cell carcinoma

(LUSC) (2). Targeted therapy and immunotherapy have

revolutionized the landscape of lung cancer treatment. Still, the 5-

year survival is dropped from 92% of IA1 to 13% of IIIC due to the

limited benefit population, therapy resistance, and micrometastasis

after surgery (3). It is urgent to explore new prognostic biomarkers

and drug targets to improve the efficacy of lung cancer treatment.

TOPBP1 interacting checkpoint and replication regulator

(TICRR, also known as C15orf42, FLJ41618, MGC45866, SLD3,

Treslin) was first identified in Xenopus egg extracts, which

collaborated with TopBP1 in the Cdk2-mediated initiation step of

DNA replication to support S phase regulation (4). The previous

study has demonstrated that knockdown TICRR not only inhibits

the initiation of DNA replication but also hinders fork progression.

In p53-wild tumor cells, silencing TICRR suppresses DNA

synthesis, leading to the accumulation of DNA damage.

Consequently, this activates the ATM/CHK2-dependent p53

signaling pathway, ultimately inducing cell cycle arrest and

apoptosis. Further, the TICRR was overexpressed in several

cancers (5). Xia, S. et al. found that aberrant expression of TICRR

could contribute to papillary renal cell carcinoma (PRCC)

tumorigenesis by regulating the cell cycle (6). However, it remains

unclear about the biological features and co-expressed genes of

TICRR, which may affect the prognosis of LUAD.

Recently, RNA modifications represented by m6A and m5C

have significantly impacted cancer development, progression, and

prognosis (7). Alterations in the DNA damage repair (DDR)

pathway, particularly in homologous recombination (HR) and

mismatch repair (MMR), have frequently been identified to be

therapeutic targets and prognosis biomarkers (8). In addition, as
02
one of the essential energy supplies, tumor metabolic genes could

affect tumorigenesis by regulating the metabolic pathway (9).

However, no studies focus on the correlation between the above

biomarkers and TICRR.

In this study, The Cancer Genome Atlas (TCGA)-LUAD

dataset and Gene Expression Omnibus (GEO) were acquired to

investigate the differential expression of TICRR in various cancers

between tumor and normal tissues. To verify the significant

association of TICRR expression with LUAD tumorigenesis and

progression, we comprehensively analyzed its prognostic value,

functional roles, and immunological characteristics. In addition,

the correlation of the DNA damage repair (DDR) pathway, m6A

and m5C-regulated genes, and cell metabolism-related genes with

TICRR expression were analyzed to explore the biological

mechanism of LUAD.
2 Methods

2.1 Data source

The normalized pan-cancer and normal tissue RNA expression

data were obtained from the University of California, Santa Cruz

(UCSC) datasets (https://xenabrowser.net/) containing 33 cancer

types. The mutation data of LUAD were downloaded from TCGA

(https://portal.gdc.cancer.gov/). The multiple RNA expression

profiles were obtained from GEO [https://www.ncbi.nlm.nih.gov/

geo/). GEO datasets (GSE72094 (10), GSE50081 (11), GSE13213

(12), GSE30219 (13), GSE41271 (14), GSE42127 (15), GSE126044

(16), and GSE210129 (17)] were enrolled to validate the prognosis

value. After excluding samples without survival information, these

datasets retained 398, 127, 116, 85, 182, and 133 samples,

respectively. Besides serving as validation sets for TICRR

expression and prognosis in GSE50081 and GSE30219, the

remaining four datasets were also employed for external model

validation. RNA-seq data from GSE126044 were used to analyze the

predictive ability of the immunotherapy outcomes. The correlation
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of clinical characteristics and TICRR expression for the above

TCGA and GEO datasets were shown in Supplementary Tables 1-

7. The GSE210129 dataset contained the RNA-seq data of three

control and six siTRESLIN samples of Hela cell line, which was used

to explore the underlying biological mechanism and function.

In addition, single-cell RNA sequencing data of six LUAD

patients from Bischoff, P. et al. (2021) were included to reveal the

gene expression features in different cell types (18).

The m6A/m5C regulated genes were acquired from Li, D. et al.

(2022) (19), 34 DDR-related genes were acquired from Carlo, M.I.

et al. (20), and the metabolism gene list was obtained from

Possemato, R. et al. (2011) (9).
2.2 Differential expression and prognosis
risk analysis of TICRR in pan-cancer

The TICRR expression profile in pan-cancer was analyzed using

the “limma” package. Data were excluded according to the two

criteria: (i) samples with no TICRR expression; (ii) cancer types with

less than three samples.

The clinical data of LUAD data sets were acquired in the TCGA

database. The correlation analysis between TICRR expression level

and clinicopathological characteristics of LUAD patients, such as

clinical stage, gender, and smoking status, was implemented.

Furthermore, Univariate analysis can be used for the initial

exploration of the relationship between TICRR and clinical factors

with prognosis, while multivariate analysis can further eliminate the

influence of other confounding factors.
2.3 Reverse transcription-quantitative
polymerase chain reaction

In addition, we validated the differential expression of TICRR in

LUAD tissues and paired paracancerous tissue by RT-qPCR

experiment. Total RNA of 16 paired frozen fresh tumor tissues

and paired paracancerous tissues of LUAD was extracted using the

TRIzol reagent (Invitrogen) following the manufacturer’s protocol.

Reverse RNA transcription to cDNA was obtained using

PrimeScript™ RT Master Mix (Takara, Shiga, Japan) according to

the manufacturer’s instructions. The qPCR was performed with

QuantStudio 5 Detection System (ABI, Thermo Fisher) in a 20 ml
reaction mixture containing SYBR GreenII. The expression of

TICRR was normalized to GAPDH and was analyzed using the

2−DDCT method. [DCT = CT(target gene) − CT(reference gene),

DDCT = DCT(tumor sample) − DCT(normal sample)]. The primer

sequences are presented in Table 1.
2.4 Genomic alterations analysis

The mutation data of TCGA-LUAD was downloaded from the

cBioPortal online tool (https://www.cbiobortal.org) (21). The
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“‘Maftools” package (22) was then used to visualize and analyze

data of somatic mutations.
2.5 Immune features analysis

The Cibersort algorithm was used to quantify the infiltrate levels

of 22 immune cells for each LUAD cancer sample with TCGA

expression data (23). The “estimate” R package was used to calculate

the immune and ESTIMATE scores of LUAD patients. A total of 33

cancers have been previously examined in the TCGA project. The

tumors have been categorized into six immune subtypes as follows:

C1 (wound healing), C2 (IFN-g dominant), C3 (inflammation), C4

(lymphocyte depletion), C5 (immunologically silent), and C6 (TGF-

beta dominance) (24). TICRR expression differences between

subtypes were analyzed. In addition, the expression of immune

checkpoints was applied to evaluate the relationship between TICRR

high and low expression groups.
2.6 Enrichment analysis of TICRR and its
co-expression genes in TCGA

The co-expression genes correlated to TICRR expression in LUAD

were analyzed by Pearson’s correlation coefficient calculated by the R

software. The “pheatmap” package drew the top 50 co-expression

genes. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation

Analysis (GSVA) were conducted to investigate the biological functions

of TICRR in tumors. The gene set’ c2.cp.kegg.v7.4.symbols.gmt’ was

downloaded from MSigDB v7.5 for GSEA and GSVA (25). Gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis of TICRR co-expression genes

were conducted using the “clusterProfiler” package (26).
2.7 Gene correlation and interaction
analysis of TICRR

The Pearson correlation analysis between 34 DNA damage

repair (DDR) genes, 7 Cysteine-related genes, 12 Glycolysis, and

TICRR expression in LUAD were implemented using R software. A

lollipop plot was used to show the correlation coefficient.

The online website tool GeneMANIA database (http://

www.genemania.org) was utilized to find functionally similar

genes for TICRR based on the interactions datasets from GEO

and other organism-specific functional genomics datasets (27).
TABLE 1 RT-qPCR primer sequences used in this study.

Primers Sequences

TICRR Forward CACGGGAGACGAAGAGGT

Reverse CTGGAACAGCAGCGGAGA

GAPDH Forward TGCACCACCAACTGCTTAGC

Reverse GGCATGGACTGTGGTCATGAG
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2.8 Drug sensitivity analysis of TICRR

Drug sensitivity information was downloaded from The

Genomics of Drug Sensitivity in Cancer (GDSC) database (https://

www.cancerrxgene.org/) (28). The half-maximal inhibitory

concentration (IC50) of represented drug response was estimated

using an R package “oncoPredict” (29). Finally, we used PubChem

(https://pubchem.ncbi.nlm.nih.gov/) website to visualize the 3D

structure of sensitive drugs.
2.9 Target miRNA prediction and
competing endogenous RNA
network construction

The screening criteria were a mammal, human, hg19, strict

stringency (≥5) of CLIP-Data, and with or without data of

Degradome-Data. The target miRNA was predicted using two

online databases, miRDB (http://mirdb.org/miRDB/) and miRWalk

(http://mirwalk.umm.uni-heidelberg.de/). Target miRNAs of TICRR

were defined as miRNAs found in both databases, and the target

score was ≥0.8. The ceRNA network of miRNA–lncRNA–circRNA

interaction was constructed by StarBase v2.0 (https://

starbase.sysu.edu.cn/index.phpStarBase) (30). The Cytoscape was

applied to visualize the ceRNA networks.
2.10 Single-cell RNA sequencing analysis

Six single-cell RNA sequencing data of LUAD from the Bischoff

cohort were enrolled to analyze the expression features of TICRR in

the TME. The uniform manifold approximation and projection

(UMAP) method (31) was used for cluster visualization, and the

“SingleR” package was used for cluster annotation. “FeaturePlot”

and “VlnPlot” were used to visualize gene expression.
2.11 Statistical analysis

Univariate and multivariate Cox regression analyses were

conducted to evaluate the risk factors and prognostic value of

TICRR in cancers. Statistical analysis utilized R software (version

4.2.1) and its corresponding packages. The correlation coefficient

was calculated using Pearson correlation analysis. The Wilcoxon

test was used to investigate the difference between the groups. All

the P-values were two-sided, and the results were considered

statistically significant when the P-values were less than 0.05.

Survival curves for OS were compared using the Kaplan-Meier

(KM) method. The prognosis performance was evaluated by

receiver operating characteristic (ROC) curves and the area under

the ROC curve (AUC) value.
Frontiers in Oncology 04
3 Results

3.1 Expression and prognostic significance
of TICRR in LUAD and pan-cancer

Firstly, comparing TCGA tumors and normal tissues indicated

considerably different TICRR expression across most cancer types,

including LUAD, LUSC, and others. When compared to normal

samples, a notable increase in TICRR expression was observed in 17

different cancer types, The expression level of TICRR is significantly

upregulated in LUAD (p<0.0001)(Supplementary Figure 1). These

findings strongly indicate that TICRR expression is consistently

upregulated in various cancer types, highlighting its potential

pivotal role in cancer diagnosis. Cox regression analysis revealed

that overexpressed TICRR could indicate poor prognosis in most

cancer types (Supplementary Figure 2), and univariate Cox regression

indicated TICRR was a risk factor for the overall survival in LUAD

[HR=1.47, 95% CI (1.1-1.96), p=0.01](Figure 1A). Multivariate Cox

regression analysis further confirmed the prognosis significance of

TICRR in LUAD [HR=1.44, 95% CI (1.06-1.95), p=0. 018]

(Figure 1B). The detailed univariate and multivariate Cox

regression analysis results were displayed in Supplementary

Table 8. Furthermore, survival analysis across pan-cancer was

shown in Supplementary Figure 3, and TCGA-LUAD patients

could be classified into high and low-exp groups according to the

median expression of TICRR (Figure 1C). Two more LUAD GEO

cohorts were used to conduct the survival analysis to confirm the

prognostic effect of TICCR expression. Patients in both GSE72094

(p=0.00067) and GSE50081 (p=0.0015) could be divided into

differential groups based on the median expression of TICRR

(Figures 1D, E). TICRR expression could also indicate prognosis in

another 4 GEO datasets (GSE13213, GSE30219, GSE41271, and

GSE42127) (Supplementary Figures 4A-D). Receiver operating

characteristic (ROC) curve was used to determine the efficacy of

gene expression data in predicting disease groups. Different AUC

cutoffs were considered to indicate high diagnostic accuracy (AUC:

1.0-0.9), relative diagnostic accuracy (AUC: 0.9-0.7), or low

diagnostic accuracy (AUC: 0.7-0.5), we found that TICRR could

accurately differentiate the LUAD from the normal, with an AUC of

0.956 (Figure 1F). RT-qPCR validation revealed that TICRR mRNA

expression was significantly higher in 16 pairs of LUAD tissues than

in paracancerous tissues (p=0.023) (Figure 1H), and the experimental

data were presented in Supplementary Table 9. The validation results

were consistent with the expression difference of TICRR in TCGA

datasets (p<0.001)(Figure 1G).
3.2 Associated of TICRR with mutational
landscape and clinical feature in
TCGA-LUAD

Previous studies have identified that oncogene and suppressed

gene mutations and clinical characteristics had been recognized as

risk factors in LUAD, such as EGFR/KRAS gene alterations and
frontiersin.org
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smoking (2). We subsequently investigated the association of

TICRR with these established prognosis factors. The mutation

landscape showed noticeably distinct alterations across a

differential expression of the TICRR. Missense mutation mainly

caused by SNV was the major type of mutations. The most

frequently mutated genes were roughly the same in high and low

exp tumors. TP53/TTN/MUC16 were more frequently mutated in

the TICRR overexpressed group, while KRAS was more commonly
Frontiers in Oncology 05
mutated in the TICRR downregulated group (Figure 2A). Fisher’s

test revealed significant differences in gene alterations between the

high-expression and low-expression groups, including NTRK3,

NTRK2, ATRX, KRAS, WNT10B, ROS1, and TP53(P<0.05,

Figure 2B). The TICRR overexpressed group had increased TMB

levels (P<0.001, Figure 2C). In addition, TICRR was determined to

closely relate to the Tumor stage, T stage, smoking status, and

gender of LUAD patients (Figures 2D–G). Although the correlation
A B

C D E

F G H

FIGURE 1

Differential expression and prognosis value of TICRR in cancers. (A) The univariate Cox regression analysis for LUAD in TCGA dataset. This analysis
serves as an initial exploration of the relationship between TICRR, clinical factors, and prognosis. (B) The multivariate Cox regression analysis for
LUAD in TCGA dataset, which further eliminates the influence of other confounding factors. (C–E) Survival analysis for LUAD in TCGA, GSE72094,
and GSE50081 datasets based on the TICRR expression. Green represents the low-exp group. Blue represents the high-exp group. (F) Diagnostic
ROC analysis with the AUC of TICRR in LUAD. (G, H) Differences of TICRR expression between LUAD tumor and normal tissues in TCGA and 16
clinical LUAD samples.
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between the TICRR expression and staging did not reach statistical

significance, it’s noteworthy that the low-exp group had a higher

proportion of stage I compared to the high-exp group. In contrast,

the high-exp group had lower proportions of stage II, III and IV

than the low-exp group. Meantime, a significant difference was

observed in terms of T-stage between the high-exp and low-exp

groups (p=0.008). The TICRR overexpressed group had more

smokers (p=0.002) and male patients (p<0.001).
Frontiers in Oncology 06
3.3 Co-expression genes
enrichment analysis

Furthermore, the co-expression genes with TICRR were

confirmed using the TCGA-LUAD dataset. There were 22460

genes positively correlated with the RNA expression of TICRR,

and 1807 genes were negatively correlated with the RNA expression

of TICRR (P<0.05). The top 50 positively (Figure 3A, left) and
A

B C

D E F G

FIGURE 2

Associated of TICRR expression with the mutational landscape, clinical characters, and TMB in LUAD. (A) The mutational landscape of TICRR low
(left) and high(right) expression group in LUAD. The top bar chart illustrates the count of mutations per sample. The rightmost bar chart represents
the variety of mutations in each gene. (B) Significantly different mutant genes between TICRR high and low expression groups. (C) Correlation of
tumor mutational burden (TMB) with TICRR expression in LUAD. (D–G) Correlation of tumor stage, T stage, smoking, and gender with TICRR
expression in LUAD.
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negatively (Figure 3A, right) associated genes with TICRR were

displayed, and the detailed correlation statistics between TICRR and

other genes were listed in Supplementary Table 10. Next, the GO

annotation and KEGG pathway enrichment using the top 200 co-

expression were performed to explore the biological function of

TICRR and co-expression genes. The detailed enrichment analysis

results were listed in Supplementary Tables 11, 12. The results of

GO-BP, GO-CC, GO-MF, and KEGG pathways only showed the

top 10 terms (Figures 3B–E). These genes were involved in the cell

cycle, homologous recombination pathway, organelle fission,

tubulin binding, and chromosomal region-relative activities. Then

GSVA and Gene Set Enrichment Analysis (GSEA) of the TICRR

expression was performed, and the GSVA results were presented in

Supplementary Table 13. The bar plot showed that upregulated

TICRR expression was positively related to the cell cycle,
Frontiers in Oncology 07
homologous recombination pathway, DNA replication, and some

energy metabolism pathway (Figure 4A), consistent with the co-

expression genes enrichment analysis. TICRR gene could also

activate ubiquitin-mediated proteolysis and NOTCH signaling

pathways (Figure 4B).
3.4 The correlation between tumor
immune microenvironment,
immunotherapy response, and
TICRR expression

As the above proved, TCGA-LUAD patients could be stratified

into high-exp and low-exp groups according to TICRR median

expression. To clarify the impact of the TICRR gene on the tumor
A

B C

D E

FIGURE 3

Correlation of co-expression genes with the expression of TICRR. (A) The heatmap showed the top 50 co-expression genes significantly positively
(left) and negatively (right) correlated with TICRR expression. (B–E) Enrichment analysis of gene ontology (GO) terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways for top 200 TICRR co-expression genes.
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immune microenvironment (TIME), immune score, immune

subtype, immune infiltration, and single-cell public dataset

enrichment analysis were conducted using the TCGA-LUAD

dataset. Estimate analysis showed TICRR high expression group

was characterized by a significantly low immune score and stromal

score (p<0.001) (Figure 5B). The fraction of 22 immune cells
Frontiers in Oncology 08
calculated using the CIBERSORT algorithm revealed the

infiltration of T cells follicular helper, NK cells resting,

Macrophages M0, and Macrophages M1 were higher in the high-

exp group (p<0.01). While the infiltration level of T cells CD4

memory resting, Monocytes, Dendritic cells resting, and Mast cells

resting were higher in the low-exp group (p<0.01) (Figure 5A).
A

B

FIGURE 4

GSVA and Gene Set Enrichment Analysis (GSEA) of the TICRR in LUAD. (A) GSVA analyzed the top20 biological pathways of TICRR high and low
expression groups. Orange signifies a notable enrichment of this biological pathway in the high-expression group, whereas blue indicates a significant
enrichment in the low-expression group. (B) GSEA showed the most enriched gene sets of all detected genes in TICRR high and low expression groups.
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Immune subtype analysis showed the C3 subtype (inflammatory)

and C6 (TGF-b dominant) were primarily enriched in the low-exp

group (Figure 5C). Six immune checkpoint genes were expressed

more highly in the high-exp group than those in the low-exp group

according to the TICRR expression level (P<0.05) (Figure 5E). In the

GSE126044 dataset, patients could be classified into eight high-exp
Frontiers in Oncology 09
and eight low-exp patients. Of these 11 immunotherapy non-

responders, seven were in the high-exp group, and four were in

the low-exp group (p=0.106) (Figure 5D). Subsequently, single-cell

analysis was performed for six LUAD patients (32). UMAP

dimensionality reduction was achieved to show the distribution of

the different cell types: T cells, macrophage, epithelial cells, B cells,
A

B C D

E

FIGURE 5

Immune correlation analysis between high and low expression groups according to TICRR expression in TCGA-LUAD. (A) Comparing 22 immune
cell fractions between high and low expression groups. (B) Immune score, (C) immune subtype, (D) immunotherapy response, and (E) differential
expression of immune checkpoint genes between high and low expression groups.
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iPS cells, tissue stem cells, and endothelial cells (Supplementary

Figure 5A). TICRR was mainly enriched in macrophages and T cells

(Supplementary Figure 5B).
3.5 Correlations of TICRR expression with
DDR-pathway and energy metabolism
in LUAD

DNA damage repair (DDR) contributes to maintaining DNA

integrity, cysteine is associated with antioxidant capacity, and

glycolysis is involved in energy metabolism. All of these are crucial

factors in the development of LUAD. The correlation between 34 DDR

genes, 9 Cysteine-related genes, 12 Glycolysis, and TICRR expression in
Frontiers in Oncology 10
LUAD were shown in Figures 6A-C. All of the 34 DDR-related genes

were positively correlated with TICRR expression, especially RAD54L,

BLM, BRCA1, CHEK1, BRIP1, RAD51, FANCA, POLE, BRCA2

(Correlation Coefficient>0.75) (Figure 6A). These significantly

correlated DDR genes were mainly concentrated in the Fanconi

anemia (FA), HR, and checkpoint pathways. For energy metabolism,

Cysteine and Glycolysis metabolism-related genes were also positively

related to TICRR expression (Figures 6B, C). Furthermore, modification

of m6A/m5C plays an important role in the development of LUAD.

TICRR expression was significantly correlated with m6A/m5C

regulators, and the top 5 were DNMT3B, DNMT1, DNMT3A,

NSUN2, and ALYREF (Correlation Coefficient>0.6) (Figure 6D).

These results suggest that TICRR may be closely related to the DNA

damage repair, cysteine, glycolysis, m6A/m5C modification of LUAD.
A

B C

D

FIGURE 6

Correlations of TICRR expression with important biological regulation and pathways. Correlation of TICRR expression with (A) 34 DDR-related genes,
(B) 9 Cysteine-related genes, (C) 12 Glycolysis-related genes, and (D) 37 m6A/m5C regulated genes in LUAD.
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3.6 Drug sensitivity analysis and
drug prediction

To investigate the prediction value of TICRR for drug therapy,

we analyzed the correlation between drug sensitivity and TICRR

expression using the genomics of drug sensitivity in cancer (GDSC)

database, and half-maximal inhibitory concentration (IC50) was

used as an indicator for drug sensitivity. As we know, drug

sensitivity increases as the IC50 value decreases. The top 10

significantly positively and negatively sensitive drugs correlated

with TICRR expression were shown in Figure 7A, and the

complement correlation results were in Supplementary Table 14.

The TICRR upregulated patients exhibited decreased IC50s for MK-

1775 (p ≤ 2e−16, Figure 7B), a WEE1 inhibitor that targets the cell

cycle pathway, suggesting that MK-1775 could help patients who

are at high-exp due to TICRR expression. Oppositely, patients in the

low-exp group were more sensitive to Trametinib (p= 9.5e−11,

Figure 7C) and SB505124 (p ≤ 2e−16, Figure 7D), revealing these

patients might benefit from MEK and TGFbR inhibitors.
3.7 Interacting genes of TICRR

Finally, the interacting genes with TICRR in LUAD were

identified using the GeneMANIA website tool. The top 20

associated genes and 330 links of interaction were presented in
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the network (Figure 8A). TOPBP1 was the strongly connected gene

with TICRR, followed by PTPN23, MTBP, CCNA2, and DONSON.

The most functionally similar genes to TICRR were TOPB1 and

DONSON, which were all engaged in the DNA damage checkpoint,

mitotic G2/M transition checkpoint, G2 DNA damage checkpoint,

and negative regulation of G2/M transition of the mitotic cell

cycle (p<0.05).

The ceRNA network displayed the complicated interaction

within target miRNAs, lncRNAs, and circRNAs of TICRR

(Figure 8B). In addition, target miRNAs of TICRR were predicted

using multiple miRNAs database, and three miRNAs were finally

screened, including hsa-miR-27a-3p, hsa-miR-9985, and hsa-miR-

27b-3p (target score≥0.8). However, only two target miRNAs, hsa-

miR-27a-3p and hsa-miR-27b-3p, can be retrieved in StarBase to

predict their circRNAs and lncRNAs. As a result, 14 lncRNAs and

21 circRNAs correlated with the two target miRNAs of TICRR.
3.8 Function exploration when siRNA
against TICRR in cancer cell line

Upon comparing the RNA expression profiles of siTRESLIN

and siCTR HeLa cells, we identified 126 differentially expressed

genes (DEGs) between the two groups. GO enrichment analysis

based on these DEGs (Figures 9A–C) revealed significant

downregulation of processes related to PML body (GO:0016605),
A

B C D

FIGURE 7

Screened drugs for LUAD treatment. (A) The network plot shows the correlation between GDSC drug sensitivity and TICRR expression. The orange
lines represent a positive correlation, and the blue lines represent a negative correlation, with thicker lines indicating a more significant correlation.
The different IC 50 values of (B) MK-1775, (C) Trametinib, and (D) SB505124 in TICRR high and low expression patients with LUAD.
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glial cell apoptotic process (GO:0034349), semi-lunar valve

development (GO:1905314) , and antioxidant act ivi ty

(GO:0016209) upon TICRR gene silencing. Conversely, TICRR

gene suppression led to a significant upregulation of processes

related to cortical actin cytoskeleton (GO:0030864), axoneme

(GO:0005930), cysteine metabolic process (GO:0006534),

polysaccharide binding (GO:0030247), and integrin binding

(GO:0005178) processes . KEGG enrichment analys is

demonstrated several significantly enriched KEGG pathways,

including NOD−like receptor signaling pathway, Cysteine and

methionine metabolism, Biosynthesis of cofactors, Small cell lung

cancer, IL−17 signaling pathway, Adrenergic signaling in

cardiomyocytes pathways (Figure 9D). We also performed a

GSEA analysis between siTRESLIN and siCTR HeLa cells

(Figure 9E). When TICRR gene was silenced, spliceosome

pathway, cell cycle pathway, arachidonic acid metabolism

pathway, hypertrophic cardiomyopathy pathways were
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significantly decreased, while phosphatidylinositol signaling

system, dorso ventral axis formation, inositol phosphate

metabolism, B cell receptor signaling pathway, and T cell receptor

signaling pathway. These findings revealed that the TICRR gene was

involved in the multiple signaling transduction and metabolism

processes, and played an important roles in cell cycle pathway.
3.9 Prognosis value of TICRR-related
gene signature

Next, we found 86 overlap genes between 24267 TICRR co-

expression genes and 126 siTICRR DEGs. According to the

univariate and multivariate Cox regression analysis, five genes

were significantly associated with the survival in LUAD, including

KIAA1549L, GPNMB, MAD2L1, COL4A3, and KRT81. Based on

the multivariate coefficient and the RNA expression value, we
A

B

FIGURE 8

The interaction network of TICRR in LUAD. (A) gene-gene interaction network of TICRR from GeneMANIA. (B) ceRNA networks of TICRR (the red
circle represents the hub gene TICRR, the orange arrow represents the miRNAs, the pink square represents the lncRNAs, and blue hexagons
represent the circRNAs.
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development a risk model to predict the survival status of LUAD.

The formal of risk scores were as follows:

Risk score =  o
m

i=1
Expressioni � Coefficienti
Frontiers in Oncology 13
The m is the number of signature genes for constructing the

model; the “Expressioni” indicates the expression value of signature

gene “I” in the sample; the Coefficientiis the multivariate Cox

regression coefficient of gene i.
A B

C D

E

FIGURE 9

GO and KEGG enrichment analysis using the RNA expression profiles in siTRESLIN and siCTR HeLa cells. The trigram array plot demonstrated the
GO enrichment analysis of BP (A), CC (B), and MF (C) based on DEGs between siTRESLIN and siCTR Hela cells. The red dots represent up-regulated
genes, the blue dots represent down-regulated genes, and the inner circle is a z-score, which is not a conventional statistical z-score and only gives
an indication that a term is more likely to be lower (negative) or higher (positive). (D) Gene-concept network shows the enriched KEGG pathway
based on DEGs and the linked genes involved in these pathways. (E) The bubble plot exhibited KEGG pathway enrichment of KEGG pathway of
siTRESLIN and siCTR HeLa cells. The colors of the lines and dots represent the P-value of the enriched KEGG pathway.
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Based on the TICRR risk scores, we successfully classified

TCGA-LUAD patients into high- and low-risk groups, with the

high-risk group exhibiting a significantly worse prognosis

compared to the low-risk group (P=0.00021, AUC=0.713)

(Figures 10A, B). Moreover, the TICRR risk model effectively
Frontiers in Oncology 14
stratified patients in GSE13213 (P=0.0087) (Figure 10C),

GSE41271 (P=0.00061) (Figure 10E), GSE42127 (P=0.032)

(Figure 10G), and GSE72094 (P<0.0001) (Figure 10I), with

optimal AUC values of 0.713 (Figure 10D), 0.694 (Figure 10F),

0.821 (Figure 10H), and 0.744 (Figure 10J), respectively. These
A B

C D

E F

G H

I J

FIGURE 10

Survival analysis and AUC assessment of TICRR risk model in LUAD. Survival analysis for LUAD in TCGA (A), GSE13213 (C), GSE41271 (E), GSE42127
(G), and GSE72094 (I). The predicting AUC assessment of TICRR risk model for OS survival in TCGA (B), GSE13213 (D), GSE41271 (F), GSE42127 (H),
and GSE72094 (J).
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results highlight the robust performance and generalizability of the

TICRR risk model across different datasets, affirming its potential as

a reliable prognostic tool in LUAD.

Furthermore, we constructed a nomogram based on the TICRR

risk scores and clinical characteristics using multivariate Cox
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regression analysis (Figure 11A). The survival analysis

demonstrated significantly better OS benefits for patients in the

nomogram-low group compared to the nomogram-high group

(P<0.0001) (Figure 11B), with an optimal predicting AUC of

0.752 (Figure 11C). Calibration curves further revealed the
A

B C

D E

FIGURE 11

The development of a nomogram based on the TICRR risk model and clinical characteristics in TCGA-LUAD cohort. (A) A nomogram based on age,
stage, gender, smoking status, TICRR risk groups for 1-, 3- and 101-year OS predictions. (B) Survival analysis of TICRR nomogram model in LUAD. (C)
Predicting AUC assessment of TICRR nomogram model in LUAD. (D) Calibration curves for testing the agreement between 1-, 3- and 10-year
predicted overall survival and actual observations in the EAS cohort. (E) DCA curve of the nomogram in LUAD.
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nomogram’s predictive accuracy for estimating the 1-, 3-, and 10-

year survival rates (Figure 11D). Additionally, the decision curve

analysis (DCA) results confirmed the nomogram’s robustness and

optimal predictive ability (Figure 11E).
4 Discussion

Cancer cells are known for their ability to sustain proliferation,

and the cell cycle plays a crucial role in their development (33). The

cell cycle control pathway, which includes G1-S transcription,

replication stress, DNA damage, CDKs, and the mitotic

checkpoint, promotes cancer cell proliferation to maintain its

viability. Our research has illuminated that TICRR is highly

expressed in tumor tissues compared to normal tissues. The study

shows that TICRR was densely connected with m6A/m5C

regulation, DDR-pathway transportation, and cancer metabolism,

implying close functional interaction within them. TICRR

demonstrates excellent prognosis value in LUAD.

Tumorigenesis involves abnormal alterations. TICRR

expression is significantly upregulated in most cancer types and is

closely related to survival prognosis. The high expression of TICRR

has been proposed to predict poor clinical outcomes in papillary

renal cell carcinoma (PRCC) (34). For most cancer types, such as

LUAD, TICRR could predict poor prognosis accurately. The

systematic analysis implied the oncogene role of TICRR, which

could be a potential prognosis indicator in LUAD. We also find the

high expression of TICRR was related to the activation of the cell

cycle pathway, homologous recombination pathway, DNA

replication pathway, some energy metabolism pathways,

ubiquitin-mediated proteolysis, and NOTCH signaling pathway,

which to some extent have synergistic effects in promoting LUAD

tumorigenesis and progression. In summary, blocking the TICRR

expression may improve the therapy efficiency for LUAD patients.

The TICRR-upregulated LUAD patients exhibit a significantly

suppressed immune response status, indicated by low immune scores

and high expression levels of immune checkpoint genes, leading to

immune escape. Single-cell RNA-seq analysis demonstrates that

TICRR is mainly enriched in macrophages and T cells. We

speculate that overexpression of TICRR may reduce the anti-tumor

effect by inhibiting the mature differentiation and expression of

immune infiltration T cells and macrophage cells. However, the

expression was lower in other cell populations. This differential

expression may imply that TICRR has different functions and roles

in different cell types. High TICRR expression LUAD patients show

enrichment of the C1 and C2 immune subtype, associated with a high

proliferation rate (35). However, immunotherapy may not be a good

choice for these patients with TICRR upregulation.

TICRR is a pivotal gene in the Cdk2-mediated initiation step,

crucial for DNA replication and epigenetic control (36).

Furthermore, correlation analysis reveals positive association

between TICRR expression and m6A/m5C-related genes. m5C-

regulated genes are closely related to the cell cycle pathway,

consistent with the KEGG enrichment in the TICRR

overexpression group. NSUN2-driven RNA methylation helps to

adapt cell cycle progression to early stress responses and links
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protein synthesis to cellular metabolism (37). Low expression of

DNMT3B was associated with a better prognosis in LUAD (38).

Thus, the expression of TICRRmay be regulated by the m5C-driven

methylation and then affects the tumor progression of LUAD.

Cell cycle and metabolism strongly interact in cancer.

Oncometabolites can contribute to tumor growth by controlling

gene expression and inhibiting homology-dependent DNA repair,

which could increase DNA damage (36). Aerobic glycolysis could

actively support function protein during DNA replication,

especially in the G1 phase (39). This study suggests a positive

correlation between cysteine- and glycolysis-related genes and

TICRR. TICRR may regulate these metabolic pathways,

supporting the energy demands of tumor growth and proliferation.

To confirm the stability of the genomic and DNA repair process,

we subsequently analyzed the correlation between TICRR and DDR

pathway genes. We found that all 34 DDR pathway-related genes

show a positive correlation with TICRR expression, with the HR

pathway gene RAD54L demonstrating the strongest association.

Wang Y. et al. have found that high Rad54L expression promotes

abnormal bladder tumor cell proliferation by changing the cell cycle

and cell senescence (38). This study further demonstrates DDR

pathway may affect the cell cycle by enhancing the TICRR

expression, promoting LUAD tumor proliferation. In addition, we

find that hsa-miR-27a-3p and hsa-miR-27b-3p are target miRNAs of

TICRR, and the ceRNA network reveals some pairs of interacted

genes, such as LINC01089/hsa-miR-27a-3p, hsa-miR-27a-3p/

KCNQ1OT1/HSP90AA1, which help to regulate the TICRR

expression. Guo, X. and M. Li have investigated that LINC01089

could affect the proliferation of GC cells by interacting with miR-27a-

3p and upregulating the expression of TET1 (40). Dong, Z. et al.

demonstrate that upregulation of lncRNA KCNQ1OT1 expression

could regulate the cirRNA HSP90AA1 expression by sponging miR-

27a-3p during NSCLC progression according to the cell lines

validation experiment (41).

Zonderland et al. reported that depletion of TICRR resulted in

the decoupling of DNA replication and cell-cycle progression from

the early S-phase by silencing the TICRR gene in Hela cells (17).

Silencing TICRR significantly affects several biological functions,

including the cysteine metabolic process. Furthermore, it alters

cancer-related pathways, such as suppressing the cell cycle pathway

while enhancing the B/T cell receptor signaling pathway. These

observations highlight the diverse role of the TICRR gene in

regulating critical cellular processes and its potential implications

in cancer-related pathways.

In pursuit of enhanced clinical applicability, we developed a

TICRR risk model based on the TICRR network genes, accurately

predicting LUAD patient survival, and its validity has been robustly

confirmed in four independent GEO datasets. Moreover, we have

integrated the TICRR risk model with relevant clinical

characteristics, constructing a comprehensive nomogram that can

effectively guide clinical practice. The findings of our study could

provide valuable support for personalized treatment and patient

management, enhancing prognostic assessments in LUAD patients.

We have confirmed that TICRR is overexpressed in LUAD, and

we speculate that its impact on normal cell cycle processes may

contribute to carcinogenesis and tumor progression. As a critical
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gene involved in the cell cycle, TICRR could activate the DDR

pathway and allow the tumor cells to proliferate and avoid repairing

DNA damage. TICRR is closely correlated with oncogenic

metabolism and m6A/m5C regulation. Further experiment

validations are required to uncover the functional mechanism of

TICRR in LUAD. In summary, the high expression of TICRR causes

more risk for LUAD patients and could become a potential

prognosis biomarker and therapeutic target.
5 Conclusions
TICRR has been identified as a robust prognostic biomarker in

lung adenocarcinoma (LUAD) due to its involvement in critical

biological processes such as immune activation, cell cycle regulation,

RNA modification, and tumor energy metabolism. The TICRR risk

model and nomogram led a light on the clinical application value of

TICRR gene. The comprehensive understanding of the functional

relevance of TICRR in LUAD offers significant promise in facilitating

its translation into a reliable therapeutic target and an effective

prognostic indicator for LUAD.
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