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Objectives: To explore the feasibility and importance of deep learning (DL) based

on 68Ga-prostate-specific membrane antigen (PSMA)-11 PET/CT in predicting

pathological upgrading from biopsy to radical prostatectomy (RP) in patients with

prostate cancer (PCa).

Methods: In this retrospective study, all patients underwent 68Ga-PSMA-11 PET/

CT, transrectal ultrasound (TRUS)-guided systematic biopsy, and RP for PCa

sequentially between January 2017 and December 2022. Two DLmodels (three-

dimensional [3D] ResNet-18 and 3D DenseNet-121) based on 68Ga-PSMA-11

PET and support vector machine (SVM) models integrating clinical data with DL

signature were constructed. The model performance was evaluated using area

under the receiver operating characteristic curve (AUC), accuracy, sensitivity,

and specificity.

Results: Of 109 patients, 87 (44 upgrading, 43 non-upgrading) were included in

the training set and 22 (11 upgrading, 11 non-upgrading) in the test set. The

combined SVM model, incorporating clinical features and signature of 3D

ResNet-18 model, demonstrated satisfactory prediction in the test set with an

AUC value of 0.628 (95% confidence interval [CI]: 0.365, 0.891) and accuracy of

0.727 (95% CI: 0.498, 0.893).

Conclusion: A DL method based on 68Ga-PSMA-11 PET may have a role in

predicting pathological upgrading from biopsy to RP in patients with PCa.
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Introduction

Systematic biopsy guided by transrectal ultrasound (TRUS)

has long been considered a standard diagnostic method for

confirming prostate cancer (PCa) in patients with elevated

prostate-specific antigen level and/or abnormal digital rectal

examination (1). However, this method often misses clinically

significant PCa, and some patients experience a pathological

upgrade following radical prostatectomy (RP) (2–4). Considering

the crucial influence accurate diagnosis has on treatment

decisions and prognosis prediction (5, 6), there is a pressing

need to develop reliable methods for predicting the pathological

upgrading of PCa.

Prostate-specific membrane antigen (PSMA) is a highly

specific prostatic epithelial cell transmembrane protein and is

highly expressed in PCa cells (7, 8). The recent emergence of

68Ga-labeled PSMA inhibitors as promising agents for positron

emission tomography/computed tomography (PET/CT) in

patients with primary PCa has demonstrated diagnostic and

staging capabilities that are superior to conventional imaging

techniques (9–11). Moreover, these PET/CT images can be

quantitatively analyzed using deep learning (DL), which involves

automatically extracting complex and abstract information from

medical images to achieve highly accurate detection or

classification outcomes (12, 13). Previous studies have shown

the potential feasibility of DL in PCa detection, risk assessment,

and prognosis prediction (12–16). However, to the best of our

knowledge, the predictive value of DL based on 68Ga-PSMA-11

PET/CT for assessing pathological upgrading in PCa has not

been investigated.

Therefore, this study was aimed at exploring an efficient strategy

with a PSMA PET/CT–based convolutional neural network (CNN)

model for predicting pathological upgrading in patients with PCa.
Methods

Patients and study design

We enrolled patients who had undergone 68Ga-PSMA-11 PET/

CT prior to RP at our department between January 2017 and

December 2022. The exclusion criteria were as follows: (1) lack of

TRUS-guided systematic biopsy; (2) International Society of

Urological Pathology grade group (ISUP GG) 5 on biopsy; (3)

previous treatment for PCa before RP. The patients were randomly

divided into a training cohort (n = 87) and a validation cohort

(n = 22) with a ratio of 8:2 (Supplementary Figure 1).
Data acquisition and preprocessing

All of the patients underwent PET/CT using a dedicated PET/

CT system (United Imaging, uMI780, China) at 60 ± 5 min after

intravenous injection of 2–2.3 MBq/kg 68Ga-PSMA-11
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synthesized as previously described (17). A nonenhanced CT

scan (120 kV, mA modulation, pitch 0.988, slice thickness

3.0 mm, increment 1.5 mm) was obtained, followed by a whole-

body PET scan (3 min/bed, field of view 60 cm) in 3D mode

(matrix 256 × 256) from the vertex to the proximal legs. The

datasets were fully corrected for random coincidences, scatter

radiation, and attenuation. For PET image reconstruction, the

ordered-subsets expectation maximization method was used.

Attenuation corrections of the PET images were performed

using data from the CT scans. PET/CT fusion was performed

using a workstation (uWS-MI, United Imaging).

The volumes of interest (VOIs) for the prostate gland were

accurately delineated and segmented slice by slice using 3D Slicer

software (version: 4.1.1.0; www.slicer.org) by a highly experienced

nuclear medicine radiologist (FW) with 20 years of expertise in

prostate PET/CT. The radiologist, blinded to the clinical

information, performed this task by carefully analyzing the PET

images and factoring in the corresponding CT scan for accurate

localization and segmentation of the VOIs.
Construction of deep learning models

The full flow diagram for machine learning models is provided

in Figure 1. DL models were developed based on a convolutional

neural network (CNN), which is a typical and commonly used DL

architecture used to have been extensively applied for image

analysis. CNN achieves prediction tasks by iterating the low-level

information retrieved from input data into more abstract high-level

features. Two well-known CNNs—ResNet-18 and DenseNet-121—

were selected in this study (18, 19). To extract context features

comprehensively, three-dimensional (3D) ResNet-18 and 3D

DenseNet-121 were used to learn and extract the relevant image

features from the PET images.

For model training, each VOI image was normalized according

to the z-score by subtracting the means and then dividing by the

standard deviations. To reduce overfitting, data augmentation of

random rotation, horizontal/vertical-flip, and affine transformation

were employed. The Adam optimizer was used to upgrade the

network parameters with a batch size of 4. The learning rate was set

at 0.0001. An early stopping criterion was used to terminate training

as there was no further improvement in loss. All training sessions

were implemented using PyTorch (version 1.12.1; https://

www.pytorch.org). The performance of the developed model was

evaluated with cross-validation (five-fold) on the training cohort

and then tested on the test cohort.
Construction of a clinical and
combined model

The support vector machine (SVM) algorithm was used to

evaluate the performance of clinical features for predicting

pathology upgrading. GridsearchCV was carried out to select
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optimal hyperparameters for the SVM model, including kernel

function, C, and sigma. Moreover, the signature [predicted

possibilities of upgrading) of the CNN achieving higher AUC and

clinical data (age, prostate-specific antigen (PSA), percentage of

positive cores (PPC), biopsy ISUP GG, prostate volume, prostate-

specific antigen density (PSAD)]] were jointly employed by the

SVM to perform the multimodality prediction.
Biopsy and pathological evaluation

All patients underwent 18-gauge needle biopsy under local

anesthesia by experienced urologists. The biopsy was performed

under the guidance of TRUS utilizing a 12-core extended scheme.

The men subsequently underwent RP based on the joint decision

between the treating surgeon and the patient, based on current

clinical guidelines. Upgrading was defined as any increase of biopsy

ISUP GG to RP ISUP GG.
Statistical analysis

The Mann–Whitney U test was used to compare continuous

variables, while the chi-squared test was used for the comparison of

categorical variables. The diagnostic performance of the models for

predicting pathological upgrading was evaluated using receiver

operating characteristic (ROC) curve analysis. The optimal cutoff

values of the models were determined by maximizing the Youden

index in the training set. The fixed model cutoff values from the

training set were then applied to the test set. Statistical analysis was

conducted using SPSS 22.0 (IBM, Armonk, NY, USA) and R

software (version 4.1.3; http://www.Rproject.org). All statistical
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tests were two-sided, and a P value < 0.05 was considered

statistically significant.
Results

Clinical characteristics

In total, 109 patients were finally included in the study and

divided randomly into the training set (n = 87) and the test set (n =

22). The baseline characteristics of the patients in the training and

test sets are summarized in Table 1. In the training set, 50.57% of

the patients (44 of 87) were identified as upgrading and 49.43% (43

of 87) as non-upgrading. In the test set, 50.00% of the patients (11 of

22) were identified as upgrading and 50.00% of the patients (11 of

22) as non-upgrading. Based on those characteristics of the patients,

no significant differences were observed between the training and

test sets.
Performance of the deep learning models

The AUC, accuracy, sensitivity, and specificity of the two CNNs

measured in the cross-validation are illustrated in Supplementary

Table 1 and Supplementary Figure 2. The overall performance of

the 3D ResNet-18 model was slightly better than that of the 3D

DenseNet-121 model (AUC: 0.621 vs. 0.559 [p = 0.443], accuracy:

0.644 vs. 0.609 [p = 0.638]). The 3D ResNet-18 model achieved

sensitivity of 0.682 (95% confidence interval [CI]: 0.523, 0.809) and

specificity of 0.605 (95% CI: 0.445, 0.706). Additionally, the

signature of the 3D ResNet-18 model and clinical data were

considered as input variables to build the combined model.
FIGURE 1

CNN modeling and analysis workflow. Using segmented 68Ga-PSMA-11 PET as input, two CNN models were trained to predict pathological
upgrading. Additionally, the SVM models integrating clinical data with deep learning signature were constructed and evaluated. CNN, convolutional
neural network; SVM, support vector machine.
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Performance of the models in the test set

The performance of the CNN only, clinical data only, and

combined model is summarized in Table 2 and Figure 2. The 3D

ResNet-18 model yielded an AUC value of 0.612 (95% CI: 0.350, 0.873)

and accuracy of 0.682 (95% CI: 0.546, 0.828), which was comparable to

the clinical model (p = 0.863 and p = 1.000, respectively). The 3D

ResNet-18 model performed comparable on specificity to the clinical

model (0.818 vs. 0.364, p = 0.080), but worse on sensitivity (0.546 vs.

1.000, p = 0.035). The obtained CNN performance in the test set was

comparable to cross-validation (p = 0.949).

For multimodality analysis, the combined model achieved the

highest accuracy (0.727 [95% CI: 0.498, 0.893]) among the models,
Frontiers in Oncology 04
although there were no significant differences in AUC (0.628 vs.

0.612, p = 0.406), accuracy (0.727 vs. 0.682, p = 0.741), sensitivity

(0.546 vs. 0.546, p = 1.000), and specificity (0.909 vs. 0.818, p = 1.000)

between the combined model and the 3D ResNet-18 model. No

significant differences were found in AUC (0.628 vs. 0.645, p = 0.930)

and accuracy (0.727 vs. 0.682, p = 0.741) when comparing the

combined model with the clinical model. However, the combined

model demonstrated lower sensitivity (0.546 vs. 1.000, p = 0.012) and

higher specificity (0.909 vs. 0.364, p = 0.024) than the clinical model.
Discussion

Histopathology results of biopsy samples and the biopsy Gleason

score of the patients play a key role in clinical decision-making such

as in choosing RP, extended lymphadenectomy, radiotherapy, or

active surveillance (20–22). The present study demonstrated that the

CNNs trained using PSMA PET/CT data performed well in

predicting pathological upgrading from TRUS-guided systematic

biopsy to final RP, which has never been investigated before. The

3D ResNet-18 model was successfully validated in the independent

test set (AUC, 0.612; accuracy, 0.682; sensitivity, 0.546; specificity,

0.818).The combined model achieved significantly higher specificity

but lower sensitivity than the clinical model.

Pathological upgrading from biopsy to RP is common in

clinical practice. Serefoglu et al. (4) assessed 90 patients and

reported an upgrading rate of 47.8% in those who underwent

TRUS-guided systematic biopsy. Another study documented an

upgrading rate of 31.5% in patients who had undergone the same

procedure (23). On account of precise targeting, multiparametric

magnetic resonance imaging targeted biopsy significantly

improved the detection of clinically significant PCa and

decreased the detection of insignificant PCa. In our study, we

observed upgrading rates of 50.57% and 50.00% in the training

and test sets, respectively. The variation in upgrading rates may be

due to the exclusion of all patients with ISUP GG 5 at biopsy.

Moreover, previous studies recorded different upgrading rates in

patients with different risk groups or biopsy cores (24, 25).

Considering that an adverse pathological outcome can

potentially lead to erroneous decisions, the development of an

efficient predictive model has great significance.

In recent years, there have been many studies assessing DL

techniques based on PSMA PET/CT for detection and risk

stratification of PCa. Zhao et al. (15) found that a CNN was able

to accurately detect the bone and lymph node lesions on 68Ga-

PSMA-11 PET/CT. Capobianco et al. (16) constructed a CNN

model trained on 68Ga-PSMA PET/CT data to both classify PET/

CT regions of interest as uptake suspicious or nonsuspicious for

cancer and assign them an anatomical location classification. The

evaluated algorithm showed satisfactory agreement with expert

assessment for identification and anatomical location

classification of suspicious uptake sites. In this study, we focused

on predicting pathological upgrading and developed a CNN model

based on 3D ResNet-18 net architecture for the prediction. The

satisfactory performance of the CNN model suggests that DL has

great potential for predicting pathological upgrading.
TABLE 1 Clinical characteristics in the training and test sets.

Characteristic Training set
(n = 87)

Test set
(n = 22)

p
value

Age (years) 71.81 (68–76) 70.91
(66.25–75.25)

0.677

PSA (ng/mL) 20.54 (8.86–25.12) 18.88 (8.42–24.67) 0.970

Prostate volume (mL) 40.80
(26.53–47.94)

34.85
(22.95–41.90)

0.214

PSAD 0.54 (0.24–0.66) 0.68 (0.28–0.91) 0.110

PPC 45.05
(25.00–71.43)

37.01 (8.33–58.33) 0.264

Biopsy ISUP GG 0.986

1 29 (33.33) 7 (31.82)

2 21 (24.14) 6 (27.27)

3 30 (34.48) 7 (31.82)

4 7 (8.05) 2 (9.09)

Whole-gland
ISUP GG

0.796

1 12 (13.79) 3 (13.64)

2 19 (21.84) 5 (22.73)

3 34 (39.08) 8 (36.36)

4 18 (20.69) 5 (22.73)

5 14 (16.09) 1 (4.55)

Pathological
outcomes

0.971

Upgrading 44 (50.57) 11 (50.00)

Stable 40 (45.98) 10(45.45)

Downgrade 3 (3.45) 1(4.55)

T stage 0.869

2 57 (65.52) 14 (63.64)

3 30 (34.48) 8 (36.36)
Continuous variables are presented as median (interquartile range; IQR), while categorical
variables are presented as patients (%).
PSA, prostate-specific antigen; PSAD, prostate-specific antigen density; PPC, percentage of
positive cores; ISUP GG, International Society for Urological Pathology grade group.
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Previous studies have investigated the use of PSMA PET/CT in

predicting pathological upgrading (26, 27). However, most of these

studies focused on evaluating the standardized uptake value (SUV) of

the prostate lesion, without considering the extensive spatial and

morphological information available. Our study showcased the ability

of 3D CNNmodels to extract comprehensive insights from the entire

prostate to predict pathological upgrading. In order to eliminate the

influence of surrounding organ tissues, the VOI of the prostate was

segmented as the input volume for the CNN models. Moreover, we

integrated clinical features with CNN to create a multimodality

model so as to comprehensively predict pathological upgrading.

Although the overall performance was satisfactory, no significant

differences were found in AUC and accuracy when comparing the

combined model with the CNN model, which could be due to the

small size of our sample and consequent overfitting.

This study has some limitations. First, its single-center design and

relatively small sample size may compromise the model’s
Frontiers in Oncology 05
generalization ability and affect its sensitivity and specificity.

Therefore, in order to improve the robustness of the model, it is

necessary to formulate a unified standard for multicenter studies, and

identify and test multicenter data using DL methods. Second, further

research using different PET/CT scanners is needed to validate the

generalizability and robustness of the CNN model. Third, different

observers who performed segmentation could have influenced the

stability of the model. Automated and accurate tumor segmentation

must be developed to facilitate the efficiency of the DL process.
Conclusion

The effective CNN model based on 68Ga-PSMA PET/CT may

have a role in predicting pathological upgrading from biopsy to RP

in patients with primary PCa.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies involving humans were approved by the Ethic

Committee of Nanjing First Hospital. The studies were conducted

in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.
Author contributions

SZ: Software, Writing – original draft, Conceptualization. CJ:

Data curation, Methodology, Writing – original draft. LZ: Data

curation, Methodology, Writing – original draft. JF: Formal

Analysis, Validation, Writing – original draft. QM: Software,

Writing – original draft. WW: Methodology, Writing – original
FIGURE 2

Comparison of receiver operating characteristic curves among CNN,
clinical and combined model in the test set (AUC: 0.612, 0.645, and
0.628, respectively). CNN, convolutional neural network.
TABLE 2 Prediction performance of the CNN, clinical, and combined model in the test set.

Model AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

CNN 0.612 (0.350, 0.873) 0.682 (0.546, 0.828) 0.546 (0.246, 0.819) 0.818 (0.478, 0.968)

Clinical 0.645 (0.402, 0.887) 0.682 (0.451, 0.861) 1.000 (0.679, 1.000) 0.364 (0.124, 0.684)

Clinical + CNN 0.628 (0.365, 0.891) 0.727 (0.498, 0.893) 0.546 (0.246, 0.819) 0.909 (0.571, 0.995)

Comparisons among the CNN, clinical, and combined model (p values)

CNN vs. clinical 0.863 1.000 0.035 0.080

CNN vs. CNN+clinical 0.406 0.741 1.000 1.000

Clinical vs. CNN+clinical 0.930 0.741 0.012 0.024
CNN, convolutional neural network; AUC, area under the curve; CI, confidence interval.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1273414
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zang et al. 10.3389/fonc.2023.1273414
draft. GS: Resources, Writing – original draft. HS: Resources,

Writing – review & editing. RJ: Writing – review & editing. FW:

Conceptualization, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Oncology 06
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1273414/

full#supplementary-material
References
1. Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De
Santis M, et al. Eau-eanm-estro-esur-siog guidelines on prostate cancer-2020 update.
Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol (2021)
79(2):243–62. doi: 10.1016/j.eururo.2020.09.042

2. Cohen MS, Hanley RS, Kurteva T, Ruthazer R, Silverman ML, Sorcini A, et al.
Comparing the gleason prostate biopsy and gleason prostatectomy grading system: the
lahey clinic medical center experience and an international meta-analysis. Eur Urol
(2008) 54(2):371–81. doi: 10.1016/j.eururo.2008.03.049

3. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al.
Diagnostic accuracy of multi-parametric mri and trus biopsy in prostate cancer
(Promis): A paired validating confirmatory study. Lancet (2017) 389(10071):815–22.
doi: 10.1016/S0140-6736(16)32401-1

4. Serefoglu EC, Altinova S, Ugras NS, Akincioglu E, Asil E, Balbay MD. How
reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Can
Urol Assoc J (2013) 7(5-6):E293–8. doi: 10.5489/cuaj.11224

5. Cornford P, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG,
De Santis M, et al. Eau-eanm-estro-esur-siog guidelines on prostate cancer. Part ii-2020
update: treatment of relapsing and metastatic prostate cancer. Eur Urol (2021) 79
(2):263–82. doi: 10.1016/j.eururo.2020.09.046

6. Brockman JA, Alanee S, Vickers AJ, Scardino PT, Wood DP, Kibel AS, et al.
Nomogram predicting prostate cancer-specific mortality for men with biochemical
recurrence after radical prostatectomy. Eur Urol (2015) 67(6):1160–7. doi: 10.1016/
j.eururo.2014.09.019

7. Paschalis A, Sheehan B, Riisnaes R, Rodrigues DN, Gurel B, Bertan C, et al.
Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate
cancer. Eur Urol (2019) 76(4):469–78. doi: 10.1016/j.eururo.2019.06.030

8. Sheikhbahaei S, Afshar-Oromieh A, Eiber M, Solnes LB, Javadi MS, Ross AE, et al.
Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen
(Psma)-targeted pet imaging. Eur J Nucl Med Mol Imaging (2017) 44(12):2117–36.
doi: 10.1007/s00259-017-3780-7

9. Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of
68ga-psma-11 pet accuracy in localizing recurrent prostate cancer: A prospective single-
arm clinical trial. JAMA Oncol (2019) 5(6):856–63. doi: 10.1001/jamaoncol.2019.0096

10. Donato P, Roberts MJ, Morton A, Kyle S, Coughlin G, Esler R, et al. Improved
specificity with (68)Ga psma pet/ct to detect clinically significant lesions "Invisible" on
multiparametric mri of the prostate: A single institution comparative analysis with
radical prostatectomy histology. Eur J Nucl Med Mol Imaging (2019) 46(1):20–30.
doi: 10.1007/s00259-018-4160-7

11. Donato P, Morton A, Yaxley J, Ranasinghe S, Teloken PE, Kyle S, et al. (68)Ga-
psma pet/ct better characterises localised prostate cancer after mri and transperineal
prostate biopsy: is (68)Ga-psma pet/ct guided biopsy the future? Eur J Nucl Med Mol
Imaging (2020) 47(8):1843–51. doi: 10.1007/s00259-019-04620-0

12. Leung KH, Rowe SP, Leal JP, Ashrafinia S, Sadaghiani MS, Chung HW, et al.
Deep learning and radiomics framework for psma-rads classification of prostate cancer
on psma pet. EJNMMI Res (2022) 12(1):76. doi: 10.1186/s13550-022-00948-1

13. Tragardh E, Enqvist O, Ulen J, Hvittfeldt E, Garpered S, Belal SL, et al. Freely
available artificial intelligence for pelvic lymph node metastases in psma pet-ct that
performs on par with nuclear medicine physicians. Eur J Nucl Med Mol Imaging (2022)
49(10):3412–8. doi: 10.1007/s00259-022-05806-9
14. Johnsson K, Brynolfsson J, Sahlstedt H, Nickols NG, Rettig M, Probst S, et al.
Analytical performance of apromise: automated anatomic contextualization, detection,
and quantification of [(18)F]Dcfpyl (Psma) imaging for standardized reporting. Eur J
Nucl Med Mol Imaging (2022) 49(3):1041–51. doi: 10.1007/s00259-021-05497-8

15. Zhao Y, Gafita A, Vollnberg B, Tetteh G, Haupt F, Afshar-Oromieh A, et al. Deep
neural network for automatic characterization of lesions on (68)GA-PSMA-11 PET/CT.
Eur J Nucl Med Mol Imaging (2020) 47(3):603–13. doi: 10.1007/s00259-019-04606-y

16. Capobianco N, Sibille L, Chantadisai M, Gafita A, Langbein T, Platsch G, et al.
Whole-body uptake classification and prostate cancer staging in (68)GA-PSMA-11
PET/CT using dual-tracer learning. Eur J Nucl Med Mol Imaging (2022) 49(2):517–26.
doi: 10.1007/s00259-021-05473-2

17. Bu T, Zhang L, Yu F, Yao X,WuW, Zhang P, et al. (177)Lu-psma-I&T radioligand
therapy for treating metastatic castration-resistant prostate cancer: A single-centre study
in east asians. Front Oncol (2022) 12:835956. doi: 10.3389/fonc.2022.835956

18. He K, Zhang X, Ren S, Sun J. (2016). Deep residual learning for image recognition,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA: IEEE, 2016. pp. 770–8. doi: 10.1109/CVPR.2016.90

19. Huang G, Liu Z, van der Maaten L, Weinberger KQ. (2017). Densely connected
convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, USA: IEEE, 2017. 2261–9.
doi: 10.1109/CVPR.2017.243

20. Briganti A, Larcher A, Abdollah F, Capitanio U, Gallina A, Suardi N, et al. Updated
nomogram predicting lymph node invasion in patients with prostate cancer undergoing
extended pelvic lymph node dissection: the essential importance of percentage of positive
cores. Eur Urol (2012) 61(3):480–7. doi: 10.1016/j.eururo.2011.10.044

21. Tosco L, Briganti A, D'Amico AV, Eastham J, Eisenberger M, Gleave M, et al.
Systematic review of systemic therapies and therapeutic combinations with local
treatments for high-risk localized prostate cancer. Eur Urol (2019) 75(1):44–60.
doi: 10.1016/j.eururo.2018.07.027

22. Matoso A, Epstein JI. Defining clinically significant prostate cancer on the basis
of pathological findings. Histopathology (2019) 74(1):135–45. doi: 10.1111/his.13712

23. Kayano PP, Carneiro A, Castilho TML, Sivaraman A, Claros OR, Baroni RH,
et al. Comparison of gleason upgrading rates in transrectal ultrasound systematic
random biopsies versus us-mri fusion biopsies for prostate cancer. Int Braz J Urol
(2018) 44(6):1106–13. doi: 10.1590/S1677-5538.IBJU.2017.0552

24. Lendinez-Cano G, Alonso-Flores J, Beltran-Aguilar V, Cayuela A, Salazar-Otero
S, Bachiller-Burgos J. Comparison of pathological data between prostate biopsy and
radical prostatectomy specimen in patients with low to very low risk prostate cancer.
Actas Urol Esp (2015) 39(8):482–7. doi: 10.1016/j.acuro.2015.02.005

25. D'Elia C, Cerruto MA, Cioffi A, Novella G, Cavalleri S, Artibani W. Upgrading
and upstaging in prostate cancer: from prostate biopsy to radical prostatectomy. Mol
Clin Oncol (2014) 2(6):1145–9. doi: 10.3892/mco.2014.370

26. Yin H, Chen M, Qiu X, Qiu L, Gao J, Li D, et al. Can (68)GA-PSMA-11 PET/CT
predict pathological upgrading of prostate cancer from mri-targeted biopsy to radical
prostatectomy? Eur J Nucl Med Mol Imaging (2021) 48(11):3693–701. doi: 10.1007/
s00259-021-05217-2

27. Hu Q, Hong X, Xu L, Jia R. A nomogram for accurately predicting the
pathological upgrading of prostate cancer, based on (68) Ga-psma pet/ct. Prostate
(2022) 82(11):1077–87. doi: 10.1002/pros.24358
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2023.1273414/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1273414/full#supplementary-material
https://doi.org/10.1016/j.eururo.2020.09.042
https://doi.org/10.1016/j.eururo.2008.03.049
https://doi.org/10.1016/S0140-6736(16)32401-1
https://doi.org/10.5489/cuaj.11224
https://doi.org/10.1016/j.eururo.2020.09.046
https://doi.org/10.1016/j.eururo.2014.09.019
https://doi.org/10.1016/j.eururo.2014.09.019
https://doi.org/10.1016/j.eururo.2019.06.030
https://doi.org/10.1007/s00259-017-3780-7
https://doi.org/10.1001/jamaoncol.2019.0096
https://doi.org/10.1007/s00259-018-4160-7
https://doi.org/10.1007/s00259-019-04620-0
https://doi.org/10.1186/s13550-022-00948-1
https://doi.org/10.1007/s00259-022-05806-9
https://doi.org/10.1007/s00259-021-05497-8
https://doi.org/10.1007/s00259-019-04606-y
https://doi.org/10.1007/s00259-021-05473-2
https://doi.org/10.3389/fonc.2022.835956
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1016/j.eururo.2011.10.044
https://doi.org/10.1016/j.eururo.2018.07.027
https://doi.org/10.1111/his.13712
https://doi.org/10.1590/S1677-5538.IBJU.2017.0552
https://doi.org/10.1016/j.acuro.2015.02.005
https://doi.org/10.3892/mco.2014.370
https://doi.org/10.1007/s00259-021-05217-2
https://doi.org/10.1007/s00259-021-05217-2
https://doi.org/10.1002/pros.24358
https://doi.org/10.3389/fonc.2023.1273414
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Deep learning based on 68Ga-PSMA-11 PET/CT for predicting pathological upgrading in patients with prostate cancer
	Introduction
	Methods
	Patients and study design
	Data acquisition and preprocessing
	Construction of deep learning models
	Construction of a clinical and combined model
	Biopsy and pathological evaluation
	Statistical analysis

	Results
	Clinical characteristics
	Performance of the deep learning models
	Performance of the models in the test set

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


