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Introduction: Oral cancer, a predominant malignancy in developing nations,

represents a global health challenge with a five-year survival rate below 50%.

Nonetheless, substantial reductions in both its incidence and mortality rates can

be achieved through early detection and appropriate treatment. Crucial to these

treatment plans and prognosis predictions is the identification of the pathological

type of oral cancer.

Methods: Toward this end, fiber-optic Raman spectroscopy emerges as an effective

tool. This study combines Raman spectroscopy technology with deep learning

algorithms to develop a portable intelligent prototype for oral case analysis. We

propose, for the first time, a multi-task network (MTN) Raman spectroscopy

classification model that utilizes a shared backbone network to simultaneously

achieve different clinical staging and histological grading diagnoses.

Results: The developed model demonstrated accuracy rates of 94.88%, 94.57%,

and 94.34% for tumor staging, lymph node staging, and histological grading,

respectively. Its sensitivity, specificity, and accuracy compare closely with the

gold standard: routine histopathological examination.

Discussion: Thus, this prototype proposed in this study has great potential for

rapid, non-invasive, and label-free pathological diagnosis of oral cancer.

KEYWORDS

Raman spectroscopy, oral cancer, TNM classification, histological diagnosis, machine
learning algorithm
Abbreviations: PFORS, Portable Fiber-optic Raman Spectrometer; OSCC, Oral Squamous Cell Carcinoma;

MTN, Multi-Task Network; TNM, Tumor-Node-Metastasis; CCD, Charge-Coupled Device; BOD, Benign

Tumor or Dysplasia; WD, Well Differentiated; MD, Moderately Differentiated; PD, Poorly Differentiated;

SVM, Support Vector Machines; CNN, Convolutional Neural; Network Grad-CAM, Gradient-weighted

Class Activation Mapping.
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Introduction

According to the Global Cancer Statistics 2020 (GLOBOCAN

2020), both the incidence and mortality of cancer worldwide has

been steadily increasing. This increase is indicated by the 377,713

new cases and 177,757 deaths attributed to oral and lip tumors in

2020 (1). The global incidence of oropharyngeal cancer is on the rise

(2), and oral tumor prevalence is remarkable escalating in certain

developing nations (3). Notably, oral squamous cell carcinoma

(OSCC) constitutes over 90% of all oral tumor cases (4). The

primary risk factors for oral cancer include smoking, alcohol

consumption, betel nut consumption, sun exposure, and HPV

infection (5–7). Despite advancements in treatment methods for

oral tumors—ranging from surgery and radiation to chemotherapy,

immunotherapy, and targeted therapy (8)—the five-year survival

rate for oral squamous cell carcinoma has remained below 50% for

the past three decades (9). However, early-stage tumor patients

experience a significant improvement in the five-year survival rate

post-effective treatment (10). Thus, early diagnosis and treatment

are pivotal in enhancing the survival rate of oral tumor patients and

minimizing mortality (11). Regrettably, most early-stage oral tumor

patients often delay treatment due to misdiagnoses, often mistaken

for oral ulcers or chronic inflammatory changes, as early oral

tumors closely resemble benign lesions (12, 13). Consequently,

physicians struggle to accurately distinguish them via visual

inspection and palpation (14). Biopsy, though considered the

diagnostic gold standard for oral tumors, presents challenges—it

is time-consuming, invasive, costly, and demands significant

diagnostic skill from pathologists (15). This results in delayed

diagnosis and referrals, leading to treatment postponement and

reducing survival time for many oral tumor patients (16).

Additionally, patients with differing levels of oral cancer

pathological differentiation display marked variance in prognosis

(17). Research reveals that the five-year survival rate is 89% for

patients with well-differentiated oral cancer, compared to 68% and

45% for those with moderate-differentiation or poor-differentiation

respectively (18). Hence, the development of a new technology for

quick, real-time, portable, and non-invasive diagnosis of oral
Frontiers in Oncology 02
tumors—capable of providing personalized optimal treatment

plans and prognostic information—would enhance diagnostic

efficiency and increase patient survival rates.

As illustrated in Table 1, Raman spectroscopy technology has

become a prevalent tool in the pathological diagnosis research of

oral tumors. Micro-Raman spectroscopy, a prominent technique

within the realm of Raman spectroscopy, has proven instrumental

in distinguishing between benign and malignant formations in oral

tumor tissue analyses. This is predominantly achieved through the

analysis of hematoxylin and eosin (H&E) tissue sections (19), frozen

sections (20), and ex-vivo tissues (21), among other samples.

Furthermore, surface-enhanced Raman spectroscopy (SERS)

facilitates the diagnosis of oral tumors by analyzing biological

specimens such as saliva (22) and serum (23, 24) from patients

afflicted with the condition. Up until now, there has been a limited

number of studies utilizing Raman spectroscopy for the precise

diagnosis of tumor-node-metastasis (TNM) staging and identifying

pathological grades such as well differentiated (Grade I), moderately

differentiated (Grade II), and poorly differentiated (Grade III).

Numerous research groups have successfully employed Raman

spectroscopy in analyzing tissue samples or cell lines from

patients suffering from diseases like breast cancer (29), brain

cancer (30), esophageal squamous cell carcinoma (31), and

bladder cancer (32), yielding significant findings. These groups

have devised various models leveraging specific algorithms to

accurately discern tumor stages or pathological classifications.

Sharma et al. (21) have analyzed the intrinsic molecular changes

in tissues at different T-stages of oral cancer patients using

microscopic Raman spectroscopy technology and have established

a diagnostic model for healthy tissues and malignant tumor tissues.

However, this study has not yet developed a multi-task diagnostic

model that can simultaneously predict the T-stage, N-stage, and

pathological grades of oral tumor patients. Xue et al. (25) utilized

Surface Enhanced Raman Spectroscopy (SERS) to analyze the

serum samples of patients with oral squamous cell carcinoma,

thereby predicting their tumor stage and pathological status, with

an accuracy of only 85%. However, this method also faces many

challenges, such as invasiveness, dependence on external reagents,
TABLE 1 Raman Spectroscopy studies on oral cancers.

Author Sample type Raman type Research results

Meksiarun (19) H&E tissue sections Micro-raman Tumor tissue analysis

Froukje (20) Frozen sections Micro-raman Benign and malignant identification

Sharma (21) Ex-vivo samples Micro-raman Benign and malignant identification

Borsa (22) Saliva samples SERS Benign and malignant identification

Amber (23) Blood serum samples SERS Benign and malignant identification

Moisoiu (24) Blood serum samples SERS Benign and malignant identification

Xue (25) Blood serum samples SERS Tumor stages and pathological status identification

Singh (26) In-vivo detection Fiber-optic Raman Benign, pre-malignant and malignant identification

Aaboubout (27) Fresh resection samples Fiber-optic Raman Benign and malignant identification

Chang (28) Fresh resection samples Fiber-optic Raman Benign and malignant identification
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time-consuming, and complex procedures. Fiber-optic Raman

spectroscopy technology circumvents existing hurdles, promising

a notable enhancement in diagnostic precision. Singh et al. (26)

previously applied this technique to in-vivo assessments of

individuals with oral tumors, successfully facilitating the

pathological grading of normal, precancerous, and tumor tissues.

Concurrently, Aaboubout et al. (27) analyzed freshly removed

tissues, distinguishing between benign and malignant samples

with a sensitivity of 85% and a 92% accuracy rate. Our prior

research underscored the potential of portable fiber-optic Raman

spectroscopy (PFORS), in conjunction with various machine

learning algorithms, to differentiate between cancerous and

adjacent tissues in patients afflicted with gum and cheek cancers

(28). Nevertheless, the integration of this research into clinical

applications has been hampered primarily due to the limited scale

of existing research datasets, the challenging nature of ensuring

model generalizability, and the protracted duration required for

data compilation. Paramountly, before being sanctioned for clinical

utilization, these devices necessitate meticulous clinical trials and

adherence to medical device safety standards.

This research utilizes a portable fiber-optic Raman spectrometer

to investigate ex vivo tissues from oral cancer patients, aiming to

determine TNM staging and assess the histologic status. Given the

high variability in tumor type, location, and histological grading

among oral cancer patients, the tumor specimens exhibit marked

heterogeneity, leading to relatively unstable Raman spectroscopic

data (33, 34). Consequently, our objective is to provide a

comprehensive representation of the spectral characteristics of oral

tumors. We accomplish this by expanding the patient sample size,

procuring spectral data from diverse anatomical sites, and gathering a

substantial dataset of Raman spectroscopic data. In parallel, to unveil

hidden features of the Raman spectra and subsequently ascertain the

TNM staging and pathologic grading of patients, we have engineered

a multi-output deep learning model for spectral data analysis and

multi-task network (MTN) classification. Thus, this paper’s primary

contributions are outlined below (1): the development of a portable

prototype for Raman spectroscopy (2); the creation of a MTN Raman

spectroscopy classification model, capable of concurrently diagnosing

tumor stages and pathologic grades upon the extraction of shared

backbone network features (3); the application of the model to

perform a comprehensive visualization analysis and molecular

feature interpretation of Raman spectroscopy data.
Materials and methods

The portable fiber optic Raman
spectrometer prototype

The research employs a portable fiber-optic Raman

spectrometer (PFORS) prototype developed by our team for the

collection of spectral data from oral cancer tissues, as illustrated in

Figure 1. A diode laser, employing a fiber coupling of 785 nm, serves

as the excitation source. This is introduced through the handheld

fiber Raman probe (HT-PROB-MULTI-785, Emvision, LLC),

which is linked to fiber-optic cables to facilitate laser excitation,
Frontiers in Oncology 03
and standard fiber for signal acquisition (NA = 0.22), providing a

resolution of 6 cm−1. The Raman signal is gathered using a fiber

spectrometer (QE65 Pro, Ocean Optics, USA), relying on a charge-

coupled device (CCD). Throughout the detection process, the CCD

operates at a temperature of -20°C. The spectrometer

communicates with the PC through the OceanView interface.
Patient enrollment and sample preparation

A total of 36 patients with oral cancer who met the inclusion

criteria received surgical treatment at Peking Union Medical

College Hospital between 2022 and 2023. Comprehensive data

including age, gender, and diagnosis were meticulously

documented prior to surgery. We acquired the test samples from

48 surgically excised tissues of the participating patients. To prevent

contamination that could disrupt spectral signals, any blood stains

on the surface of the test samples were meticulously rinsed with

running water before conducting fiber Raman spectroscopy. Fresh

samples were examined through fiber Raman spectroscopy within

30 minutes post-surgery. After completing the detection process,

the localized diseased tissues, and adjacent healthy tissues, for which

spectra had been detected, were collected. These samples were then

fixed in formalin, embedded in paraffin, and stained with

hematoxylin and eosin. An experienced clinical pathologist then

performed diagnoses on the pathological sections, assessing disease

type, stage, and degree of differentiation. In this study, those

examining the Raman spectra of the test tissues, as well as the

pathologists conducting pathological testing of the tissues, were

blinded to the Raman spectra.
Data acquisition

In Raman spectroscopy detection, the fiber-optic Raman

spectroscopy probe maintains a distance of 0.5 mm from the

surface of the tissue under test to ensure stable spectral signals.

The measurement of distance is facilitated through visual

estimation aided by a flat ruler with a thickness of 0.5mm

produced via 3D printing. Prior to every measurement, the

background spectrum undergoes an automatic subtraction with a

one-second integration time while the laser is deactivated.

Subsequently, with the laser reactivated, 90 measurements are

conducted on both the tumor and normal tissue surfaces, each

with a one-second integration time. The laser power at the probe tip

is meticulously calibrated to 100 mW cm−2. The entire detection

procedure is assuredly concluded within 30 minutes post

tissue excision.
Multi-task network model

Data pre-processing
Initially, we categorized all the Raman spectroscopy data by

type and selected the spectroscopy data within the range of 400 -

1400 cm-1 for further analysis. At the same time, in order to solve
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the problem of unbalanced sample classes, we average the spectra of

samples with a relatively large number of categories. Specifically, for

healthy spectra, we average five spectra into one spectrum; For

high-T1-N0 tissue spectra, we averaged the three spectra into one

spectrum; For the tissue spectra of high-T2-N0 and high-T2-N1, we

averaged the five spectra into one spectrum. For the tissue spectra of

high-T4-N0 and high-T4-N1, we averaged the six spectra into one

spectrum. At the same time, we also removed part of the Raman

spectral data that were obviously abnormal. To mitigate the impact

of robust fluorescence signals and noise originating from disparate

background sources, it was essential to preprocess the spectroscopy

data prior to its analysis. This preprocessing phase comprised of

three steps:
Fron
(i) The Savitzky-Golay filter is utilized during signal denoising

to smoothen the spectral data, hence reducing the effect of

noise on the spectrum.

(ii) Following signal denoising, the least squares method is

employed for baseline correction to fit the polynomial

baseline and eliminate the fluorescent background from

the initial spectrum.

(iii) Lastly, data normalization is executed using minimum-

maximum intensity normalization to standardize the

intensity of all spectra within the [0,1] range, facilitating

comparison among various samples.
Model architecture
This paper presents the MTN-ResNet50 model, designed to

concurrently perform tumor staging, lymph node staging, and

histological grading of oral cancer tissues. The architecture of this

network, as illustrated in Figure 2, consists of three distinct

components: the Backbone, the Neck, and the Head. The

Backbone component employs the ResNet50 network structure

(35) to extract the feature information from the Raman

spectroscopy of oral cancer tissues. This backbone comprises 5
tiers in Oncology 04
convolutional modules, 12 identity blocks, and 4 pooling layers,

collectively forming a five-layer network structure. In particular, the

initial layer of the network employs 64 convolutional kernels with

dimensions of 7×1 and incorporates a 3×1 Max pooling operation.

This operation results in an output image size of 519 x 64.

Subsequently, the second through fifth layers are composed of

residual modules, each generating feature maps with dimensions

of 519×256, 260×512, 130×1024, and 65×2048, respectively. The

Neck component is responsible for processing the extracted

spectroscopic data and employs adaptive global average pooling

to pool the input data, transforming it into a suitable format for

subsequent processing. Lastly, the Head component handles the

classification tasks for tumor staging, lymph node staging, and

histological grading. It utilizes three classification head, contains a

total of six full connection layer to generate classification results for

the three tasks at the same time. Specifically, we have designed three

separate classifiers within the head component to cater to different

tasks, including tumor staging, lymph node staging, and histological

grading classification. For the tumor staging task, we used three

fully connected layers for building a seven-class model. Similarly, a

five-class model was constructed using two fully connected layers

for lymph node staging, and a single fully connected layer was

utilized for histological grading, leading to a five-class model.
Model training
To achieve the final classification, we employed the Softmax for

calculating the probability of the outputs. The learning rate is set to

0.0001, a batch size is set to 256, and training epochs are set to 1000.

The stochastic gradient descent algorithm was used for optimization,

with a momentum of 0.9 and a weight decay of 0.00002.

To test the model’s generalizability, we randomly partitioned the

dataset into ten subsets. During each training session, seven subsets

were used for training, two for validation, and the remaining one was

reserved for testing. This process was repeated ten times, each time

using a different subset for testing. Finally, the mean of the ten

models’ evaluation results served as the model’s performance metric.
FIGURE 1

Portable Fiber-optic Raman Spectrometer (PFORS) Prototype. This system includes: ① display; ② manual displacement platform; ③ Edge computing
device; ④ diode laser; ⑤ spectrometer; ⑥ fiber-optic Raman spectroscopy probe.
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To provide an easily interpretable explanation of the MTN-

ResNet50 model’s performance in Raman spectroscopy data analysis,

we used the Gradient-weighted Class Activation Mapping (Grad-

CAM) approach (36). The CAM analysis enabled us to visualize the

Raman spectral regions that the MTN-ResNet50 model was focusing

on, thereby facilitating a better understanding of the classification

process. Initially, the spectral data was fed into the MTN-ResNet50

model, and the Grad-CAM method was used to calculate and plot the

gradients of the last convolutional layer’s feature map. Subsequently,

these gradients were weighted and summed with the feature map from

the last convolutional layer, followed by global average pooling to

obtain a heatmap corresponding to the target class.

Lastly, the heatmap and the original spectral image were

superimposed on a single graph. This approach provided an

intuitive visualization of spectral differences across bands and

aided in our comprehension of spectral data characteristics

and variations.
Result

Flowchart

Figure 3 provides a schematic diagram depicting the workflow

for tumor staging and histological grading of oral cancer patients,

utilizing Raman spectroscopy techniques and deep learning

algorithms. This figure was generated using BioRender.com.

Initially, oral tumor patients are recruited, and the relevant tissues

for examination are harvested during surgery. We then acquire

Raman spectroscopy data from both the oral tumor and the tissue

adjacent to it. Concurrently, we collect essential demographic

information about the patients enrolled and the pathological

diagnosis corresponding to the tissues under examination.

Subsequently, this spectral input is integrated into a MTN model

designed for diagnosing oral cancer pathologically, thereby

facilitating real-time diagnostic assessment of the cancer’s stage

and its pathological progression using this device. Ultimately, the

potential application of this portable fiber-optic Raman
Frontiers in Oncology 05
spectrometer lies in its ability to identify intraoperative tumor

boundaries, thereby providing surgical guidance.
Patient information

Table 2 outlines the patient characteristics for this study.

Patients with oral cancer are categorized into five groups (Tis, T1,

T2, T3, T4) based on tumor size and extent of tumor involvement.

The study also groups patients into N0, N1, and N2 based on lymph

node metastasis and its features. Patients who fall under N3

classification or exhibit distant metastasis, for whom further

surgical intervention is not recommended, are excluded from this

study. Patients’ histological diagnosis is categorized as health,

benign tumor or dysplasia (BOD), well differentiated (WD),

moderately differentiated (MD) and poorly differentiated (PD)

tissue, according to the World Health Organization’s histological

classification (37).
Raman spectroscopy analysis

Results of Raman spectroscopy analysis across
various T-staging

The study classifies the 2127 Raman spectroscopy data points

from all oral cancer patients into five groups: Tis, T1, T2, T3, and

T4, comprising 270 Tis, 300 T1, 432 T2, 180 T3, and 945 T4,

respectively. Given the close correlation between T1 and T2, and T3

and T4 in clinical practice and disease management, these

categories will be merged for analysis, resulting in two groups: TI

and TII. The comparison of Raman spectra between TI and Tis, as

well as between TII and TI, reveals distinct differences, detailed in

Table 3. In Figure 4A, an integrated analysis of these differential

Raman spectra indicates increased peak values at 484 (Glycogen),

525 (proteins), 1220 (Amide III) cm-1, and decreased spectral peaks

at 585 (OH out of plane bending), 858 – 863 (Tyrosine, collagen

type I) cm-1. These peak shifts primarily involve components such

as sugars, Amide III, and collagen type I (38, 39).
FIGURE 2

Architecture of MTN-ResNet50 model. The model employs Raman data, comprised of 3534 individual spectra, which are separately introduced to
the Backbone, Neck, and Head modules of the system. The Backbone module is primarily responsible for feature extraction, employing 5 distinct
convolution layer modules and 12 Identity Blocks. The Neck module undertakes a global average pooling process, whereas the Head module
handles the classification task, with the inclusion of 6 fully connected layers.
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Results of Raman spectroscopy analysis across
various N-staging

This study organizes the 2127 Raman spectroscopy data points

from all oral cancer patients into three groups: N0, N1, and N2,

including 1305 N0, 282 N1, and 540 N2 data points, respectively. By

contrasting these groups, we can delineate the differential Raman

spectra between N1 and N0, and between N2 and N1 in Table 4. As

shown in Figure 4B, a comprehensive analysis of these differential

Raman spectra reveals an increase in peak values at 1174

(phenylalanine), 1195 (Nucleic acids), 1198 (tryptophan) cm-1, and

a decrease at 728 (collagen), 717-719 (lipids), 719 (phospholipids)

cm-1. These variations in peak Raman shifts primarily correspond to

lipids, tryptophan, phenylalanine, and collagen (38, 39).

Results of Raman spectroscopy analysis across
various histological grades

In accordance with pathological classifications, this study

divided the 3534 spectral datasets obtained from all the tested

tissues into five categories: healthy tissue, benign tumor or dysplasia

(BOD), well differentiated (WD), moderately differentiated (MD)

and poorly differentiated (PD) tissue, comprising 703, 704, 987, 540,

and 600 samples respectively. The pathological diagrams and

average Raman spectral datasets for these categories are depicted

in Figures 5A–M. Spectral charts from patients with the same

disease stage and pathologic grade, albeit from different oral

cancer patients, showed remarkable similarity, implying

significant homogeneity within identical test tissue types. In

contrast, spectral data from patients with varying disease stages

and pathological grades displayed notable differences. A

comparison of Raman spectral data across different pathologic
Frontiers in Oncology 06
grades revealed significant variation in Raman peaks within

specific areas in Table 5: during the transition from WD to MD,

peak intensities at 820, 889, 998, 1034 cm-1 experienced an increase,

while those at 501, 1299, 1332 cm-1 showed a decrease. Similarly,

during the transition fromMD to PD, peaks at 613, 1090, 1356 cm-1

increased, whereas those at 534, 1034, 1146, 1255 cm-1 decreased.

Upon conducting a comprehensive analysis of these divergent

Raman spectra in Figure 4C, both sets showed an increase in

Raman spectra at peaks of 815 (nucleic acid), 820 (structural

protein modes of tumors), 970 (proteins and nucleic acids), and

1370 cm-1 (the most pronounced saccharide band); conversely,

peaks at 516 (phosphatidylinositol), 1146 (carbohydrates), 1223

(collagen I), and 1318 cm-1 (protein and Amide III) decreased. As

indicated by previous studies, these alterations in peak values of the

Raman shifts primarily correspond to nucleic acids, structural

proteins, and collagen I within tumor cells (38, 39).
Result of multi-task network model

In assessing the performance and reliability of CNN models,

accuracy and cross-entropy loss are commonly used metrics. As the

learning iterations progress, the accuracy and cross-entropy loss

curves of the validation set gradually converge, indicating that the

model does not suffer from overfitting. Figures 6A, B present the

accuracy curves and cross-entropy loss curves for the three subtasks

depicted in this study.

For comparison purposes, we opted for VGG16 and Support

Vector Machines (SVM) as benchmark models. VGG16 (40), a

well-known Convolutional Neural Network (CNN), is recognized
FIGURE 3

The flowchart depicts the pathological staging and histological grading diagnosis process for oral cancer tissue, leveraging fiber-optic Raman
spectroscopy technology and deep learning algorithms.
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TABLE 2 Summaries of the fundamental information for the enrolled oral tumor patients and the corresponding number of collected Raman spectra.

Patient information Number of patients or samples Number of spectra

Age <60year 8 —

>60year 28 —

Gender male 23 —

female 13 —

Test site tongue 20 —

Cheek 12 —

Gingiva 9 —

Mouth floor 5 —

Lip 2 —

T-staging Tis 3 270

T1 8 720

T2 15 1350

T3 2 180

T4 11 990

N-staging N0 28 2520

N1 7 630

N2 4 360

Histological grading health 39 3510

BOD 9 810

WD 31 2790

MD 5 540

PD 3 300
F
rontiers in Oncology
 07
TABLE 3 Analysis of peak positions and assignment in raman spectra during TI-Nis and TII-TI progressions.

Progression type Change direction Raman shift (cm−1) Band assignments

TI-Nis Increase 685 DNA bases

1014 Carbohydrates

1231 Amide III

Decrease 585 OH out of plane bending and phosphate of HA

799 Phosphates

858 Tyrosine, collagen

983 Lipids

TII-TI Increase 484 Glycogen

1206 Hydroxyproline

1220 Amide III

Decrease 767 Pyrimidine ring breathing mode

863 Phosphatidic acid
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for its remarkable feature extraction capability. In order to achieve

multi-task learning, we made modifications to the VGG16

network model and created another multi-task network model

called MTN-VGG16, aimed at adapting to multiple classification

tasks such as tumor staging, lymph node staging, and histological

grading. On the other hand, SVM, a conventional machine

learning algorithm, is extensively applied in classification tasks.

We used a one-versus-all strategy to realize MTN learning with

SVM. Specifically, we treated the three classification tasks as

independent and processed them by sequentially training and

testing three SVM classifiers.

Table 6 illustrates the performance measures, including

accuracy, specificity, and sensitivity, of our MTN-ResNet50

model, the MTN-VGG16 model, and the SVM algorithm on the

three classification tasks. A comparative analysis reveals that our

MTN-CNN model exhibits superior performance across all tasks.

Particularly, for the T-stage classification task, our model yielded an

accuracy, specificity, and sensitivity of 94.49%, 99.06%, and 94.83%

respectively. For the N-stage classification task, these measures were
Frontiers in Oncology 08
94.15%, 98.41%, and 94.31% respectively. For the pathologic

grading classification task, the measures were 94.30%, 98.48%,

and 95.25% respectively.

To quantitatively assess the performance of the MTN-ResNet50

model, we generated the Receiver Operating Characteristic (ROC)

curves for the tumor staging, lymph node staging, and pathologic

grading classification tasks, and calculated the Area Under the

Curve (AUC). The corresponding AUC values were 0.9971,

0.9931, and 0.9969 respectively as shown in Figure 6C. These

results corroborate the superior performance of the MTN-

ResNet50 model for these tasks. To visually represent the

prediction accuracy and error rates of our classification model

across different categories, we present the confusion matrices

corresponding to the results of the ten-fold cross-validation for

the three classification tasks in Figures 6D–F. The visual

representation of confusion matrices aids in understanding the

prediction behavior of the classification model in each

category and provides a clear understanding of the model’s

classification performance.
TABLE 4 Analysis of peak positions and assignment in raman spectra during N1-N0 and N2-N1 progressions.

Progression type Change direction Raman shift (cm−1) Band assignments

N1-N0 Increase 489 Glycogen

1210 Phenylalanine

1304 Adenine, cytosine

1366 Tryptophan

Decrease 815 Tyrosine, proline, hydroxyproline,

862 Phosphate group

983 Lipids

N2-N1 Increase 607 Glycerol

988 Proteins

1080 Phospholipids and phosphate vibrations

1195 Nucleic acids and phosphates

Decrease 756 Tryptophan

1151 Carotenoid

1260 Lipids
A B C

FIGURE 4

(A) the Raman Spectra of Oral Cancer Tissues Across Varying T-Stages; (B) the Raman Spectra of Oral Cancer Tissues Across Varying N-Stages; (C)
the Raman Spectra of Oral Cancer Tissues Across Varying Histological Grades.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1272305
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1272305
Visual analytical approach to Grad-CAM

Utilizing the Grad-CAM tool, we generated visualizations of

Raman spectra for three categories: healthy tissue, BOD, and

malignant tumor tissue using our MTN-ResNet50 model. To

facilitate an intuitive comparison between these categories,

Figure 7 presents the average Raman spectra and Grad-CAM

neural network heatmap. The color intensity in these
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visualizations is indicative of the influence that specific area has

on the model’s target category prediction, with redder areas

demonstrating higher influence and lighter areas suggesting lower

influence. By visualizing these Raman spectra, it becomes apparent

that the MTN-ResNet50 model places emphasis on different Raman

shift areas for different datasets.

More specifically, the model focuses on the spectral range of 542

cm-1 to 880 cm-1 for healthy tissue, 695 cm-1 to 1020 cm-1 for BOD,
A

B

D

E

F

G

I

H

M

C

FIGURE 5

Identification of different histopathologic grades of oral tissues, including Health, BOD, WD, MD, and PD tissues. (A–E) Histopathological images; (F–
M) Raman spectra of different histopathologic grades of oral tissues.
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and 400 cm-1 to 625 cm-1 and 1170 cm-1 to 1270 cm-1 for malignant

tumor tissue. Through these visualizations, we can delineate the

variations between different tissue types, thereby enhancing our

understanding of Raman spectra classifications. As shown in

Table 7, several biomolecules have been reported to correlate

strongly with our research, and they reside within the Raman

shift regions highlighted by Grad-CAM. These biomolecules,

which hold the potential to characterize the biochemical features
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of various biological tissues, enhance the interpretability of

our classifications.
Discussion

Raman spectroscopy is utilized for the detection and analysis of

biochemical components in biological tissues, with primary
TABLE 5 Analysis of peak positions and assignment in raman spectra during MD - WD and PD - MD progressions.

Progression type Change direction Raman shift (cm-1) Band assignments

MD - WD Increase 820 Protein band and structural protein modes of tumors

889 Methylene rocking

998 C-O ribose

1034 Phenylalanine of collagen

Decrease 501 Methoxy group

1299 Lipid

1332 C3-C3 stretch and C5-O5 stretch CHa in-plane bend

PD - MD Increase 613 Cholesterol ester

1090 Phosphate

1356 Guanine

Decrease 534 Cholesterol ester

1034 Phenylalanine of collagen

1146 Carbohydrates

1255 Lipids
A B

D E F

C

FIGURE 6

(A, B) Validation Accuracy and Cross-Entropy Loss Curves in Iterative Training of Convolutional Neural Networks for T-staging, N-staging, and
Histological Grading; (C) ROC Curve and Corresponding AUC Values of the Test Set; (D) Cumulative Confusion Matrix from Ten-Fold Cross-
Validation of the T-Staging Classification Task; (E) Cumulative Confusion Matrix from Ten-Fold Cross-Validation of the N-Staging Classification Task;
(F) Cumulative Confusion Matrix from Ten-Fold Cross-Validation for Histological Grading.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1272305
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1272305
constituents including proteins, lipids, and nucleic acids (41).

Through the measurement of molecular vibrational modes, fiber-

optic Raman spectroscopy provides intricate details about the

composition and concentrations of these biochemical components

(42). The spectral characteristics are principally determined by the

biochemical components and histological characteristics of the

tested samples (32). This study is the first to extract the

biochemical characteristics of oral lesions at different pathological

stages and histological grades through fiber-optic Raman

spectroscopy combined with deep learning algorithms. Then, a

“Spectroscopy-TNM staging-histological grading” model was

established using a MTN learning algorithm to predict the

pathological diagnosis of oral tumor patients. Previous research

teams have distinguished between benign and malignant human

tissues by analyzing Raman spectroscopy data and extracting

essential spectral characteristics via various machine learning

algorithms (43, 44). The multi-output model utilized in this study
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can concurrently execute multiple tasks, including TNM staging

and histological grading. By extracting shared features, the model

can glean associative information amongst distinct tasks, thereby

enhancing the model’s generalizability.

Raman spectroscopy is instrumental in TNM staging of OSCC

patients, as it correlates with the types and concentrations of

biochemical constituents within the tissues (45). Studies reveal

that shifts in the composition and structure of these biochemical

constituents will lead to changes in the signal intensity at different

Raman shifts (46). An analysis of Raman spectra from patients at

various T-stages, integrated with key areas indicated by Grad-CAM

analysis, demonstrates an increase in glycogens and Amide III, as

well as a decrease in Tyrosine and Collagen type I between Tis and

TI, and between TII and TI. These findings align with prior research

asserting that cancer cells require an augmented glucose supply for

rapid growth and division (47). Moreover, cancer cells can exhibit

alterations in the extracellular glycan structure, utilizing these
TABLE 6 Performance of MTN-ResNet50, MTN-VGG16, and SVM algorithms in T-staging, N-staging, and histological grading identification.

Algorithm types Classification Accuracy (%) Specificity (%) Sensitivity (%)

ResNet50 T-staging 94.49 ± 1.33 99.06 ± 0.24 94.83 ± 1.46

N-staging 94.15 ± 1.25 98.41 ± 0.35 94.31 ± 0.97

Histological Grading 94.30 ± 1.30 98.48 ± 0.34 95.25 ± 1.13

VGG-16 T-staging 92.83 ± 1.44 98.77 ± 0.26 92.77 ± 1.43

N-staging 92.79 ± 1.55 98.01 ± 0.44 92.78 ± 1.55

Histological Grading 90.85 ± 1.79 97.58 ± 0.47 92.14 ± 1.76

SVM T-staging 88.43 ± 1.09 97.97 ± 0.20 89.68 ± 1.49

N-staging 85.62 ± 1.71 95.97 ± 0.51 87.10 ± 1.41

Histological Grading 86.15 ± 1.56 96.32 ± 0.41 88.11 ± 1.30
FIGURE 7

Comparative Raman Spectroscopy Profiles of Healthy, BOD, and Malignant Tissues, Coupled with the Heatmap Visualization of a Grad-CAM Neural
Network.
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glycans for immune evasion (48). An observed increase in Amide III

may be attributable to the cancer cells’ stress response to inadequate

nutrition and oxygen, as exemplified by the elevated expression of

heat shock proteins (49). Employing the ResNet50 algorithm, the

overall accuracy, specificity, and sensitivity for different T-stages are

reported to be 94.88 ± 1.38%, 99.12 ± 0.24%, and 95.23 ±

1.46%, respectively.

In addition, while N-staging greatly impacts the choice of

therapeutic approach and patient prognosis, its accurate

determination currently necessitates pathological analysis of

surgical specimens (50). Prior studies, utilizing Raman

spectroscopy, have achieved 100% accuracy in differentiating

lymph nodes containing metastatic tumors in breast cancer

patients (51, 52). However, no study thus far has predicted

lymphatic metastasis via direct tumor examination. Previous in

vitro experiments indicated Raman spectroscopy’s capability in

distinguishing mouse cancer cell lines with varying metastatic

potentials and invasiveness (53). In this investigation, Raman

spectroscopy revealed a decrease in lipid or fatty acid and

phospholipid accumulation, collagen, alongside an increase in

Tryptophan and Phenylalanine between stages N1 and N0, as

well as between N2 and N1. Literature corroborates that a “low

lipid” phenotype in tumor tissues is indicative of enhanced cellular

migration in vitro and increased metastatic ability in vivo (54).

Research has established that MMP-2 and MMP-9 foster tumor

invasion and metastasis through collagen degradation, leading to

extracellular matrix disruption and consequent cellular dysfunction

(54–56). An increase in Tryptophan in cancer tissues, catalyzed by

indoleamine 2,3-dioxygenase (IDO) into immunosuppressive

guanosine, facilitates immune evasion (57). Nonetheless, a unique

observation of sugar reduction at 490 cm-1 when transitioning from

N2 to N0 remains unexplained within the biological context.

However, the correlation between changes in Raman spectroscopy

and tumor staging is not constant, primarily due to the fact that

tumor staging doesn’t encapsulate the trend of alterations in all
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biomolecules. Algorithmic analysis has shown that the overall

accuracy, specificity, and sensitivity across different N-stages are

94.57 ± 1.32%, 98.54 ± 0.35%, and 94.47 ± 1.47% respectively.

Histopathological identification of OSCC relies on aspects such as

cellular morphology and tissue architecture (58). The pathological

type of the tumor plays a crucial role in guiding the choice of

treatment regimens and in prognostic assessment (59). Our

analysis of Raman spectral variations in well, moderately, and

poorly differentiated types, augmented with Grad-CAM analysis,

revealed a trend consistent with changes in pathological state from

WD to PD. Specifically, we observed increased structural protein

modes, decreased collagen I, and heightened nucleic acids at spectral

positions of 820, 1223, and 815 cm-1, respectively. As the malignancy

of the tumor escalates, there is an increase in collagen degradation

within the tumor, a process known to stimulate angiogenesis, as

corroborated by several studies (60). Additionally, as the tumor

progresses, tumor-associated fibroblasts primarily responsible for

collagen I production undergo phenotypic changes, leading to a

decrease in collagen I levels. On another note, to support rapid

cellular proliferation and division, cancer cells display amplified

nucleic acid metabolism (61). In our study, Raman spectral data

analyzed with the ResNet50 algorithm yielded an overall diagnostic

accuracy, specificity, and sensitivity for different pathologic grades of

94.34 ± 1.55%, 98.54 ± 0.41%, and 94.96 ± 1.28%, respectively.

This research presents several areas of limitation. Primarily, an

imbalance in the sample sizes poses a concern; specifically, some

pathological categories lack sufficient sample numbers. Nonetheless,

comparable studies have demonstrated effective results through

algorithmic processing (62). A secondary limitation lies in the

non-application of the model machine in vivo due to potential

challenges the probe might introduce to surgical sterility

requirements (63). Furthermore, the portable fiber-optic Raman

spectrometer has yet to be fully integrated, thus impeding true

portability. As such, future research by our team will concentrate on

component integration to enhance device portability and mobility.
TABLE 7 Analysis of peak positions and assignment in raman spectra of healthy, BOD, and malignant tissues .

Raman shift (cm−1) Intensity Band assignment

484 w, s Glycogens

516 m, s Phosphatidylinositol

717-719 s, m Lipid

719 s, m Phospholipid

728 s, s Collagen

815 s, s Nucleic acid

820 s, s Structural protein modes of tumors

858–863 m, s Tyrosine, collagen type I

1174 m Phenylalanine

1198 s, m Tryptophan

1223 m Collagen I

1220 s Amide III
Intensity: weak (0.4-0.6), mid (0.6-0.8) and strong (0.8-1).
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Finally, the research is constrained by the recent treatment history

of the patients involved, disallowing the collection of prognostic

data. As a result, predicting patient prognosis through Raman

spectroscopy remains impossible. Nonetheless, it is crucial to

acknowledge the potential of this technology in aiding

pathologists in faster and more accurate determination of tumor

staging and histological grading, thereby reducing diagnostic

variability. Once this system accomplishes rapid, label-free, non-

invasive, and highly accurate pathological diagnosis, it could

facilitate intraoperative tumor boundary diagnosis, and potentially

provide significant guidance for preoperative treatment planning

and patient prognosis analysis.
Conclusion

This study demonstrates that fiber-optic Raman spectroscopy

can elucidate subtle, real-time changes in the biochemical

composition of oral lesion tissues, offering an advantage over

traditional histopathological diagnosis. Leveraging this technique

in conjunction with machine learning algorithms, we constructed a

single pathological diagnosis model that simultaneously achieves

MTN diagnosis of oral cancer pathologic staging and histological

grading. This is accomplished by extracting shared features across

sub-tasks and assimilating related information. Our findings reveal

that Raman spectra vary significantly across different pathological

stages, reflecting notable changes in the content of glycans, lipids,

nucleic acids, and collagen proteins. Raman spectroscopy, as shown

in this study, can provide insights into the mechanistic evolution of

pathologic grade changes from a biochemical standpoint.

Consequently, this technology aids in developing innovative,

rapid, non-invasive, and label-free tools for both preoperative and

intraoperative pathological diagnosis of oral cancer, which can be

applied in outpatient clinics and operating rooms.
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