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Background: Classical biomarkers have been used to classify clear cell renal cell

carcinoma (ccRCC) patients in a variety of ways, and emerging evidences have

indicated that cuproptosis is closely related to mitochondrial metabolism,

thereby accelerating the development and progression of ccRCC.

Nevertheless, the specific relationship between cuproptosis and the prognosis

and treatment of ccRCC remains unclear.

Methods: We comprehensively integrated several ccRCC patient datasets into a

large cohort. Following that, we systematically analyzed multi-omics data to

demonstrate the differences between two cuproptosis clusters.

Results: We identified two cuproptosis clusters in ccRCC patients. Among the

two clusters, cluster 1 patients showed favorable prognosis. We then confirmed

the significant differences between the two clusters, including more typical

cancer hallmarks were enriched in cluster 2 patients; cluster 2 patients were

more susceptible to develop mutations and had a lower level of gistic score and

mRNAsi. Importantly, both Tumor Immune Dysfunction and Exclusion analysis

and subclass mapping algorithm showed that cuproptosis 1 patients were more

susceptible to be responded to immunotherapy. In addition, a prognostic

signature was successfully developed and also showed prominent predictive

power in response to immunotherapy.

Conclusion: As a result of our findings, we were able to classify ccRCC patients

according to cuproptosis in a novel way. By constructing the cuproptosis clusters

and developing the signature, patients with ccRCC could have a more accurate

prognosis prediction and better immunotherapy options.
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Introduction

Renal cell carcinomas are a group of malignancies originating

from renal tubular epithelial cells with different biological

characteristics, aggressive behavior, biomarkers and clinical

prognosis (1). Clear cell renal cell carcinoma (ccRCC), papillary

RCC, and chromophobe RCC are the three dominant subtypes,

accounting for more than 90% of all RCC types. Most prominently,

ccRCC accounts for approximately 70% of real-world clinical cases

of RCC and has highly malignant features (2). There are

approximately 400,000 new cases of ccRCC diagnosed each year

(3). At the same time, the mechanisms underlying the development

of ccRCC are increasingly elucidated, including genetic mutational

features, activation of pro-oncogenic pathways, and tumor

microenvironment crosstalk (4).

Regulated cell death (RCD) is a biologically sophisticated

regulatory mechanism that is widely present in physiological and

pathological pathways (5). Disruptions in the normal regulatory

program of RCD could subsequently lead to various pathological

diseases such as immune disorders, infectious diseases, and

malignancies (6–8). Cuproptosis is a newly identified cell death

pathway that is closely related to mitochondrial metabolism. Based

on the study of Tsvetkov and colleagues, FDX1 is the core gene of

the copper death metabolic pathway and has been identified as a

gene related to the copper death process together with LIAS, LIPT1,

DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A (9). Still

today, despite some studies focused on the association between

cuproptosis and ccRCC existing, the potential therapeutic role of

cuproptosis- related genes in ccRCC remains inadequate.

In this study, not only comprehensive bioinformatics analyses

including consensus clustering method, prognosis modeling

analysis, genome analysis, immune infiltration analysis, and

therapeutic response analysis were performed, in- vitro

experiments were also conducted to validate our findings.

Multiple approaches were used to predict immunotherapeutic

efficiency, and the results revealed that patients in cuproptosis 1

group or with low riskScore were more likely to be susceptible to

immunotherapy. Consistent with this, in- vitro experiments

indicated that XXXX identified through our analyses were highly

expressed in the ccRCC cells.
Methods

Retrieval of the data and correction of the
batch effect

After a comprehensive review and synthesis of a wide range of

public databases, data of RNA sequences and related clinical

information of ccRCC patients were gathered from The Cancer

Genome Atlas (TCGA) database (https://tcga-data.nci.nih.gov/

tcga/) , Gene Express ion Omnibus database (https : / /

www.ncbi.nlm.nih/geo/query/), ArrayExpress database (https://

www.ebi.ac.uk/arrayexpress/), International Cancer Genome

Consortium database (https://dcc.icgc.org/), and Clinical

Proteomic Tumor Analysis Consortium database (https://
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proteomics.cancer.gov/programs/cptac/). In order to construct a

validation cohort with enough samples, ccRCC samples from

different databases were integrated as a whole dataset using the

“ComBat” algorithm based on R software (4.2.0). Then, 539 ccRCC

patients in testing cohort and 669 patients in validation cohort were

enrolled in the further study. Finally, all the high-throughput

sequencing data were transformed into transcripts per million

values to make them better match microarray data, and low-

abundance genes were filtered to ensure them closer to the signal

strength chip data (10, 11).
Unsupervised consensus clustering and
functional analysis

To determine the differentially abundant features of cuproptosis

across different ccRCC patients, the “ConsensusClusterPlus” R

package was used to separate patients into two clusters based on

the expression of 13 cuproptosis-related genes and the survival curve

analysis was also conducted between two clusters. Additionally,

different clusters were compared in terms of clinical characteristics.

To evaluate pathway enrichment, gene set variation analysis (GSVA)

was applied to the hallmark gene set through the “gsva” R package. In

addition, Gene Ontology (GO) annotation and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analysis were

used to identify the pathway and function of differentially expressed

genes (DEGs) between different clusters.
Comparison of genomic characteristics
between clusters

To explore the genomic landscape of molecules involved in two

clusters, the differential analyses of tumor mutation burden (TMB),

copy number variation (CNV), and tumor stemness index

(mRNAsi) were subsequently performed. Considering the

importance of immune infiltration in tumor microenvironment,

stromal, immune, and estimate scores were calculated for each

sample based on the “ ESTIMATE” R package. In addition, the

representation of 22 immune cells and 29 immune functions were

quantified using the CIBERSORT and ssGSEA algorithms. As part

of our study, we also evaluated 50 immune checkpoints in terms of

their expression across different clusters of patients.
Analysis of therapeutic sensitivity

Using Tumor Immune Dysfunction and Exclusion (TIDE) and

subclass mapping, each sample’s response to immune therapy was

predicted. Using the “pRRophetic” R package, the candidate agents

with different drug sensitivity between the two cluster samples were

identified based on Genomics of Drug Sensitivity in Cancer (GDSC,

https://www.cancerrxgene.org), the Cancer Therapeutics Response

Portal (CTPR, https://portals.broadinstitude.org/ctrp), and

Profiling Relative Inhibition Simultaneously in Mixtures (PRISM)

repurposing dataset (https://depmap.org/portal/prism/).
frontiersin.org

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih/geo/query/
https://www.ncbi.nlm.nih/geo/query/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://dcc.icgc.org/
https://proteomics.cancer.gov/programs/cptac/
https://proteomics.cancer.gov/programs/cptac/
https://www.cancerrxgene.org
https://portals.broadinstitude.org/ctrp
https://depmap.org/portal/prism/
https://doi.org/10.3389/fonc.2023.1271864
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2023.1271864
Construction of prognostic signature
based on cuproptosis-related genes

Weighted Gene Co-expression Network Analysis (WGCNA)

was used to examine the associations between coexpressed gene

modules and clinical traits. We selected genes within the modules

with the most significant P-values for further analyses. To construct

prognostic signature, random forest algorithm was used to identify

hub genes. The prognostic value of the signature in both testing data

and validation was explored through survival analysis and area

under the curve (AUC). In addition, we compared the expression

levels of hub genes between normal and tumor tissues.
Analysis of immune items and study of
treatment response

To further determine the role of the signature in ccRCC genesis

and treatment, we collected immunotherapy-related signatures from

the known literature (12) and hallmark gene signatures from

Molecular Signatures Database (http://software.broadinstitute.org/

gsea/msigdb) to perform correlation analyses. Furthermore,

correlation analyses between genomic characteristics including

mRNAsi, EREG-mRNAsi, CNV gain, loss, and riskScore were also

conducted. In addition to TIDE analysis, we further included patients

administered immune checkpoint inhibitor (ICI) therapy from two

independent cohorts (IMvigor210 and GSE78220) to verify the role

of the riskScore in predicting different treatment outcomes including

complete response (CR), partial response (PR), stable disease, and

progressive disease (PD). The riskScore of each patient was calculated

using the same formula to assess its relationship with ICI

therapy effectiveness.
Quantitative real-time polymerase
chain reaction

Combined with TCGA- expression data and Kaplan–Meier (K-

M) survival curve, FUCA1, SLC16A12, CYFIP2, and LIMCH1 were

selected to further verify their expression in 10 pairs of ccRCC

tissues and corresponding paracancer tissues. All tissues were

derived from radical nephrectomy specimens and were

pathologically confirmed as ccRCC. Informed consent was

obtained from all patients before taking samples, and the study

was approved by the ethics committee of the medical institution.

We used RNA Isolation Kit (Vazyme, Nanjing, China) to extract

total RNA from ccRCC and adjacent normal tissues. For reverse

transcription PCR (RT-PCR), RNA was reverse transcribed using the

Reverse Transcription Kit (Vazyme # R333, Nanjing, China). The

StepOnePlus™ PCR instrument (Thermo Fisher Scientific, Waltham,

MA, U SA) was used for quantitative real-time polymerase chain

reaction (qRT-PCR) using SYBR GreenMaster Kit (Vazyme, Nanjing,

China) as fluorescent dye. The primers we used were purchased from

GenScript (Nanjing, China). The sequences of the primers are listed

here: FUCA1: 5′- GAAGCCAAGTTCGGGGTGTT -3′ (forward) and
5′-GGGTAGTTGTCGCGCATGA-3′ (reverse); SLC16A12: 5′-
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TCACTCAGGATTACGCACAAAC-3′ (forward) and 5′-
TCCCACTTGACAGGATAAATGGT-3′ (reverse); CYFIP2: 5′-
CAACGTGGACCTGCTTGAAGA -3′ (forward) and 5′-
AGTTTGTGTCAAAGTTAGCCTGG -3′ (reverse); LIMCH1: 5′-
CAGACGCCTTCACCAGATGTA -3′ (forward) and 5′-
GATGAGGCAAGTCGGATTCAG -3′ (reverse). b-actin: 5′-
CCCATCTATGAGGGTTACGC-3 ′ ( forward) and 5 ′ -
TTTAATGTCACGCACGATTTC-3′ (reverse). Each qRT-PCR

experiment was performed in triplicate, and b-actin was selected to

normalize the expression level of target genes.
Results

ccRCC patients sort into two clusters
according to cuproptosis-related genes

First, five ccRCC datasets were acquired with complete survival

data as the validation cohort, from which a significant batch effect

was observed (Figure 1A). Then, batch effects were removed to

correct biases based on the “ComBat” algorithm (Figure 1B).

Second, unsupervised clustering analysis was conducted using 13

cuproptosis-related genes to investigate expression patterns of

cuproptosis-related genes and divide patients into two clusters

(Figure 1C). In addition, the principal component analysis (PCA)

results showed there was a clear distinction of distribution in the

samples between two clusters (Figure 1D). In addition, a heat map

was created to show the expression of 13 cuproptosis-related genes

and different clinical characteristics between patients in two clusters

(Figure 1E). Finally, a substantial difference was observed between

two clusters in terms of overall survival (Figure 1F).
Analyses of clinical characteristics and
functional enrichment

To identify whether two clusters associated with the clinical

characteristics, we compared two clusters’ clinical characteristics

and found that survival status, grade, and stage varied between the

clusters (Figure 2A). Figure 2B presented the correlations between

all these cuproptosis-related genes. Then, to investigate enriched

functions associated with cuproptosis-related genes, the hallmark

gene set was used for enrichment analysis based on DEGs between

two clusters (Figure 2C). In addition, GO and KEGG analysis were

also conducted and the results showed the top 5 enriched terms

were pathway in cancer, focal adhesion, neurotrophin signaling

pathway, neuroactive ligand receptor interaction, and gap junction

(Figures 2D, E).
Alterations in the genome related
to clusters

Based on TMB analysis of 33 types of cancer, we found that the

mutations were relatively low in the ccRCC cohort (Figure 3A).
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Furthermore, the top 20 differential mutant genes were identified,

and it was found that all these genes were distributed into

cuproptosis 2 patients (Figure 3B), then Figure 3C showed the co-

occurrence and exclusive relationship between these differential

mutant genes. There were significant amplifications and deletions in

the ccRCC genome that patients in cuproptosis 2 cluster had

significantly higher scores of amplification and deletion mutations

than those in cuproptosis 1 cluster (Figures 3D, E).
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Analysis of immune infiltration and
prediction of therapeutic response

According to ESTIMATE analysis, patients in cuproptosis 1

cluster had lower immune and ESTIMATE scores than those in

cuproptosis 2 cluster (Figure 4A). Then, based on ssGSEA

algorithm, the immune score of each patient was quantified and

we found that most high- immunity patients were in cuproptosis 2
B

C D

E F

A

FIGURE 1

Data processing and clustering. (A) Five ccRCC cohorts available have noticeable batch differences; (B) reducing the batch difference and the
integration of these ccRCC cohorts; (C) consensus map of clustering; (D) PCA plot for the expression profles of cuproptosis-related genes to
distinguish cuproptosis subtypes; (E) the heat map based on the expression levels of cuproptosis-related genes between two clusters; (F) Kaplan–
Meier analysis showed significantly different overall survival time between two clusters.
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cluster (Figure 4B). For each cluster, the CIBERSORT and ssGSEA

algorithms were used to assess immune cell abundance and

immune function scores, from which we could see that patients

in cuproptosis 1 cluster had a high level of most immune cells, while

patients in cuproptosis 2 cluster had a higher level of most immune

functions and CD8+ T cell (Figures 4C, D). Next, we examined

immune checkpoint expression levels between two clusters, and we

found that cuproptosis 1 cluster patients were more highly

expressed (Figure 4E). For each sample, Figure 4F showed the

mRNAsi distribution and clinical characteristics including age,

gender, grade, stage, and cluster, and the lower mRNAsi and

EREG-mRNAsi were observed in the cuproptosis 2 cluster from

differential expression analysis (Figure 4G). According to TIDE

analysis, patients with lower TIDE scores are more likely to respond
Frontiers in Oncology 05
to immunotherapy (13). Only 30.1% of patients in cuproptosis 2

cluster responded to immunotherapy, compared to 42.4% of

patients in cuproptosis 1 cluster (Figures 5A, B). Microsatellite

instability (MSI) is a phenomenon of hypermutation that presents

at genomic microsatellites and is caused by the insertion or deletion

of a repeat unit (14). We found that cuproptosis 1 cluster patients

had a lower TIDE score and a higher MSI score than cuproptosis 2

cluster patients (Figures 5C, D), which was in harmony with

submap analysis indicating that anti–PD-1 treatments were more

effective in cuproptosis 1 patients (Figure 5E). Then we identified

the potential drugs for ccRCC patients using GDSC dataset, CTRP

and PRISM datasets, respectively (Figures 5F, G). Moreover, the top

9 drugs with significant differences in sensitivity AUC were shown

in Figure 5H.
B C

D E

A

FIGURE 2

Clinical relevance analysis and functional enrichment analysis. (A) Comparisons of different clinicopathological features between two clusters;
(B) results of correlation analyses between cuproptosis-related genes; (C) GSVA analysis based on commonly regulated hallmarks between two
clusters; (D, E) functional enrichment analyses including KEGG and GO analysis between two clusters.
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Construction of a gene signature based on
cuproptosis-related genes

The gene co-expression networks of the ccRCC patients were

developed through the WGCNA algorithm and the genes in the

turquoise module were identified with the most correlation with

cuproptosis (Figure 6A). Using univariate Cox regression analysis,

we further selected prognostic genes from the module and then used

the random forest algorithm to identify hub genes to establish the

prognostic signature (Figures 6B, C). Finally, the signature

consisting of six genes, namely, SLC16A12, LIMCH1, GIPC2,

FUCA1, CYFIP2, and ACADL, was constructed using

multivariate Cox regression analysis (Figure 6D). According to

the optimal cutoff value calculated through “maxstat” algorithm

for each sample, we classified patients into high- and low-risk

groups, and there was a significant difference in overall survival

time between two groups in both testing and validation cohorts

(Figures 6E, F). In addition, the receiver operating characteristic

(ROC) curves also showed promising results in both testing and
Frontiers in Oncology 06
validation cohorts (Figures 6G, H). Then, we found that the

expression of ACADL was increased in ccRCC tissues, while

SLC16A12, LIMCH1, GIPC2, FUCA1, and CYFIP2 were

decreased (Figure 6I). Figure 6J showed the results of K-M

analyses between these signature genes.
Characterization of the immune landscape
and immunotherapy response

Each patient’s riskScore and different clinical features were

displayed in Figure 7A. Furthermore, 18 immunotherapy-related

signatures from the known literature and hallmark gene signatures

were quantified to conduct correlation analysis with riskScore, from

which we found that riskScore had a negative association with most

immunotherapy-related signatures (Figure 7B). In addition, the

relationship between riskScore and immune infiltration signatures

was also explored (Figures 7C, D). In addition, a higher tumor

dryness including mRNAsi and EREG-mRNAsi and lower levels of
B C

D

E

A

FIGURE 3

The exploration of differential genomic difference between two clusters. (A) The levels of TMB among all tumors based on TCGA dataset; (B) cuproptosis
2 patients were more susceptible to develop mutations; (C) the relationship between the top 20 differential mutant genes; (D, E) cuproptosis 2 cluster
patients had significantly higher scores of amplification and deletion mutations. * is equal to P < 0.05; *** is equal to P < 0.001.
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amplification and deletion mutations at both focal and arm levels

were observed in low-risk group (Figures 7E, F). Considering the

immunotherapy holds great promise in the treatment of ccRCC, a

particular focus was placed on the potential role of riskScore in

predicting the response to immunotherapy. TIDE analysis was

performed on patients in TCGA cohort, and the result showed

that patients with low riskScore had a lower level of TIDE and

higher level of MSI score (Figures 8A, B). In addition, responders in

low-risk group made up 40.0%, while responders in high-risk group

made up 25.1% (Figure 8C), and the riskScore of responders were

significantly lower than those of non-responders (Figure 8D). To

strengthen the credibility of our findings, two independent cohorts

of patients receiving ICI therapy including IMvigor210 and

GSE78220 were selected to validate the predictive power of the

signature. Our findings revealed that most patients with the

outcome of CR or PR were in the low-risk group and exhibited a
Frontiers in Oncology 07
significantly lower level of riskScore (Figures 8E–H). Finally, ROC

analyses between these three cohorts also demonstrated satisfactory

accuracy, indicating that the riskScore was strongly associated with

the response to immunotherapy (Figures 8I–K).
Quantitative PCR analysis

Given that FUCA1, SLC16A12, CYFIP2, and LIMCH1 are lowly

expressed in ccRCC tissues and that low expression of the four

genes has a worse clinical prognosis, we further validated the

expression of FUCA1, SLC16A12, CYFIP2, and LIMCH1 mRNA

levels in 10 pairs of paired ccRCC and matched adjacent tissues.

qPCR results demonstrated that the expression of FUCA1,

SLC16A12, CYFIP2, and LIMCH1 was downregulated in ccRCC

tissues compared with adjacent normal tissues (Figure 9).
B

C D

E

F G

A

FIGURE 4

The landscape of immune infiltration and the comparison of mRNAsi score. (A) Cuproptosis 2 cluster patients had significantly higher scores of
immune and ESTIMATE scores; (B) most patients with high immunity were in cuproptosis 2 cluster based on ssGSEA algorithm; (C, D) CIBERSORT
and ssGSEA algorithms showed that cuproptosis 2 cluster patients had a high level of most immune cells abundance and immune function scores;
(E) the expression levels of most common immune checkpoints between two clusters; (F, G) the quantification of mRNAsi for each patient and
cuproptosis 1 cluster patients had a high level of mRNAsi. * is equal to P < 0.05; ** is equal to P < 0.01; *** is equal to P < 0.001.
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Discussion

As the malignant tumor with the highest mortality rate in the

urinary system, ccRCC has brought a heavy burden to the world

health system. Although surgical resection of the tumor offers

promising treatment prospects, disease progression still occurs in

approximately 30% of patients (15). It is urgent to find a new

mechanism for the occurrence and development of ccRCC.

RCD is a form of regulatory death that is different from

accidental cell death. The regulatory mechanisms of apoptosis,

entosis, necroptosis, pyroptosis, and ferroptosis have been found

in solid tumors (8). Meanwhile, a growing number of RCD-related

genes have been shown to be involved in the development of ccRCC

(16–19). Metal ions are important cofactors widely present in

biological sessions. Since the elucidation of the ferroptosis

regulatory program in 2012 (20), there have been numerous
Frontiers in Oncology 08
studies confirming that ferroptosis affects the malignant

progression of various cancers, including ccRCC (18, 19, 21).

Noteworthy, copper ion is an essential trace metal element in the

human body and plays a pivotal role in body composition,

biotransformation, and signaling chain (22). Recently, cuproptosis

has come to the attention of researchers, which has been identified

as a new type of cell death. Ten genes with FDX1 as the core gene

were identified to be intimately associated with the cuproptosis

process (9).

In this study, two cuproptosis clusters were identified for

subgrouping patients with ccRCC. GSVA analysis showed that

some pivotal pathways including HEME metabolism, PIK3/AKT/

mTor pathways, secreted protein, and G2M checkpoint were

activated in cuproptosis 2 cluster patients, partially explaining the

dismal prognosis. In addition, KEGG and GO analyses also showed

that functional enrichment pathways varied considerably across the
B C D

E F G

H

A

FIGURE 5

Predictive value in immunotherapy response and mining of appropriate agents. (A, B) The quantification of TIDE score for each patient and cuproptosis 1
cluster had more responders; (C, D) patients in cuproptosis 1 cluster had a lower TIDE score and a higher MSI score; (E) subclass mapping analysis
indicated patients in cuproptosis 1 could be more sensitive to the PD-1 inhibitor; (F, G) identification of the potential agents based on GDSC dataset,
CTRP and PRISM datasets; (H) the top 9 drugs with significant differences in sensitivity AUC. ** is equal to P < 0.01; *** is equal to P < 0.001.
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two clusters. More importantly, genome analyses indicated that

almost all differential mutated genes occurred in cuproptosis 2

cluster patients, and the level of mRNAsi was lower in cuproptosis

2 cluster patients. Then, we performed a highly comprehensive

immune analysis between two clusters patients, from which a high

expression level of most immune infiltration terms including CD8+ T

cells, B cells, macrophages, and TIL were found in cuproptosis 2

cluster patients. All these findings provide us evidence that

cuproptosis 2 cluster patients may have a better immunotherapy

response. Therefore, in order to interrogate and confirm the

therapeutic role of the expression level of cuproptosis, a variety of

methods to predict therapeutic response were conducted deeply. In

combination with TIDE analysis, patients with low TIDE scores who

are at cuproptosis 1 cluster are more promising in responding to ICB.

Other than this, to complete the validation of the immunotherapy

response prediction, subclass mapping analysis also indicated that

PD1 could be more effective in cuproptosis 1 cluster when treated. It

was still noteworthy that the discrepancy of sensitivity AUC values of

drugs in different datasets including GDSC, CTRP and PRISM
Frontiers in Oncology 09
datasets was also observed between the two cuproptosis clusters.

All these findings strongly showed that it would be possible to

differentiate between tumor immune microenvironment patterns

and to identify patients who might benefit from ICI treatment

using the established cuproptosis clusters.

Considering the multifaceted heterogeneities cuproptosis

subtypes displayed , our group considered that such

heterogeneities and the creation of individual, integrative

assessments could be quantified by creating a prognostic

signature. In line with expectations, a close correlation was also

observed between the constructed signature and clinicopathological

features, typical cancer hallmarks and genomic features. Among

these signature genes, SLC16A12 has been previously reported to

have excellent effectiveness and clinical application value in ccRCC

(23). There is an unfavorable association between LIMCH1 protein

expression and distant metastasis-free survival in breast cancer (24).

In addition, as well as being a component of exosomes, the GIPC2

paralog plays a key role in WNT signaling pathways associated with

tumor progression and was shown to be robustly stimulating the
B C D
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FIGURE 6

Development of the prognostic signature using WGCNA algorithm and Cox regression analysis. (A) The gene co-expression networks of patients
based on the WGCNA algorithm; (B) Volcano plot of the results of univariate cox regression analysis; (C) the 10 hub genes were identified using the
random forest algorithm; (D) the results of multivariate cox regression analysis; (E, F) Kaplan–Meier analysis showed significantly different OS
between two risk groups in both testing and validation cohorts; (G, H) ROC analysis showed good predictive power of the signature in both testing
and validation cohorts; (I) the comparison of the expression levels of the six signature genes between two risk groups; (J) the Kaplan–Meier survival
curves of the six signature genes. *** is equal to P < 0.001. ns, not significant.
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adhesion, invasion, and migration of prostate cancer (25). As a key

member of the cytoplasmic FMR1-interacting protein family,

CYFIP2 may be a novel prognostic gene that is related to

immune infiltration in ccRCC (26). Moreover, as ACADL

expression was restored in hepatocellular carcinoma cells, the

Hippo/YAP signaling pathway was suppressed, resulting in

growth suppression and cell cycle arrest (27). Taken together,

there is no doubt that these cuproptosis-related signature genes

are involved in the occurrence and the development of various

cancers. However, a more in-depth association between the

processes of cuproptosis and these genes and how these genes
Frontiers in Oncology 10
affect the occurrence and development of ccRCC need to be

explored in the future.

Until now, according to classical biomarkers, ccRCC patients

have been classified in so many ways. Even more, few cuproptosis-

associated gene signatures have been developed and offered some

help in the diagnosis, treatment, and prognosis of ccRCC patients

(28, 29). Compared with the previous classifications of ccRCC

patients, the advantage of our cuproptosis subtyping was its

ability to show multi-dimensional heterogeneity. Moreover, most

of all, differently from other approaches to distinguishing ccRCC

patients, our study was more comprehensive than the previous
B

C D

E

F

A

FIGURE 7

The difference of genomic feature and immune infiltration between two risk groups. (A) The distribution of riskScore of each patient with their
clinical features; (B) the correlations between riskScore and the scores of immunotherapy-related signatures and hallmark gene signatures; (C, D)
the landscape of immune infiltration in each patient and patients in high-risk group had a higher level of immune infiltration; (E, F) patients in low-
risk group had a higher tumor dryness and lower levels of amplification and deletion mutations. * is equal to P < 0.05; ** is equal to P < 0.01; *** is
equal to P < 0.001. ns, not significant.
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study, including clinicopathological features, commonly regulated

hallmarks, genomic characteristics, and immunotherapeutic

responses, especially. In spite of this, there are still a few

inadequacies in this study. First, although we integrated all

publicly available ccRCC patient data, more clinical data from
Frontiers in Oncology 11
different countries and regions are needed. Second, since there are

fewer immunotherapy cohorts available reported that Only

IMvigor210 and GSE78220 cohorts were able to assess our

signature’s predictive value for ICI therapy. Finally, additional

experiments are needed to validate our findings.
B C D

E F G H

A

I J K

FIGURE 8

Immunotherapeutic response prediction. (A, B) Patients with low riskScore had a lower level of TIDE and higher level of MSI score; (C) patients in
low- risk group have a higher percentage of responders; (D) the responders had a lower riskScore; (E, F) the proportion of patients with response to
immunotherapy in IMvigor210 and GSE78220 cohorts; (G, H) comparison of riskScore between two risk groups of different response to
immunotherapy in IMvigor210 and GSE78220 cohorts; (I–K) ROC curves indicated superior predictive accuracy of immunotherapeutic response in
TCGA, IMvigor210, and GSE78220 cohorts. * is equal to P < 0.05; *** is equal to P < 0.001.
FIGURE 9

Quantitative real-time PCR. FUCA1, SLC16A12, CYFIP2, and LIMCH1 mRNA level in 10 paired clinical ccRCC samples. * is equal to P < 0.05; ** is
equal to P < 0.01.
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Conclusion

To summarize, after a comprehensive integration of several

available ccRCC patient datasets, ccRCC patients were divided into

two cuproptosis clusters with distinct prognosis, clinicopathological

features, commonly regulated hallmarks, genomic characteristics,

and immunotherapeutic responses. In addition, a prognostic

signature was then successfully developed. It may make it easier

for ccRCC patients to predict their prognosis and find better

immunotherapy options based on our findings.
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