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Colorectal cancer (CRC) ranks third in terms of incidence among all kinds of

cancer. The main cause of death is metastasis. Recent studies have shown that

the gut microbiota could facilitate cancer metastasis by promoting cancer cells

proliferation, invasion, dissemination, and survival. Multiple mechanisms have

been implicated, such as RNA-mediated targeting effects, activation of tumor

signaling cascades, secretion of microbiota-derived functional substances,

regulation of mRNA methylation, facilitated immune evasion, increased

intravasation of cancer cells, and remodeling of tumor microenvironment

(TME). The understanding of CRC metastasis was further deepened by the

mechanisms mentioned above. In this review, the mechanisms by which the

gut microbiota participates in the process of CRC metastasis were reviewed as

followed based on recent studies.
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1 Introduction

Colorectal cancer (CRC) has the third highest incidence rate among all types of cancers

globally (1). The main cause of death of CRC patients is metastasis, which is also a clinical

challenge (2, 3). Metastasis is a multi-step and multi-factor process including the separation

of tumor cells from each other, invasion into surrounding tissues, adhesion to endothelial

cells, and migration from the primary site to secondary site. Several mechanisms have been

implicated, such as epithelial-mesenchymal transition (EMT) (4, 5), changes in expression

of intercellular adhesion molecules (6), loss of structural integrity of the basement

membrane (7), remodeling of the pre-metastatic niche (8), and induction of

angiogenesis (9). Nonetheless, it is worth noting that current understanding of CRC

couldn’t fully illuminate the role of systematic factors like exercise, diet and aging in

CRC metastasis.

Gut microbiota located within the intestinal tract comprises a large and diverse

community including bacteria, yeasts, fungi viruses and parasites, which are referred to

as the second gene pool of the human body (10). As one of the earliest encountered foreign

antigens in the human body, gut microbiota plays essential roles in various physiological

and pathological processes. Previously, the main roles attributed to gut microbiota were the

synthesis of essential amino acids and vitamins, the digestion of polysaccharides that are
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difficult to assimilate, and contribution to human metabolic

processes (11). Additionally, gut microbiota provides essential

signals for the development and functioning of immune system

(12). In recent years, numerous studies have suggested that the gut

microbiota also participates in oncogenesis and progression of

cancer, particularly in the process of metastasis (13–15). On the

one hand, the gut microbiota secretes various metabolites or

virulence factors that damage host DNA (16) and contributes to a

pro-inflammatory environment (17), leading to pre-cancerous

lesions. On the other hand, the gut microbiota directly interacts

with cancer cells, thereby increasing invasion and proliferation of

cancer cells (18). Furthermore, several studies have indicated that

the gut microbiota may facilitate metastasis by affecting the

recruitment of immune cells and remodeling the tumor

microenvironment (TME) (19–23). The mechanisms by which

the gut microbiota participates in the process of CRC metastasis

were reviewed as followed based on recent studies.
2 Gut microbiota promotes the
proliferation and invasion of CRC cells

2.1 Gut microbiota promotes the
proliferation of CRC cells

The progression of CRC involves multiple signaling pathways

(24, 25). The disruption of cell cycle and the acquisition of

unlimited proliferative capacity are key steps in cancer

progression. Researches have indicated that Fusobacterium, a

specific type of bacteria, has a significantly higher relative

abundance in CRC tissue compared to normal one (26–28). The

quantity of Fusobacterium also exhibits statistical differences

between different stages of cancer progression. Furthermore,

during the transition from adenoma to malignant tumor, the

abundance of Fusobacterium gradually increases (29). Recent

studies have demonstrated that the gut microbiota may promote

cancer cell proliferation through mechanisms as follows.

2.1.1 Modulating RNA-mediated targeting effects
RNA-mediated targeting effects are important mechanisms of

epigenetic regulation (30), including the synthesis of various non-

coding RNAs and their impact on downstream genes (31, 32).

MicroRNAs (miRNAs) are one of the key players in this process,

regulating various biological processes such as tumorigenesis. Recent

studies have indicated that the gut microbiota is involved in RNA-

mediated targeting effects that regulate cancer cell proliferation.

Fusobacterium not only facilitated the proliferation and

invasiveness of co-cultured CRC cell lines but also promoted

tumor formation in APCMin/+ mice. Fusobacterium activated the

TLR4/MYD88 receptors on the surface of cancer cells, leading to

the activation of NFkB. NFkB then binds to the upstream region of

the transcription start site (TSS) of miR21, upregulating its

expression. MiR21, in turn, bound to the 3’ end binding site of

RASA1, inhibiting its expression (33). RASA1 is a member of the

RAS GTPase-activating protein (RAS-GAP) family, and its binding
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to the well-known oncogenic protein RAS can inhibit RAS activity

(34). Some studies have suggested that mutations or loss of function

in RASA1 in CRC leads to activation of the RAS-MAPK cascade

(35–37). The MAPK pathway is reported to induce the synthesis of

cycling D1, promoting cell division (38). The MAPK pathway has

also been shown to participate in the proliferation of cancer cells in

multiple studies (39, 40).

Peptostreptococcus micros (P. micros) is an opportunistic

pathogen found in the oral cavity that is closely associated with

periodontitis (41). It can also cause suppurative infections in

various organs throughout the body (41). Chang et al. found that

P. micros could significantly foster the proliferation of LoVo and

HT-29 cell lines in vitro (42). To unveil the underlying mechanism,

they constructed xenograft models. It came out that tumors derived

from cancer cells co-cultured with P. micros had larger volume and

weight (42). Further investigations revealed that P. micros

suppressed the expression of protein tyrosine phosphatase

receptor R (PTPRR) by upregulating miR-218-5p, ultimately

activating the Ras/ERK/cFos signaling pathway (42). The Ras/

ERK signaling pathway is part of MAPK pathway and also

participates in the proliferation of CRC cells (43).

Significantly associated with inflammatory bowel disease (IBD)

and CRC, Enterotoxigenic Bacteroides fragilis (ETBF) is a molecular

subtype of Bacteroides fragilis (44, 45). ETBF could downregulate the

expression of miR-149-3p in cancer cell lines and influences the

selective splicing of the KAT2A gene through PHF5A. Ultimately,

KAT2A directly binds to the promoter region of SOD2, activating the

SOD2 gene (46). SOD2 has been shown to modulate energy

metabolism and promote proliferation of CRC (47).

2.1.2 Activating the cascades of cancer signaling
The Wnt/b-catenin signaling pathway plays a crucial role in

physiological processes such as cell proliferation and differentiation,

stem cell renewal, embryonic development, and tissue homeostasis

(48). Dysregulation of this pathway is widely considered a key

oncogenic signal and is of significant importance in the

development of different kinds of cancers (49). Certain bacteria,

such as Fusobacterium nucleatum (F. nucleatum), could facilitate

cancer cell proliferation through the Wnt/b-catenin pathway (18,

50). For example, F. nucleatum produces a virulence factor called

FadA (51), which binds to the E-cadherin domain EC5 on

the surface of CRC cells. This interaction leads to the

dephosphorylation of b-catenin, accumulation of b-catenin in

the cytoplasm, and translocation of b-catenin to the cell nucleus.

Subsequently, the expression of transcription factors lymphoid

enhancer-binding factor (LEF)/T-cell factor (TCF), NFkB, and
oncogenes such as Myc and Cyclin D1 is upregulated, promoting

CRC cell proliferation (18). Additionally, FadA could promote the

expression of chk2 through the E-cadherin/b-catenin pathway,

leading to increased DNA damage and elevated proliferative

capacity in CRC cells (50). Furthermore, some studies have

reported that probiotics have the ability to inhibit cancer cell

proliferation and promote apoptosis (52–55). qPCR and western

blot results have shown that during this process, the gene expression

and protein content of b-catenin in CRC decrease, suggesting that
frontiersin.org

https://doi.org/10.3389/fonc.2023.1270991
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2023.1270991
probiotics may inhibit CRC cell proliferation by regulating b-
catenin-related pathways (52). Nonetheless, the underlying

mechanisms of these effects are still need to be explored.

ThePI3K-Akt pathway iswidely activated in various tumors and is

closely associated with tumor development (56–59). Gram-positive

anaerobic bacteria, such as Peptostreptococcus anaerobius (P.

anaerobius), present in the oral cavity and intestines (60), could bind

to integrina2b1 on the surface of CRCcells through its surface protein

called putative cell wall binding repeat 2 (PCWBR2). This interaction

activates the PI3K-Akt signaling pathway through Focal Adhesion

Kinase 9 (FAK9), ultimately promoting cancer cell proliferation (61).

The MAPK-ERK pathway, a cell proliferation signaling

pathway located on the cell surface and extended to the nucleus,

plays a crucial role in cell proliferation (62). Activation of the

MAPK-ERK pathway is increasingly implicated in the occurrence

and progression of CRC (63). The oral pathogenic bacterium

Porphyromonas gingivalis (P. gingivalis), once colonizing the

colon, can selectively invade CRC cells and activate the MAPK-

ERK pathway, thereby promoting tumor proliferation (64).

Not only individual bacterial species but also the overall balance

of the gut microbiota is crucial in regulating cancer proliferation.

Bai et al. have found that smoking induced gut microbiota dysbiosis

altered gut metabolites and impaired gut barrier function,

ultimately activating the oncogenic MAPK-ERK signaling and

enhancing cancer cell proliferation (65). Portulaca oleracea, a

medicinal plant and a member of the Portulacaceae family, is

well-known for its resistance against microbiota, inflammation,

and cancer (66). Portulaca oleracea extract (POE) has been found

to reduce tumor quantity and improve survival rate in carcinogen-

induced mouse models through restoring the balance of gut

microbiota. Further results have shown that POE upregulates the

expression of TP53, inhibits the Wnt/b-catenin signaling pathway

and reduces the expression of c-Myc and Cyclin D1, ultimately

suppressing cancer cell proliferation (67).
2.2 The gut microbiota promotes the
invasiveness of cancer cells

In addition to unlimited proliferative capacity, invasive growth

into surrounding tissues is another characteristic ofmalignant tumors.

Breaking through the basement membrane is the first step for distant

metastasis (68). It has been shown that a positive correlation between

the gut microbiota and tumor progression stages exists (29). Since one

of the defining criteria for tumor progression stages is the depth of

tumor infiltration (69), the gutmicrobiota has the potential to regulate

the invasive properties of cancer cells.
2.2.1 Secreting microbiota-derived
functional substances

The metabolic products derived from microorganisms, such as

l-2-hydroxyglutarate, succinate, fumarate, d-2-hydroxyglutarate,

and lactate, can accumulate in tumor lesions and exacerbate the

malignancy of the tumor (70). Furthermore, some metabolites

could hijack signaling pathways related to tumor metastasis
Frontiers in Oncology 03
through gene regulation (71). Formate, a major metabolic product

of F. nucleatum, can activate the AhR signaling pathway in CRC,

enhancing its cancer stem cell properties and increasing the

invasiveness of CRC, ultimately promoting cancer metastasis (72).

EMT is a cellular biological process (73, 74) that endows cancer

cells with invasive and anti-apoptotic capabilities (75, 76). EMT

triggers the process of dissemination and invasion, ultimately leading

the formation ofmetastases (77, 78). Certain strains of Escherichia coli

can produce a virulence protein called cytotoxic necrotizing factor 1

(CNF1) (79). CNF1 induces the recruitment of mTOR to lysosomes,

consequently increasing invasiveness of CRC cell lines and inducing

the expression of EMT markers (80). These findings suggest that gut

microbiota has the potential to induce EMT in cancer cells.

Hydrogen sulfide (H2S) has been identified as the third

gasotransmitter after nitric oxide (NO) and carbon monoxide (CO)

and participates in a variety of biological processes (81). There are two

sources of luminal H2S: the inorganic and organic metabolism of

intestinal bacteria (82) and endogenously synthesized in the mammal

cells (83). Endogenous H2S fosters metastasis, partly through

induction of ATP citrate lyase (ACLY) to facilitate EMT (84, 85).

Since the luminalH2Smainly originate from bacterial metabolism and

directly contact with intestinal epithelial cells (86), the intestinal flora

has the potential to facilitate CRC metastasis through modulating

endogenous H2S synthesis and related pathways.

2.2.2 Regulating mRNA methylation
The presence of the microbiota has been shown to induce

epigenetic changes in mouse tissues at transcriptional level

(87, 88). N6-methyladenosine (m6A), one of the epigenetic

modification mechanisms of mRNA, could influence various

fundamental biological processes (89). METTL3, the main m6A

methyltransferase, is involved in the progression of several types of

cancers, including acute myeloid leukemia (90), hepatocellular

carcinoma (91), and lung cancer (92). In CRC, F. nucleatum has

been shown to inhibit the Hippo pathway and activate the YAP

signaling, leading to the suppression of METTL3 expression through

the transcription factor FOXD3. The inhibition of METTL3 resulted

in decreased m6A methylation of KIF26B mRNA, a gene associated

with cell-cell adhesion and important for cancer cell invasion.

Consequently, the expression of KIF26B were promoted, leading to

enhanced tumor cell invasiveness. Therefore, F. nucleatum could

induce epigenetic modifications in the KIF26B gene at transcriptional

level through the YAP/FOXD3/METTL3 axis, ultimately facilitating

the invasiveness of cancer cells (93).

In conclusion, gut microbiota is capable of promoting

proliferation and invasiveness of CRC cells via multiple

mechanisms (see Figure 1 for details).
3 Gut microbiome promotes
dissemination and survival
of cancer cells

Most kinds of cancers rely on blood vessels, lymphatic vessels,

and other channels for metastasis. Survival pressure like anoikis,
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shear forces, and immune attacks are exerted on cancer cells once

they enter the circulatory system (68). Therefore, dissemination and

survival are crucial prerequisites for cancer cells to complete

metastasis. In recent years, studies have found that gut microbiota

not only promotes cancer cell proliferation and increases their

invasiveness but also facilitates cancer cell dissemination and

survival (94–96). The mechanisms behind this include regulating

intravasation of cancer cells to facilitate dissemination, participating

in immune evasion to promote cancer cell survival, and modulating

the tumor microenvironment to facilitate the formation of

metastatic lesions.
3.1 Regulating intravasation to foster the
dissemination of CRC cells

Structural and functional disruptions of vascular basement

membrane (97), as well as tumor cell reprogramming (98), are

two important processes involved in hematogenous metastasis of

tumors. The former provides a physical basis for cancer cells to

breach blood vessels and enter the bloodstream, while the latter

enhances the intravasation and migration capabilities of

tumor cells.

Under a high-fat diet, elevated levels of deoxycholic acid (DCA)

in the host gut was detected, which enhanced vasculogenic mimicry

in tumor tissues (99) —— the formation of structures that lack
Frontiers in Oncology 04
endothelial cells but possess normal vascular functions (100). This

study suggests that the gut microbiota’s regulation of host

metabolism may contribute to vasculogenic mimicry and promote

tumor metastasis. However, the direct association between bile salt-

hydrolyzing bacteria and intestinal DCA levels requires further

investigation. Therefore, the mechanisms by which the gut

microbiota regulates tumor vasculogenic mimicry through DCA

still need to be further validated.

The adhesion of circulating tumor cells to endothelial cells and

extravasation into pre-metastatic sites is an important process in

tumor metastasis (101). Intercellular adhesion molecule 1 (ICAM1),

a member of the immunoglobulin superfamily, has been shown to

promote tumor cell adhesion to endothelial cells and facilitate

metastasis (102). Its expression levels also positively correlate with

tumor progression and metastasis in clinical settings (103). F.

nucleatum could activate the NF-kB pathway by acting on the

pattern recognition receptor ALPK1 on cells, thereby upregulating

ICAM1 expression and promoting CRC cell adhesion to endothelial

cells (96), ultimately facilitating metastasis of CRC.
3.2 Participating in immune evasion to
promote the survival of CRC cells

Immune surveillance imposes strong selective pressure on

cancer cells (104). The gut microbiota can directly or indirectly
A B

FIGURE 1

The impact of gut microbiota on proliferation and invasion of colorectal cancer (CRC) cells. (A) Gut microbiota may influence cancer cell proliferation
through various pathways, such as modulating RNA-mediated targeting effects (33, 42, 46) and activating the cascades of cancer signaling (18, 50, 60,
64). (B) Gut microbiota may influence cancer cell invasiveness through various pathways, such as secreting microbiota-derived functional substances
(70, 79), and regulating mRNA methylation (93). PCWBR2, putative cell wall binding repeat 2. CNF1, cytotoxic necrotizing factor 1.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1270991
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2023.1270991
inhibit the function of immune cells, thus mediating immune

evasion of tumor cells (61, 105–107).

The TIGIT (T cell immunoglobulin and ITIM domain) receptor

is expressed on all NK cells and some other types of lymphocytes

(108). F. nucleatum can directly interact with the TIGIT receptor

through its surface virulence protein Fap2, thereby inhibiting the

cytotoxicity of NK cells against cancer cells and ultimately inducing

immune evasion of tumor cells (105). In addition to affecting the

host’s innate immunity, the gut microbiota also regulates host

adaptive immunity. Research by Jiang et al. has shown that

succinate produced by F. nucleatum could inhibit the cGAS-IFNb
pathway, leading to reduced levels of chemokines CCL5 and

CXCL10 in the tumor, thereby limiting the migration of CD8+ T

cells to TME and suppressing the anti-tumor response of CD8+ T

cells (109).

Myeloid-derived suppressor cells (MDSCs) from the bone

marrow exert immunosuppressive effects through the depletion of

amino acids and the expression of TGFb and PD-L1 (110). Certain

specific pathogens such as F. nucleatum and P. anaerobius can

induce tumor-derived chemokine CXCL1 to recruit the MDSCs,

thereby suppressing anti-tumor immunity (61, 107). The gut

microbiota can also activate the TLR-calcineurin-NFAT-IL-6

signaling cascade on MDSCs, leading to the STAT3-dependent

induction of the inhibitory protein B7H3/4, resulting in functional

inhibition of cytotoxic T cells and ultimately promoting tumor

immune evasion (111).

It’s worth noting that the effects imposed on the anti-tumor

immunity by gut microbiota is a double-edged sword. A consortium

of 11 bacterial strains was found to induce a strong CD8+ T cell

response that boosted the efficacy of immune checkpoint blockade

in mice (112). Other species such as Enterococus hirae could

facilitate anti-tumor immunity in mice by enhancing CD8+ T cell

anti-tumor responses when used in combination with

cyclophosphamide chemotherapy (113). Bachem et al. discovered

that butyrate, a microbiota-derived short-chain fatty acid (SCFA),

enhances CD8+ T cell metabolism and promotes their

differentiation into memory T cells (114). Similarly, microbiome-

derived inosine could facilitate the differentiation of TH1 cells in an

adenosine 2A receptor-dependent manner and consequently

improve the antitumor effect induced by the ICB therapy (115).

Since the adenosine 2A receptor has been demonstrated to inhibit

TH1 differentiation in vitro as well as antitumor immunity in vivo

(116–119) and only a few has reported that adenosine 2A receptor

signaling can sustain TH1 and antitumor immunity (120, 121), the

crosstalk between microbiota-derived metabolites, adenosine 2A

receptor signaling and host immunity needs to be further

investigated. In terms of clinical practice, a phase I clinical trial

enrolling 20 patients have shown that fecal microbiota

transportation (FMT) in combination with anti PD-1therapy

could lead to a promoted immune status in patients with

melanoma (122). These researches indicate that the correlation

between gut microbiota and host immunity could be far more

complicated and worth further investigation.

Besides regulating the anti-tumor immunity, the gut

microbiota plays an important role in the development and
Frontiers in Oncology 05
maturation of the host immune function. Germ-free mice are

unable to develop mature isolated lymphoid follicles (123).

Additionally, the gut microbiota can regulate the function of

different types of immune cells such as Treg cells, DC cells, and

T cells, thereby establishing a normal intestinal immune

homeostasis during early host development by balancing local

pro-inflammatory and anti-inflammatory responses (124–126).

Similarly, changes in the functional status of the immune system

can change the composition of the gut microbiota. Activation of

the AhR pathway in Th17/Th22 cells can induce the production of

IL-22 and IL-17, which in turn can stimulate intestinal epithelial

cells to secrete antimicrobial peptides, ultimately limiting the

proliferation of pathogenic microbial communities (125).

Individuals with immune deficiencies are more prone to

dysbiosis of the gut microbiota, leading to various chronic

inflammations (127).

These facts indicate that the gut microbiota-immunity axis is a

complex bidirectional process. During the occurrence and

development of tumors, changes in the gut microbiota are

accompanied by immune dysregulation. The aforementioned

studies have revealed various mechanisms by which the gut

microbiota participates in immune evasion, providing a new

perspective for a deeper understanding of the correlation between

gut microbiota and the host immunity.
3.3 Modulating TME to facilitate
colonization of CRC cells

TME consists of various cell components (128, 129), and its

complexity has made it a tendency to view the TME as an organ

itself (128). In certain situations, these components can produce

bioactive factors and release them into the TME, thereby

promoting tumor angiogenesis, invasion, and metastasis (130–

133). Recent studies have found that there could be multiple kinds

of bacteria with regulation effect in the TME besides the cell

component. For instance, Xu and colleagues found that F.

nucleatum could facilitate tumor metastasis in a CCL20-

dependent manner (94). Although the only known receptor for

CCL20—CCR6 is mainly expressed in immature dendritic cells,

innate lymphoid cells, regulatory CD4 T cells, Th17 cells and B

cells (134), a positive correlation between F. nucleatum-induced

CCL20 expression and F4/80+ CCR6+ macrophage in lung

metastasis tissues was observed (94). And they also found that

F. nucleatum could directly promote the polarization of M2

macrophages in tumor tissues (94). Current researches have

shown that M2 macrophages play important roles in immune

suppression, tumor angiogenesis, and EMT (135–137). There are

also studies showing that several bacteria such as segmented

filamentous bacterium (SFB; Candidatus Savagella), ETBF,

Bifidobacterium spp., F. nucleatum could modify the

polarization of CD4+T cells into TH17 cells (138–141). TH17

cells has been indicated to foster an inflamed and tolerogenic

TME (142, 143), providing a potential mechanism by which gut

microbiota facilitates the future process of metastasis.
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Not only is the microenvironment of the primary tumor

important for tumor metastasis, but also the remodeling of the

microenvironment in the metastatic foci plays a crucial role in the

process of tumor metastasis. According to the “seed and soil”

hypothesis, certain tumor cells can selectively settle in organs

with sui table growth environments (144) . S ince the

microenvironments of different organs vary, a particular type of

tumor cells tends to preferentially colonize a specific organ (145).

This preference may originate from the selective remodeling of the

target organ by the primary tumor before metastasis occurs (146).

Proteus mirabilis (P. mirabilis) and Bacteroides vulgatus (B.

vulgatus) can modulate the hepatic immune niche by regulating

the proliferation of Kupffer cells and inhibiting their phagocytic

ability, ultimately fostering liver metastasis of CRC (19).

In conclusion, gut microbiota can facilitate the dissemination

and survival of CRC cells via different ways(see Figure 2 for details).
4 Conclusion

Studies on the correlation between gut microbiota and CRC can

be traced back to 1951. Subsequent advancements in techniques

such as 16S rRNA sequencing and metagenomic sequencing have

made it possible to identify gut microbiota that are significantly
Frontiers in Oncology 06
associated with CRC. Multiple mechanisms have been proposed

regarding how the gut microbiota regulates anti-tumor effects and

participates in pathological processes especially metastasis of CRC

in the following years (see Table 1 for details). Consequently, CRC is

a suitable model disease to investigate novel strategies for early

cancer detection. Stool-based screening such as 16s rRNA

sequencing is considered as a promising, non-invasive approach

compared with colonoscopies (155). For bacteria widely

participated in the initiation and progression of CRC, high-

specific therapy strategies such as targeted antibiotic (156) and

bioinorganic hybrid bacteriophage (157) has presented an attractive

prospect for prevention and curation.

Recent studies have implicated that oncogenesis and

progression of cancers could be consequences of the dysregulated

immunologic function. Mechanisms like immune checkpoint shed

a light on the complicated networks between cancer and immunity.

Still, such theories cannot fully illuminate the role of systematic

factors, such as exercise, diet and aging, in crosstalk between cancer

and immunity. As one of the earliest encountered environmental

antigens in the human body, gut microbiota could facilitate cancer

metastasis and modulate immune response through mechanisms

mentioned afore, which may explain the role of systematic factors in

cancer and immunologic function. Nonetheless, more efforts should

be dedicated to further unveil the mechanisms by which systematic
A B C

FIGURE 2

The impact of gut microbiota on the dissemination and survival of colorectal cancer (CRC) cell. (A) Gut microbiota could regulate the process of
intravasation through various mechanisms, such as increasing the expression of intercellular adhesion molecule 1 (96) and promoting the formation
of vasculogenic mimicry (99). (B) Gut microbiota could regulate survival of cancer cells by modulating tumor immune evasion through various
pathways. For example, gut microbiota can inhibit the cytotoxic activity of natural killer (NK) cells through receptor-ligand interactions (105), reduce
the recruitment of cytotoxic T cells (109), increase the recruitment of myeloid-derived suppressor cells (MDSCs) (61, 107), and foster the suppressive
effects of MDSCs on cytotoxic T cells (111). (C) Gut microbiota may remodel the tumor microenvironment (TME) to facilitate the process of
dissemination and colonization. For instance, it could recruit M2 tumor associated macrophages (M2 TAMs) to the primary site (94) and inhibit the
function of Kupffer cells in the secondary site (19). DCA, deoxycholic acid. ICAM1, intercellular adhesion molecule 1. MDSCs, myeloid-derived
suppressor cells. TAMs, tumor associated macrophages.
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factors such as gut microbiota regulate the process of cancer

oncogenesis and progression.
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