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Introduction: The overdiagnosing of papillary thyroid carcinoma (PTC) in China

necessitates the development of an evidence-based diagnosis and prognosis

strategy in line with precision medicine. A landscape of PTC in Chinese cohorts is

needed to provide comprehensiveness.

Methods: 6 paired PTC samples were employed for whole-exome sequencing,

RNA sequencing, and data-dependent acquisition mass spectrum analysis.

Weighted gene co-expression network analysis and protein-protein

interactions networks were used to screen for hub genes. Moreover, we

verified the hub genes' diagnostic and prognostic potential using online

databases. Logistic regression was employed to construct a diagnostic model,

and we evaluated its efficacy and specificity based on TCGA-THCA and GEO

datasets.

Results: The basic multiomics landscape of PTC among local patients were

drawn. The similarities and differences were compared between the Chinese

cohort and TCGA-THCA cohorts, including the identification of PNPLA5 as a

driver gene in addition to BRAF mutation. Besides, we found 572 differentially

expressed genes and 79 differentially expressed proteins. Through integrative

analysis, we identified 17 hub genes for prognosis and diagnosis of PTC. Four of

these genes, ABR, AHNAK2, GPX1, and TPO, were used to construct a diagnostic

model with high accuracy, explicitly targeting PTC (AUC=0.969/0.959 in

training/test sets).
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Discussion: Multiomics analysis of the Chinese cohort demonstrated significant

distinctions compared to TCGA-THCA cohorts, highlighting the unique genetic

characteristics of Chinese individuals with PTC. The novel biomarkers, holding

potential for diagnosis and prognosis of PTC, were identified. Furthermore, these

biomarkers provide a valuable tool for precise medicine, especially for

immunotherapeutic or nanomedicine based cancer therapy.
KEYWORDS

papillary thyroid carcinoma, landscape, multiomics, biomarkers, prediction,
diagnosis, prognosis
1 Introduction

Thyroid cancer (TC) is a prevalent malignancy within the

endocrine system, with its subtypes classified based on

histopathological patterns and derived cells (1). Amongst these

subtypes, papillary thyroid carcinoma (PTC) is the most commonly

diagnosed, particularly in China (37.7% estimated number of new

cases in 2020, from http://gco.iarc.fr/), where it accounts for

approximately 95.1% of all thyroid cancers (2, 3). Despite

favorable postoperative outcomes, about 25% of PTC patients

experienced a relapse during long-term follow-up, according to a

retrospective study (4). Moreover, abuse of thyroid ultrasound and

extensive examinations has led to overdiagnosing of PTC,

underscoring the need for more evidence-based biomarkers for

precise diagnosis and comprehensive prognostic prediction (5).

Traditionally, mutations in MAPK-related genes, including

BRAF and RAS mutations, indicate the potential for

dedifferentiation, aggressiveness, and angiogenesis of PTC (6, 7).

Advance in high-resolution sequencing provides greater insights into

the molecular profiles of PTC beyond BRAF mutations. In 2014, a

comprehensive analysis, with 496 samples, of the genomic landscape

of PTC was conducted, revealing a range of novel genetic alterations

and oncogenic processes (8). Subsequently, various somatic and

germline variations, including CHEK2, NF1, ANK3, PMS2, and

even mtDNA point mutations, were predicted to drive disease-

specific tumor development under different clinicopathological

features using whole-exome sequencing (WES) (9–13).

RNA sequencing (RNA-seq) was employed to subclassify highly

heterogeneous BRAF-mutated PTC, based on similar

transcriptomic features, into clusters that were respectively

associated with specific pathological patterns (14). Additionally,

single-cell RNA sequencing (scRNA-seq) was used to explore the

landscape of the PTC tumor environment (15). In 2022, Guo et al.

used 1724 FFPE (Formalin Fixed Paraffin Embedded) samples for

diagnostic of thyroid cancer by integrating high-throughput

proteomics with protein biomarkers (16).The combination of

omics data has enabled promising genotype-phenotype crosstalks.

Despite the potential of multiomics approaches for screening

PTC metastasis and stratification, current biomarkers for

recurrence and precise diagnosis remain scanty. This study
02
applied WES, RNA-seq, and data-dependent acquisition (DDA)

to screen for corresponding molecular targets in PTC. 17 genes were

identified as biomarkers for predicting the prognosis and

diagnosing PTC. Among these genes, ABR, AHNAK2, GPX1, and

TPO were specifically utilized to construct a diagnostic prediction

model. This model demonstrated distinct specificity and efficacy,

enabling the accurate differentiation between tumor and non-tumor

samples which was expected to be a valuable tool for diagnosing of

PTC. In conclusion, in order to identify novel biomarkers for

prognosis and diagnosis in local patients, we preliminarily

investigated the molecular properties of PTC through 6 matched

samples from Chinese patients.
2 Materials and methods

The detailed materials and methods are attached in

Supplementary Material.
3 Results

3.1 The landscape of somatic alterations
of papillary thyroid carcinoma among
local patients

Germline alterations were filtered out from the tumor samples

using the Genome Analysis Toolkit (GATK), focusing on retaining

somatic alterations. WES revealed that our local patients’ dominant

variant classification, variant type, and single nucleotide variant

(SNV) class were consistent with the profiles observed in the

TCGA-THCA (Thyroid Carcinoma, THCA)cohorts (Figure S2).

However, there were notable differences in the top mutated genes.

While canonical BRAFmutations were observed in over 60% of our

patients, other top mutated genes in our cases included OR51M1,

MAGEB16, EBLN2, ZNF714, SGIP1, PCSK9, NPAP1, KRTAP5-7,

and A1BG (Figures 1A, S2A), instead of NRAS and HRAS observed

in TCGA-THCA (Figure S2B). The frequency of different types of

mutations was analyzed, revealing a higher frequency of transitions

compared to transversions (Figure 1B).
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Furthermore, genomic data indicated a higher tumor

mutation burden (TMB) in our local patients compared to the

TCGA-THCA dataset (Figure 1C). Subsequently, we examined

the driver mutations in our local patients. BRAF (Z-score=5.546,

p<0.001) and PNPLA5 (Z-score=5.546, p<0.001), a gene closely

associated with lipid metabolism (17), were the only two genes

implicated in tumor pathogenesis (Table 1). Regarding pathways

related to tumor activities, only the RTK-RAS pathway was

significantly affected due to BRAF mutations (Figure 1D).

However, it is essential to note that our sequencing technique

focused on the exonic regions and may have provided limited

insights into gene fusions and chromosomal aberrations occurring

in intronic or other non-exonic regions. Further investigation

using complementary techniques, such as whole genome

sequencing or Long-read-sequencing analysis, may be necessary

to better understand these genomic alterations in PTC.
Frontiers in Oncology 03
3.2 Gene expression landscape of
normal thyroid tissue and papillary
thyroid carcinoma

A total of 25,978 non-low expression genes’ transcriptomic

profile was analyzed using an R script after filtering out genes with

transcript per million mapped (RPKM) values less than 3. Principal

component analysis (PCA), using the FactoMineR R package,

revealed a clear distinction in gene expression between normal

and tumor samples (Figure 2A). Except for one paired sample (EA-

002), the normal samples exhibited a convergence compared to the

tumor samples, while tumor samples showed relative heterogeneity.

The log2 fold changes and corresponding false discovery rates

(FDR) to identify differentially expressed genes (DEGs),

employing criteria of |log2 (fold change) | > 2 between normal

and tumor samples and FDR < 0.001. 572 unique genes were
A B

DC

FIGURE 1

The results of WES in local patients. (A). The genomic profiles of local patients by waterfall plot. Top: mutation counts of the top 10 mutated genes
in each patient. Media: the top 10 mutated genes and their occurrence in 5 patients. Bottom: the tumor size of each patients, mutation types, and
the mutation types frequencies are demonstrated by a bar plot in the right panel. (B) The frequency of types of somatic mutations, missense
mutation, SNP, and C > T were the main SNV types. (C) Tumor mutation burden of local patients and TCGA-THCA cohorts. (D) Pathway associated
with driver genes in somatic mutations, the RTK-RAS pathway was affected in 4 of six samples.
TABLE 1 Characteristics of driver genes of the somatic mutations in local patients*.

Hugo Symbol Mutated Samples Z-score Pvalue FDR Fract_muts

BRAF 4 5.546 <0.001 <0.001 1

PNPLA5 1 5.546 <0.001 <0.001 1
*: Cancer driver genes were identified through R package maftools by oncodriveCLUST algorithm, the concept of which is based on the fact that most of the variants in cancer causing genes have
a tendency to be enriched at hotspot loci (18, 19).
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identified, using the edgeR R package, as DEGs, consisting of 353

upregulated genes and 219 downregulated genes, as illustrated in

the volcano plot (Figure 2B).

To validate the ability of the identified DEGs to accurately

reflect the gene expression differences between normal tissue and

tumors, we selected samples from the TCGA-THCA dataset.

Specifically, based on their clinical information, we included 59

normal samples, 339 papillary adenocarcinoma-NOS (not

otherwise specified), 101 papillary carcinoma-follicular variant,

and 35 papillary carcinoma-columnar cell samples (Figure 2C).

The heatmap demonstrated that the DEGs we identified

successfully distinguished normal samples from most tumor

samples (Figure 2C). However, it is noteworthy that the

transcriptomic profiles of normal samples and follicular variants

of papillary thyroid carcinoma (FVPTC) appeared similar in the
Frontiers in Oncology 04
heatmap. This observation may be attributed to the low risk of

adverse outcomes associated with FVPTC (20).

We performed Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses to explore the

potential mechanisms underlying PTC (Figures 2D, E). The GO

analysis identified the top eight significant pathways in biological

processes, cellular components, and molecular functions. Notably,

these pathways were predominantly related to the extracellular

matrix (ECM), including extracellular matrix organization,

collagen-containing extracellular matrix, and extracellular matrix

structural constituent (Figure 2D). Previous studies have

highlighted the dysregulation of ECM in PTC, which is closely

associated with tumor activities such as migration and invasion

(21). In addition, the KEGG analysis revealed seven significant

pathways, including protein digestion and absorption, cell adhesion
A

B D E

F G

C

FIGURE 2

Transcriptomic analysis based on RNA-seq between normal samples and PTC. (A) PCA plot of normal samples (red) and PTC (blue). (B) Volcano plot
exhibits 572 DEGs (353 upregulated and 219 downreglated) with red plots. (C) Heatmap of DEGs based on TCGA-THCA cohorts. The pathway
enrichment analysis were achieved through (D) GO analysis and (E) KEGG analysis. (F) The gene-concept networks visualized the results of GO
analysis, and of (G) KEGG analysis.
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molecules, ECM-receptor interaction, malaria, AGE-RAGE

signaling pathway in diabetic complications, focal adhesion, and

axon guidance. Of particular interest is the interaction between

ECM and cell adhesion (Figure 2E), the latter of which has been

reported in several studies to play a crucial role in tumor growth

and invasion (22, 23). Furthermore, it is intriguing that the GO and

KEGG analyses unveiled some neuronal system-related pathways,

potentially indicating the presence of neuronal cell-adhesion

molecules in PTC, such as NrCAM (24). The gene-concept

network helps illustrate how specific genes are linked to various

pathways and concepts (Figures 2F, G), highlighting their potential

roles in PTC development and progression.
3.3 Weighted gene co-expression
network analysis

To identify potential hub genes for further validation, a loose

screening criterion was applied for DEGs, selecting genes with an

FDR < 0.05 in the differential analysis. A total of 4,828 genes from

the 6 tumor samples were then used to construct a co-expression

network. The analysis was performed using the R package

WGCNA, where a soft-threshold power of 16 was chosen to

ensure appropriate scale independence and mean connectivity of

the network. Based on the resulting cluster dendrogram, genes
Frontiers in Oncology 05
with similar co-expression patterns were grouped into 20 modules

(Figure 3A). Eigengenes were correlated with the clinical data to

assess the correlation between modules and clinical characteristics

(Table 1). Notably, the MEred module exhibited a high correlation

with tumor size (r=0.89, p=0.02), while MEgrey60 (r=-0.81,

p=0.05) and MElightcyan (r=-0.84, p=0.03) showed negative

correlations (Figure 3B). Scatter plots were generated to depict

the correlations between module membership (MM) and gene

significance (GS) for the MEred (r=0.66, p<0.001), MEgrey60

(r=0.43, p<0.001), and MElightcyan (r=0.23, p=0.05) modules

(Figures 3C–E), confirming the significant correlation of these

modules with tumor size. Finally, we exported the edge data of

genes within these three modules and utilized Cytoscape v3.10.0

for further analysis and visualization. This enabled a more detailed

examination of the interactions and relationships among the genes

within these modules.
3.4 The proteomic variance between
normal tissue and papillary
thyroid carcinoma

DDA was utilized for quantitative proteomic analysis. Before

analysis, proteins with undetectable abundance or those without

annotations in the NCBI Reference Sequence Database were
A B

D EC

FIGURE 3

WGCNA analysis using genes with FDR<0.05 in differential analysis. (A) Cluster dendrogram shows modules derived from genes’ expression
characteristics. (B) Module-trait relationships demonstrate the correlation between modules and tumor size. (C) MM vs GG scatter plots of MEred
(r=0.66, p<0.001), (D) MEgrey60 (r=0.43, p<0.001), and (E) MElightcyan (r=0.23, p=0.05).
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excluded from the dataset. A total of 3,624 proteins were identified

for further analysis.

The PCA plot of the proteomic data demonstrated a distinct

separation between normal and tumor samples, except sample EA-

001_C, which appeared to be closer to the normal sample cluster

(Figure 4A). This heterogeneity among the tumor samples was

consistent with the findings in the transcriptomic PCA plot,

indicating potential molecular variations within the PTC samples at

the protein level.

To identify differentially expressed proteins (DEPs), we employed

a similar strategy as used for DEGs. DEPs were defined using a

threshold of |log2 (fold change) | > 2 and an acceptable FDR cutoff of

< 0.05. Using the limma R package, we identified 79 DEPs, with 35

proteins upregulated and 44 proteins downregulated, as shown in the

volcano plot (Figure 4B). Similar to the transcriptomic analysis, we

extracted gene expression data corresponding to the DEPs from the

TCGA-THCA dataset. As anticipated, the DEPs also demonstrated
Frontiers in Oncology 06
the capability to distinguish tumor samples from normal samples,

although not as efficiently as the DEGs (Figure 4C). This observation

could be attributed to the fact that direct protein abundance data were

not utilized, which may have affected the discriminatory power of the

DEPs. GO and KEGG enrichment analyses were conducted to

investigate the functional implications of the DEPs further. Besides

enriching ECM-related pathways, such as collagen-containing

extracellular matrix, we observed frequent enrichment of

detoxification-associated pathways, like cellular oxidant

detoxification and lipid metabolism, including fatty acid binding

and long-chain fatty acid binding (Figure 4D). KEGG analysis

revealed five pathways in which the DEPs may participate: ECM-

receptor interaction, tyrosine metabolism, hematopoietic cell lineage,

malaria, and cholesterol metabolism (Figure 4E). These findings were

partly consistent with the results from the GO analysis, suggesting

potential roles of ECM, lipid metabolism, and detoxification

processes in PTC. The gene-concept networks were also exhibited
A

B D E

F G

C

FIGURE 4

Proteomic profiles based on DDA between normal samples and PTC. (A) PCA plot of normal samples (red) and PTC (blue). (B) Volcano plot exhibits
79 DEPs (35 upregulated and 44 downregulated) with red plots. (C) Heatmap of DEPs based on TCGA-THCA cohorts. The pathway enrichment
analysis were achieved through (D) GO analysis and (E) KEGG analysis. (F) The gene-concept networks visualized the results of GO analysis of and
(G) KEGG analysis.
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to visualize the link between proteins and specific pathways

(Figures 4F, G).
3.5 Screening for hub genes for
prognosis and diagnosis

PPI analysis was performed by using the STRING database to

explore protein-protein interactions (PPI) and identify potential

hub genes. The resulting PPI networks were visualized (Figure 5A),

and the edge file was downloaded and imported into Cytoscape.

Similarly, we imported the edge file obtained from the previous

WGCNA into Cytoscape to search for hub genes within

the network.
Frontiers in Oncology 07
To identify the hub genes, we utilized the cytoHubba app in

Cytoscape and ranked the nodes based on maximal clique centrality

(MCC), a measure of network connectivity. From the PPI analysis,

we selected AEBP1, CD34, COL12A1, GYPA, ITGA2B, KRT19,

POSTN, and THBS2 as hub genes (Figure 5B). From the

WGCNA analysis, we selected ABR, C2CD2L, CDC42EP5, CTSA,

GPX1, LASP1, and SFN as hub genes (Figure 5C). However,

ENSG00000234943, a lncRNA, was excluded from further analysis.

We examined the overlap among somatic alterations, DEGs,

and DEPs to integrate the results from multiple omics analyses.

Through this analysis, we identified two additional hub genes, TPO

and AHNAK2, which had somatic alterations and were also

differentially expressed at the transcriptional and protein levels

(Figure 5D). Therefore, we obtained a set of 17 hub genes
A B

D

C

FIGURE 5

The strategy to screen for hub genes was based on cytoHubba, a plugin of Cytoscape. (A) PPI analysis finished on STRING. (B) Interactions of top 8
hub genes from PPI. (C) Interactions of top 8 hub genes from WGCNA. (D) Venn diagram illustrates overlap among somatic alterations, DEGs, and
DEPs and revealed 2 hub genes based on integration of multi-omics profiles.
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through the multi-omics analysis. These hub genes represent key

network elements and merit further investigation to elucidate their

functions in predicting the prognosis and diagnosis of PTC. Among

the identified hub genes, AEBP1, CD34, COL12A1, ITGA2B,

THBS2, and TPO exhibit lower expression levels in thyroid

tumors. On the other hand, AHNAK2, GPX1, KRT19, and SFN

show higher expression levels in thyroid tumors (Figure S3). These

differential expression patterns suggest their potential as diagnostic

markers for distinguishing thyroid tumors from normal tissue.
3.6 Potency validation of hub genes to
predict prognosis and diagnosis of PTC

Based on the Kaplan-Meier plotter employing TCGA-THCA

(n=502), the associations between the expression of hub genes and

patient survival were found (Figures 6, S4, S5):

Overall Survival (OS) (Figures 6A–H, S4):
Fron
• Low expression of C2CD2L, CDC42EP5, GPX1, GYPA,

KRT19, LASP1 was associated with better prognosis.

• High expression of COL12A1 and TPO was associated with

a better prognosis.
Recurrence-Free Survival (RFS) (Figures 6I–P, S5):
• High expression of ABR, AHNAK2, COL12A1, CTSA,

ITGA2B, TPO was associated with better prognosis.

• Low ITGA2B and TPO expression was associated with a

better prognosis.
These findings suggest that the expression levels of these hub

genes may have predictive value in determining patient survival

outcomes in papillary thyroid carcinoma.

RNA-seq data from 534 samples (475 PTC samples and 59

normal samples) obtained from the TCGA-THCA cohorts were

analyzed to evaluate the diagnostic potential of the hub genes in

PTC. First, we examined whether the expression levels of individual

genes could distinguish between tumor and normal tissue. Using

receiver operating characteristic curve (ROC) analysis, we assessed

the performance of each gene in differentiating PTC from normal

tissue to select genes qualified to be employed to construct a clinical

predictive model (Figures 7, S6). According to the events per

variable (EPV) rule, we considered the area under the curve

(AUC) values above 0.85, suggesting these genes show promising

diagnostic efficacy in controlling the number of variables. Five

genes, ABR (AUC=0.945), AHNAK2 (AUC=0.877), CTSA

(AUC=0.901), GPX1 (AUC=0.914), TPO (AUC=0.894),

performed significantly in the ROC analysis (Figure 7). The high

AUC values obtained from the ROC analysis support the potential

utility of these genes in constructing a robust diagnostic model

for PTC.

To develop a diagnostic model for PTC, logistic regression

analysis was performed using the glmnet R package. The gene

expression data from the TCGA-THCA cohort was preprocessed by

assigning scores of 1-10 based on percentile ranking within each
tiers in Oncology 08
gene’s expression data, with higher expression levels receiving lower

scores. Tumor samples were given a score of 1, while normal

samples were given 0. The logistic regression model was built

using the expression levels of the following genes: TPO, GPX1,

ABR, AHNAK2, and CTSA. The glmnet package with the

“family=‘binomial’” parameter was used for logistic regression

analysis. The odds ratio (OR) with its 95% confidence interval

(95% CI) and p-values were calculated and presented in a forest plot

(Figure 8A). Stepwise regression was performed using the step

function. Among the genes, ABR, AHNAK2, GPX1, and TPO

significantly associated with PTC diagnosis (p<0.05) and were

identified as pivotal elements in the clinical model. Then, we

achieved the formula of “y=0.4211*TPO-0.5256*GPX1-

0.7043*ABR-0.4178*AHNAK2 + 13.8133”. A nomogram was

constructed using the rms R package, incorporating these four

genes as a reference for diagnosing PTC (Figure 8B). The calibration

curve demonstrated good prediction efficacy of the model

(Figure 8C). The diagnostic performance of the model was

evaluated using ROC analysis, yielding an AUC value of 0.969

(Figure 8D), which outperformed the individual genes’ diagnostic

potential (Figures 7, 8E). External validation was conducted using

the GSE33630 dataset (49 PTC and 45 normal samples), yielding an

AUC value of 0.959 (Figure 8F), indicating the model’s capability to

diagnose PTC.

Pan-cancer expression data of the four genes were exhibited for

a further selection of other tumors to assess the model’s specificity

for PTC (Figure S7). The model was applied to different types of

tumors from the GSE63514 (cervical squamous cell carcinoma),

GSE132305 (cholangiocarcinoma tumor), GSE53757 (kidney renal

clear cell carcinoma), GSE121248 (liver hepatocellular carcinoma),

and GSE43458 (lung adenocarcinoma) datasets. The model

exhibited inferior diagnostic potential in these tumor types

compared to PTC, confirming its specificity for PTC diagnosis

(Figure S8). These results suggest that the diagnostic model based

on the expression levels of ABR, AHNAK2, GPX1, and TPO has

strong diagnostic efficacy for PTC and demonstrates specificity for

PTC compared to other tumors.
4 Discussion

Fine needle aspiration biopsy (FNAB) is currently the most

widely used diagnostic method for thyroid tumors, followed by

cytologic examination and mutation detection to confirm the

specific subtype (25). Common molecular characteristics such as

RET/PTC rearrangement, RAS, and BRAF mutations have been

identified as indications of PTC (26). Recent data-oriented analysis

has further subclassified PTC into immune-enriched, BRAF-

enriched, stromal, and CNV-enriched subtypes, providing

valuable insights into precise medicine for PTC in China (14).

However, most molecular biomarkers for PTC prognosis and

diagnosis have been based on profiles from Western cohorts,

lacking sufficient representation for the Chinese population based

on a multi-omics landscape. This study observed distinct genomic

characteristics in local patients compared to TCGA-THCA cohorts.

In addition to the highly mutated BRAF, PNPLA5was identified as a
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somatic driver gene. Proteomic data revealed the potential impact of

this lipid metabolism-associated gene on cholesterol binding at the

protein level (27). Differential analysis of DEGs and DEPs allowed

to distinguish between benign samples and PTC, and these findings

were validated using TCGA-THCA cohorts. Furthermore, the

research highlighted the heterogeneity of gene expression among

different variants of PTC, emphasizing the need for further

investigation into the molecular distinctions of PTC variants.
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Subsequent functional enrichment analysis revealed pathways

potentially involved in tumorigenesis and other tumor-related

activities. For instance, previous studies have reported the

significant role of ECM in promoting tumor growth and invasion

by influencing gene expressions such as uPAR and CREB3L1 (28,

29). Cell adhesion, a crucial process for tumor invasion, is closely

associated with ECM degradation. Dysregulation of cell adhesion-

associated molecules has been identified in the development of
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FIGURE 6

The potency of hub genes in predicting prognosis of PTC patients. Survival analysis on the K-M plotter based on 502 patients from TCGA-THCA
cohorts revealed associations between the expression of hub genes and OS (A-H) or RFS (I-P). (A) C2CD2L. (B) CDC42EP5. (C) COL12A1. (D) GPX1.
(E) GYPA. (F) KRT19. (G) LASP1. (H) TPO. (I) ABR. (J) AHNAK2. (K) COL12A1. (L) CTSA. (M) ITGA2B. (N) POSTN. (O) SFN. and (P) TPO. Hub genes with
significantly improved OS or RFS were shown.
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PTC: CD44 has been implicated in promoting tumor metastasis and

lymphatic invasion (30), while galectin-3 exhibits lower expression

correlating with increased cancer metastasis potential but higher

expression aiding PTC diagnosis (31). Previous omics research has

also highlighted the enrichment of genes related to cell adhesion in

PTC, emphasizing its pivotal role in tumor development (22, 32).

Furthermore, disruptions in lipid metabolism may contribute to

PTC progression. Integrated analyses involving lipidomics,

proteomics, and metabolomics have demonstrated enhanced lipid

metabolism reprogramming within PTC samples (33). Abnormal

expression levels of specific molecules like LPL, FATP2, and CPT1A

have been linked to tumor progression and poor prognosis (33).

Our study also uncovered the enrichment of detoxification-

associated pathways at the protein level. In PTC specifically,

NOX4 has been attributed to reactive oxygen species (ROS)

production (34), while overexpression of PIM-1 is thought to

promote an antioxidant response that maintains an oxidant state

conducive for tumors (35). However, further investigation is needed

to fully understand how these pathways impact PTC activities.

Our study utilized a combination of WGCNA, PPI analysis, and

integration of multi-omics profiles to identify 17 hub genes. These

hub genes were further investigated for their potential to predict the

diagnosis and prognosis of PTC. Interestingly, these hub genes were

found to be primarily associated with pathways related to cell

adhesion and ECM, which aligns with the enrichment analysis we

previously conducted. Significant efforts have been dedicated to

developing predictive models for central cervical lymph node

metastasis (36–38) and prognosis based on radiomics, molecular
Frontiers in Oncology 10
characteristics, and other clinical baseline data (39–41). With

ongoing advancements in FNAB techniques and ultrasonography,

the rate of overdiagnosis of thyroid cancer reached over 80% in

urban areas in China (5). Consequently, there is an urgent need for

evidence-based and reliable approaches to diagnose PTC to evade

the overuse of techniques accurately. Lu et al. utilized a

metabolomics method for the diagnosis of papillary thyroid

microcarcinoma, with AUC=0.992 model in local patients (42).

Previously, Guo et al. exploited a protein-based neural network

classifier for thyroid nodules, with AUC=0.93 in the training cohort

and AUC=0.89 in the test cohort, encouraging improvement of

cytopathology for PTC (16). Besides Chen et al. revealed a 3-gene

panel for diagnosis of PTC through scRNA-seq based on TCGA-

THCA cohorts and testified the efficacy of the diagnostic model in

his own cohorts, exhibiting an AUC=1 (43). In our research, four

genes (ABR, AHNAK2, GPX1, and TPO) were selected through

multivariate logistic regression analysis to construct a diagnostic

model. TPO is a crucial protein in thyroxine production that is

nearly absent in thyroid cancers. It has been reported to indicate

lymph node metastasis and recurrence in PTC (44). AHNAK2

functions in cell adhesion and cell junction processes; it has also

emerged as a novel prognostic factor for PTC and gastric cancer (45,

46). GPX1 belongs to the glutathione peroxidase family and is

critical in maintaining redox balance. Altered expression of GPX1

has been associated with tumorigenesis by regulating ROS levels

that promote tumor survival (47). Our study discovered its

prognostic and diagnostic value, specifically within PTC.

Although ABR has received limited attention in cancer research,
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FIGURE 7

ROC analysis of hub genes with AUC (value > 0.85). (A) ABR. (B) AHNAK2. (C) CTSA. (D) GPX1. (E) TPO. Confidential intervals and respective cut-off
values were also shown at the right-bottom of the picture.
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the results showed it highly expressed in PTC compared to normal

samples, suggesting its potential diagnostic and prognostic value.

Consequently, our model demonstrated excellent performance in

diagnosing PTC with AUC=0.969 in TCGA-THCA cohorts,

AUC=0.959 in test sets, and notable specificity for this type of

tumor rather than others.

Although the screening of hub genes was conducted using local

patient data, we mainly validated their diagnostic and prognostic

potential on Western cohorts. Further research is necessary to

validate the model, specifically on large Chinese populations.

Additionally, due to limitations in sample size, our profiles were

not comprehensive enough to capture the complete molecular

characteristics of local PTC cases. To address this limitation and

gain a more detailed understanding of the initiation and

progression mechanisms of PTC, scRNA-seq and proteomic

technology have been increasingly employed. ScRNA-seq

approach allows for individual cell-level analysis and helps

eliminate deviations caused by the mixed tumor and normal cells

(15). Besides, scRNA-seq facilitates in-depth comprehension of the

molecular characteristics and heterogeneity of PTC along with

perspectives from the tumor microenvironment, cellular

interactions, etc. This not only fosters more precise biomarker
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mining but also advances the accuracy of subclassification of

patients. Moreover, it is important to note that our current model

relies on categorized gene expression. Proteomic analysis was used

in detected, quantified and qualitied proteins in tissue or serum

samples of patients (48–53). High throughput mass spectrometry

for proteomic, for example DIA, makes the leap from research to

clinical application (16, 54, 55). To generalize these application,

further work is required to develop a risk scoring system.

Additionally, we also need a prospective cohort to validate

the model.
5 Conclusions

In conclusion, our study successfully integrated genomic,

transcriptomic, and proteomic landscapes to identify 17 hub

genes with promising diagnostic and prognostic potential based

on TCGA-THCA datasets. We have derived a specific predictive

model for PTC composed of ABR, AHNAK2, GPX1, and TPO with

expectations for future clinical diagnosis applications. These novel

biomarkers may be the targets for immunotherapeutic or

nanomedicine based cancer therapy. However, future research
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FIGURE 8

Construction of logistic regression model for diagnosis of PTC. (A) Forest plot exhibits OR and Pvalue of candidate genes for the diagnostic model.
(B) Nomogram shows the association between genes’ expression and diagnosis of PTC. (C) The calibration curve shows good prediction potential of
the model. (D) ROC analysis of model applied on TCGA-THCA cohorts and (E) compared with individual genes composed of the model. (F) ROC
analysis of model applied on GSE33630.
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should focus on validating these findings in large Chinese

populations while exploring more comprehensive molecular

characterization approaches such as scRNA-seq analysis, which

may provide insights into tumor immune infiltration and other

tumor environment factors that could impact the heterogeneity of

PTC. In addition, classical indexed like the level of thyroid

hormones and the results of imaging results should be considered

to construct the clinical model as well. Researchers should discuss

the results and their interpretation regarding the previous studies

and the working hypotheses. The findings and their implications

should be addressed in the possible broadest context.
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