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Double trouble for prostate
cancer: synergistic action of AR
blockade and PARPi in non-HRR
mutated patients
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Prostate cancer (PCa) is the most common cancer in men worldwide. Despite

better and more intensive treatment options in earlier disease stages, a large

subset of patients still progress to metastatic castration-resistant PCa (mCRPC).

Recently, poly-(ADP-ribose)-polymerase (PARP)-inhibitors have been

introduced in this setting. The TALAPRO-2 and PROpel trials both showed a

marked benefit of PARPi in combination with an androgen receptor signaling

inhibitor (ARSI), compared with an ARSI alone in both the homologous

recombination repair (HRR)-mutated, as well as in the HRR-non-mutated

subgroup. In this review, we present a comprehensive overview of how

maximal AR-blockade via an ARSI in combination with a PARPi has a

synergistic effect at the molecular level, leading to synthetic lethality in both

HRR-mutated and HRR-non-mutated PCa patients. PARP2 is known to be a

cofactor of the AR complex, needed for decompacting the chromatin and start

of transcription of AR target genes (including HRR genes). The inhibition of PARP

thus reinforces the effect of an ARSI. The deep androgen deprivation caused by

combining androgen deprivation therapy (ADT) with an ARSI, induces an HRR-

like deficient state, often referred to as “BRCA-ness”. Further, PARPi will prevent

the repair of single-strand DNA breaks, leading to the accumulation of DNA

double-strand breaks (DSBs). Due to the induced HRR-deficient state, DSBs

cannot be repaired, leading to apoptosis.
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Introduction

Prostate cancer (PCa) represents the most prevalent cancer and

the fifth most frequent cause of cancer-related mortality among

men worldwide (1). About 88-95% of patients present with non-

metastatic disease at the time of diagnosis. Despite initial local

disease management, many of these patients will experience

biochemical recurrence (BCR) during follow-up. Although there

is no radiographic evidence of metastases at time of diagnosis, many

of these patients already have micro-metastases that will cause

metastatic relapse later (2, 3). At the time of metastatic relapse, most

patients require systemic treatment using androgen deprivation

therapy (ADT) combined with an androgen receptor signaling

inhibitor (ARSI) with or without six cycles of docetaxel. Although

most patients do well with this combination, a proportion of them

will become treatment resistant and develop metastatic castration-

refractory PCa (mCRPC) (4). Patients with mCRPC currently have

limited treatment options. These include ARSI, cytotoxic

chemotherapy, Lu-PSMA and Radium-223 (depending on

previous treatments, the clinical and radiographic presentation at

mCRPC). Recently, poly-(ADP-ribose)-polymerase inhibition

(PARPi) has been introduced as a novel agent in combination

with an ARSI in this patient population. PARP inhibition has been

successfully applied for several years in gynecological tumors

(breast and ovarian cancer) in BRCA-mutated patients. The

rationale behind the use of PARPi in PCa can be found in the

fact that, among others, a somatic/germline homologous

recombination repair (HRR) gene mutation (mainly in BRCA2)

plays an important role in development and progression of the

disease (5). In the past year, several large phase III trials have

investigated the use of PARPi in combination with an ARSI in the

mCRPC setting. All trials (PROpel, TALAPRO-2, and

MAGNITUDE) started with both HRR-mutated and HRR-not-

mutated patients included. However, in MAGNITUDE, there was a

preselection based on HRR-mutation status, while in TALAPRO-2

and PROpel, an unselected (all-comer) population with a sub-

stratification based on HRR-mutation status was included. All

three studies showed a marked increase in radiographic

progression-free survival (rPFS), time to first subsequent therapy

or death (TFST), and a trend towards better overall survival (OS)

with the use of PARPi in combination with an ARSI, compared to

an ARSI alone in the HRR-mutated population, with the greatest

benefit in the BRCA-mutated patients (6–8). MAGNITUDE

(Niraparib and Abiraterone Acetate and Prednisone [AAP])

discontinued the non-HRR mutated arm prematurely due to

ineffectiveness in the pre-planned futility analysis (6). Both

TALAPRO-2 (Talazoparib and Enzalutamide) and PROpel

(Olaparib and AAP) were conducted in a population of unknown

HRR status and showed a benefit for rPFS in the entire population.

Moreover, these benefits were observed in both the HRR-mutated

and the non-HRR mutated patients (7, 8). These results clearly

suggested that the combination of PARPi and ARSI could have a

synergistic effect, creating a situation similar to that seen in BRCA-

mutated patients (often referred to as “BRCA-ness”). This “BRCA-

ness” makes a PCa cell vulnerable to PARPi (9–11). Recently,
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multiple researchers are focusing on combining results from the

largest phase III trials with the combination of PARPi and an ARSI

to determine the overall benefit in a mCRPC population. In these

pooled results, PARPi is significantly better than placebo in an

HRRm+ and HRRm- patient population. All these trials however

mention the probability of a synergistic effect between PARPi and

ARSI, but none of them explain this synergy in detail (12–14). In

this review, we do not focus on describing previously mentioned

studies in detail, but we thoroughly describe the effects of both

maximal androgen deprivation and PARP inhibition on the

prostate cancer cell and hypothesize how a potential synergistic

effect of combining both treatments can be explained at the

molecular level in non-HRR-mutated patients.
Mechanism of action

The concept of using PARPi in men with prostate cancer is

rapidly gaining popularity. Since two of the three large phase III

trials showed a significantly better rPFS not only in the HRR-

mutated, but also in the HRR-non-mutated population, many

questions arise about the mechanism behind this possible

synergistic effect.
Influence of AR-inhibition on the prostate
cancer cell

Like prostate epithelial cells, prostate cancer (PCa) cells are

primarily driven by stimulation of the androgen receptor (AR). AR

stimulation by androgens provides survival- and growth-promoting

signals for PCa cells (15). Androgen deprivation therapy (ADT),

using LHRH agonists/antagonists or via orchiectomy, has for many

years been the basis for the treatment of metastatic hormone-

sensitive PCa (mHSPC). Eventually, all patients with mHSPC will

develop evasive PCa cells that become resistant to AR blockade and

thus become castration resistant (mCRPC) (16, 17). New potent

drugs, second-generation antiandrogens, also called AR signaling

inhibitors (ARSI), which can be an AR antagonist (enzalutamide,

apalutamide or darolutamide) or an androgen synthesis inhibitor

(abiraterone acetate (AA)), are currently available as a next-line

treatment option to more deeply inhibit the AR at the molecular

level (Figure 1). In fact, these drugs are now recommended as a first-

line treatment, along with ADT, for mHSPC. These AR antagonists

have a trifold mechanism of action. First, they competitively inhibit

androgen binding to the AR (mainly dihydrotestosterone;

testosterone to a lesser extent). Second, AR antagonists prevent

translocation of the androgen-AR complex from the cytoplasm to

the nucleus. Finally, the androgen-AR complexes in the nucleus are

inhibited from dimerizing and binding to DNA and recruiting

coactivators (e.g. PARP2), preventing transcription of downstream

proliferation and survival pathways (18–22).

On the other hand, AA, the only clinically used second-

generation androgen synthesis inhibitor, is an irreversible

inhibitor of both 17,20-lyase and 17-alpha hydroxylase. Inhibition
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of CYP17 enzymes result in an inability to synthesize progesterone

and pregnenolone into testosterone (23). Administration of AA

results in a very strong inhibition of androgen production in the

testis, adrenal glands and tumor cells, depriving the PCa of this

stimulant. Due to the large suppression of androgen, transcription

of downstream pathways of the AR is diminished as well (24).

The combination of ADT with an ARSI leads to increased

suppression of the AR and decreased transcription of associated AR

target genes. The most important of these associated effects is the

emerging evidence of increased DNA damage and decreased DNA

repair when treating PCa with an ARSI. The link between the AR

and DNA damage repair (DDR) has been partially unraveled (11,

15, 25–31). In their study, Polkinghorn et al. showed that androgens

could activate the transcription of several DDR genes (encoding

DNA-PKcs, active in non-homologous end-joining (NHEJ), used in

DNA double-strand break (DSB) repair, and PARP1, active in

single-strand break (SSB) repair) in hormone-sensitive LNCaP

cells (31). On the other hand, DNA damage can activate the AR,

which in turn increases the expression of DDR genes such as DNA-

PKcs proteins. Multiple preclinical studies have investigated this co-

regulation between the AR and a DDR gene signature (29, 31–34).

LNCaP, LNCaP-AR and VCaP cells treated with apalutamide or

enzalutamide showed a significant increase in DNA damage even

without radiation exposure (10, 31). Li et al. showed a significant

increase in markers for DNA damage (gH2aX and RAD51),

apoptosis and suppression of PCa growth after treatment of these

cell lines with enzalutamide and Olaparib (compared to Olaparib

alone) (10). Thus, by maximally suppressing the AR, the DDR

pathway can be (partially) suppressed. When DSBs occur in these

cells, they cannot be repaired, which will ultimately result in

apoptosis. This artificial state of DDR-insufficiency induced by

second-generation antiandrogen treatment is often referred to as

‘BRCA-ness’, as it produces an intracellular situation similar to that

of a BRCA2-mutated patient when treated with PARP inhibition.

However, the exact mechanism behind this ‘BRCA-ness’ is still not

fully understood nor proven on human PCa tissue (9, 10, 35).
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During the transition from mHSPC to mCRPC, there are

numerous escape mechanisms that prostate cancer cells can

develop to circumvent androgen or AR dependence. These escape

mechanisms include, but are not limited to, AR splice variants,

increased AR expression, and glucocorticoid receptor takeover (16,

17). Multiple genomic variations, including RB1 (a tumor

suppressor gene) and BRCA2, have been associated with rapid

resistance to second-generation antiandrogens, and thus

progression to mCRPC (36–39). The frequency of HRR

mutations has been shown to increase in advanced PCa (5, 40).

Chakraborty et al. demonstrated that co-loss of BRCA2-RB1 (these

genes are close together on chromosome 13q) induces invasiveness

and a more aggressive PCa subtype. Adding PARPi to this BRCA2-

RB1 co-loss showed promising results in reducing PCa growth (41).
Influence of PARP-inhibition on the
prostate cancer cell

Depending on the presence of single-strand breaks (SSBs) or

double-strand breaks (DSBs), different DNA repair mechanisms are

triggered. Each type of break initiates specific repair pathways, the

most important of which are non-homologous end joining (NHEJ)

and HRR for DSBs, and nucleotide excision repair (NER), base

excision repair (BER) and mismatch repair (MMR) for SSBs (42).

PARP1 is the most important and most researched nuclear enzyme

of the PARP family. PARP1 is mostly involved in SSB DNA repair

mechanisms in three ways: (i) detection of DNA damage, (ii)

recruitment of repair factors, and (iii) regulation of biochemical

activities (35, 43, 44). At the time of DNA damage, PARP1

contributes by detecting the location of SSBs, decompacting the

chromatin structure and recruiting cofactors (e.g. XRCC1 and

DDB2) to the damaged DNA region (43). PARPi’s are relatively

new drugs in the PCa landscape; however, PARPi’s have been used

much earlier in gynecologic malignancies (ovarian and breast

cancer). PARPi’s bind PARP and lock the functional PARP to the
FIGURE 1

Mechanism of action of the different ARSIs.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1265812
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Giesen et al. 10.3389/fonc.2023.1265812
DNA strand (“PARP trapping”), while inhibiting the execution of

the other PARP functions. This stalls the replication fork, leading to

the occurrence of DSBs (45).

Normally, the PARP1-initiated cascade by will repair the SSBs and

restore the DNA strand without further problems. However, in the

absence of functional PARP1 (e.g. PARP inhibition), there are two

major consequences, representing the dual function PARP. First, when

SSBs are encountered during DNA replication and cannot be repaired,

as discussed above, the replication fork stalls and DSBs accumulate.

DSBs in combination with a stalled replication fork are normally

repaired via HRR. Even though NHEJ is an alternative option for DSB

repair, in these situations, there seems to be an exclusion of NHEJ in

favor of HRR (46). Thus, when the HRR pathway functions normally,

DNA damage is repaired (normal cells). If the HRR pathway is

dysfunctional (HRR-mutation, ‘BRCAness’ or BRCA-mutated

patients), DSBs accumulate, leading to genomic instability until

apoptosis occurs. Despite HRR being the favorable option, NHEJ will

also come into action. However, in patients with PARP-inhibition,

genomic instability is co-driven by NHEJ (47). Both scenarios are

shown in Figure 2.

DSBs that accumulate and cannot be repaired before entering

mitosis, drives the cancer cell in ‘mitotic catastrophe’, where these cell is

prevented from proliferating and driven towards cell death or

senescence (48). Hereby, the question regarding the effect of cells in

a quiescence state arises. This quiescence state is known to be

important for tumor cells to develop new evasive mechanisms

through genomic changes (49, 50). The effect of PARPi in quiescent

PCa cells is currently not known.

Second, in addition to its role in DNA damage repair, PARP1 is

also involved in transcriptional regulation as a potent modulator of

AR function and inducer of AR activity, and thus is involved in

tumor proliferation. Schiewer et al. showed that PARP enzymatic
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activity is required for AR function in hormone-sensitive prostate

cancer cells. Targeting PARP with PARP-inhibitors decreases AR

activity and suppresses AR target gene expression, enhancing the

activity of an ARSI. This is believed to prolong tumor doubling time

and suppress the transition to CRPC. In patients with CRPC,

PARP-inhibition plus castration significantly reduces tumor

volume (30). PARP1 and PARP2 can also stimulate the AR to

activate transcription of xenograft DNA repair genes (15, 30, 51).

Thus, PARPi exploits the dual function of PARP1 in DNA

damage repair and AR regulation to suppress multiple pathways

critical for prostate cancer cell survival and progression.
Synergistic effect of the combination

As previously described, administration of a PARPi in a patient

with a dysfunctional HRR pathway (e.g., BRCA2-mutation) will lead to

accumulation of DSBs that cannot be repaired, leading to cell death.

Drug-induced apoptosis, for example when the escape route is

dysfunctional, is often referred to as ‘synthetic lethality’ (10, 52, 53).

This phenomenon has been observed in all three phase III trials

investigating PARPi in mCRPC. However, in TALAPRO-2 and

PROpel, the combination of ARSI and PARPi also showed a

significantly better rPFS compared to ARSI alone in the non-HRR-

mutated patient population.

This combination effect of ARSI and PARPi in non-HRR-

mutated patients can be explained by a synergistic effect of both

drugs (Figure 3). The combination of an ARSI and a PARP-

inhibitor is hypothesized to act synergistically in two ways: (i)

slowing or halting tumor growth and progression, (ii) while

blocking DNA repair at all major pathways in PCa cells and thus

ultimately inducing apoptosis.
FIGURE 2

What happens in case of a single-strand break? Situation in a normal patient (left) versus in a patient receiving a PARPi (right).
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We take a closer look at each synergistic effect.

First, the combination will slow or stop the growth and

progression of the tumor on multiple levels. The ARSI blocks the

AR deeply and at three levels (binding of an androgen, translocation

and recruitment of cofactors), resulting in elimination of growth

stimuli for the PCa. This lack of AR stimulation (and thus growth

inhibitory effect) is enhanced by the addition of PARPi, which

suppresses AR function and activity.

Second, DNA repair pathways are blocked, leading to cell death.

This effect results directly from the strong inhibition of the AR.

Since the AR activity is known to be a regulator of DNA repair

genes, blockade of the AR will result in deficiency of the HRR

pathway, inducing a ‘BRCAness’ situation. At this level, PARPi’s

will do the job they are best known for: SSBs cannot be repaired, the

replication fork stalls and DSBs accumulate, leading to apoptosis. It

can be concluded that both agents reinforce each other’s

mechanisms of action.

The therapeutic potential of PARPi’s has been tested in an

explant of primary human tumors, showing that inhibition of the

PARP1 enzyme leads to a decrease in tumor proliferation, all the

more so when simultaneous inhibition of DSB repair via maximal

androgen deprivation is achieved (28).

In addition, one of the escape mechanisms from AR-blockade

using an ARSI, is deletion of the BRCA-gene (sometimes combined

with co-loss of RB1). In this subgroup, the addition of a PARPi will

act as in an HRR-mutated setting, leading to synthetic lethality (41).

Understanding the molecular basis behind this synergistic effect

is crucial for future research in selecting optimal non-HRR-mutated

patients for combination therapy with PARPi and an ARSI.
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Clinical evidence

On paper, this combination therapy looks promising. The phase

III trials investigating PARPi in combination with ARSI for mCRPC

have not yet been able to confirm or refute this synergistic effect. In

MAGNITUDE (6), patients were preselected based on HRR-

mutation status, while TALAPRO-2 (7) and PROpel (8) included

an all-comer population and HRR-mutation status was determined

after inclusion. These studies cannot be directly compared as they

represent different study designs, gene testing strategies and

previous exposure to an ARSI. These differences may cause

biases. Well-designed prospective trials are needed to confirm this

synergistic effect at the molecular level and its translation in

favorable oncological outcomes in patients without an HRR-

mutation. A neoadjuvant trial would suit this question best, since

this design rules out previous effects of androgen deprivation

therapy on the molecular structure of PCa.

The question arises whether this combination therapy offers

sufficient synergism to also benefit HRR-mutated patients, or

whether sequencing these drugs in mCRPC patients is a valuable

option (since no “BRCA-ness” needs to be created). A phase II trial,

BRCAAWAY (NCT03012321) is currently investigating this

question. In BRCAAWAY, eligible mCRPC patients with BRCA1,

BRCA2 or ATM mutation were randomized in one of three arms:

(i) AAP, (ii) Olaparib, (iii) AAP + Olaparib with PFS as primary

endpoint. Crossover at progression was considered in the first two

arms. While final results have not yet been published, an interim

analysis presented at ASCO 2022, showed a strong benefit of the

combination therapy over either agent alone (54).
FIGURE 3

Schematic representation of the mechanism of action and synergistic effect of dual therapy with ARSI and PARPi.
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With the great results of using PARP-inhibition in a mCRPC

setting, multiple new trials testing these PARP-inhibitors in a

mHSPC population are starting. Currently, we are also waiting

results of rucaparib together with enzalumatide in mCRPC patients

(CASPAR trial).

An overview of previous and registered studies using a

combination of PARPi and an ARSI can be found in Table 1.

Published trials (except NCI 9102 (56)) used patients HRR-

mutation status for randomization and/or subanalysis to determine

PARP-inhibition efficacy in mCRPC patients. However, previous

studies found other important mutations associated with DSB

occurrence and PARP-inhibition efficacy. Gene fusions are

present in around 50% of PCa (57). The most prevalent of these

molecular aberrations are mainly gene fusions of TMPRSS2 (an

androgen-regulated gene) together with E-twenty six (ETS) family

members (ERG and ETV1). This fusion gene can lead to an increase
Frontiers in Oncology 06
in DSBs via inhibiting NHEJ though decreased expression and

activity of DNA-PKcs, thus also resulting in synthetic lethality when

administering PARP-inhibition (57, 58). These molecular

aberrations could potentially partially explain the beneficial effect

in HRR-non-mutated patients. Despite the negative results of the

NCI 9102 trial (56) regarding PSA50, investigation around these

aberrations in clinical trials can be indicated.
Conclusions

New treatment modalities are emerging for patients with

metastatic castration-resistant prostate cancer (mCRPC).

Recently, poly-(ADP-ribose)-polymerase (PARP)-inhibition has

been introduced in mCRPC. Phase III trials (MAGNITUDE,

TALAPRO-2 and PROpel) showed a clear benefit in radiographic
TABLE 1 Overview of clinical trials with PARPi and ARSI in mCRPC and mHSPC.

Trials of PARPi in combination with an ARSI in mCRPC

Clinical trial (NCT)
+ Phase

PARPi combination investigated HRR selection (HRRm
rate)

Primary Outcome Reference

NCT01972217 – Phase 2 Olaparib + AA Unselected (HRRm: 15% vs 14%) Median rPFS 13.8 mo vs 8.2
mo (HR 0.65)

(55)

PROpel (NCT03732820)
– Phase 3

Olaparib + AA Unselected (HRRm: 27.8% vs
29%)

Median rPFS 24.8 vs 16.6 mo
(HR 0.66)

(8)

MAGNITUDE
(NCT03748641) – Phase
3

Niraparib + AA A: HRR- (HRRm: 0%)
B: HRR+ (HRRm: 100%)

A: Median rPFS not improved
(HR 1.09)
B: Median rPFS 16.5 mo vs
13.7 mo (HR 0.73)

(6)

NCI 9102
(NCT01576172) – Phase
2

Veliparib + AA Unselected based on ETS (ETS
fusion: 35.4% vs 33.8%)

PSA50 72.4% vs 63.9% (p =
0.27)

(56)

TALAPRO-2
(NCT03395197) – Phase
3

Talazoparib + enzalutamide Unselected (HRRm: 21% vs 21%) Median rPFS ‘Not reached’ vs
21.9 mo (HR 0.63)

(7)

CASPAR (NCT04455750)
– Phase 3

Rucaparib + enzalutamide Unselected rPFS and OS /

BRCAAway
(NCT03012321) – Phase
2

Triple design with possibility of cross-over:
olaparib + AA vs olaparib vs AA)

HRR+ PFS /

Trials of PARPi in combination with an ARSI in mHSPC

TALAPRO-3
(NCT04821622) – Phase
3

Talazoparib + enzalutamide DDR+ rPFS /

NCT04734730 – Phase 2 Talazoparib + AA (single arm) Unselected PSA nadir <0.2 ng/ml /

ZZ-first (NCT04332744)
– Phase 2

Talazoparib + enzalutamide Unselected PSA complete response /

AMPLITUDE
(NCT04497844) – Phase
3

Niraparib + AA HRR+ rPFS /

NCT05167175 – Phase 2 Olaparib + AA (single arm) HRR+ rPFS /
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progression-free survival (rPFS), time to first subsequent therapy or

death (TFST), and a trend towards better overall survival (OS) in

HRR-mutated patients. However, TALAPRO-2 and PROpel also

demonstrated this benefit in rPFS in a non-HRR-mutated patient

population. While lacking real-world confirmation, preclinical

studies showed that maximal inhibition of the androgen receptor

(AR) via an AR signaling inhibitor (ARSI) resulted in arresting

tumor growth and progression while downregulating HRR gene

expression. This results in a “BRCA-ness” situation, which can be

exploited with concomitant PARPi. Well-designed proof-of-

concept studies are needed to confirm this concept.
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