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The value of multiparametric
MRI radiomics in predicting
IDH genotype in glioma
before surgery
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and Zhiqun Wang1*

1Department of Radiology, Aerospace Center Hospital, Beijing, China, 2Department of Nephrology,
Aerospace Center Hospital, Beijing, China
Objective: To explore the value of multiparametric magnetic resonance imaging

(MRI) radiomics in the preoperative prediction of isocitrate dehydrogenase (IDH)

genotype for gliomas

Methods: The preoperative routine MRI sequences of 114 patients with

pathologically confirmed grade II-IV gliomas were retrospectively analysed. All

patients were randomly divided into training cohort(n=79) and validation cohort

(n=35) in the ratio of 7:3. After feature extraction, we eliminated covariance by

calculating the linear correlation coefficients between features, and then

identified the best features using the F-test. The Logistic regression was used

to build the radiomics model and the clinical model, and to build the combined

model. Assessment of these models by subject operating characteristic (ROC)

curves, area under the curve (AUC), sensitivity and specificity.

Results: The multiparametric radiomics model was built by eight selected

radiomics features and yielded AUC values of 0.974 and 0.872 in the training

and validation cohorts, which outperformed the conventional models. After

incorporating the clinical model, the combined model outperformed the

radiomics model, with AUCs of 0.963 and 0.892 for the training and validation

cohorts.

Conclusion: Radiomic models based on multiparametric MRI sequences could

help to predict glioma IDH genotype before surgery.

KEYWORDS

glioma, isocitrate dehydrogenase, radiomics,magnetic resonance imaging,multiparametric
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1265672/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1265672/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1265672/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1265672/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1265672&domain=pdf&date_stamp=2023-11-27
mailto:wangzhiqun@126.com
https://doi.org/10.3389/fonc.2023.1265672
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1265672
https://www.frontiersin.org/journals/oncology


Liang et al. 10.3389/fonc.2023.1265672
Introduction

Gliomas are the most common primary brain tumors that

originate from neuroepithelial cells and can occur in any part of

the central nervous system(CNS) (1). Previously, World Health

Organization(WHO) classified gliomas into grades I-IV, with

grades I and II considered low-grade gliomas (LGG) and grades

III and IV considered high-grade gliomas (HGG) (2), with a median

survival of 14 months for glioblastomas (grade IV) and more than 7

years for grades II and III gliomas (3, 4). However, many studies

have reported that the prognosis of gliomas is not related to the

pathological grade, but is mainly based on the molecular

characteristics of the tumor, and if the same genotype exists,

similar biological behavior and prognosis may exist even if the

tumors have different pathological grades (5, 6). The 2016 WHO

CNS tumor classification included molecular features, particularly

isocitrate dehydrogenase (IDH), which is divided into IDH mutant

(IDH-M)and IDH wild type(IDH-W),on a histological basis for the

first time and used it as one of the important bases for molecular

typing of gliomas (7, 8). Low-grade gliomas with IDH-W are similar

to glioblastomas in terms of molecular features and prognosis, while

IDH-M gliomas have a better prognosis than IDH-W (9, 10). The

impact of total tumor resection on the prognosis of low-grade

gliomas has been reported to depend on IDH mutation status (11).

Therefore, preoperative prediction of IDH status is necessary for

appropriate treatment planning.

Currently, IDH genotypes are identified mainly by sequencing

or immunohistochemistry of tumor specimens, which can only be

obtained after surgery, and even biopsies of unresectable gliomas

carry the risk of neurological impairment, and the small samples

obtained do not reflect the full heterogeneity of the entire tumor (6,

12, 13). To overcome these limitations, there is an urgent need to

establish a non-invasive technique to identify the IDH genotype of

the tumor (14, 15), thus MRI examination is of great value in the

preoperative diagnosis of glioma. At this stage, studies have

evaluated the performance of various machine learning

algorithms in predicting glioma genotypes (16–20). High-

throughput features from MRI have been shown to be highly

advantageous and effective in predicting the classification of IDH

(15). Conventional MRI examinations correlate with IDH genotype

and its prognosis by tumor morphology, border and enhancement,

but most of them rely on the subjective diagnosis of radiologists and

cannot be analyzed comprehensively from the whole tumor area.

Radiomics can extract a large number of intrinsic features that

cannot be observed by the naked eye and analyze the shape and

texture of images (14, 21–23), which shows great advantages and

values in the diagnosis of glioma.

In recent years, studies on preoperative prediction of tumor

genotype by radiomics have been widely carried out, and the

methods and results of different studies are not the same. Zhang

et al. (18) predicted IDH-M in LGGs preoperatively by

multiparametric MRI radiomics model and obtained AUC value

of 0.83, with T2-weighted imaging(T2WI) images being the most

important.Another study titled “Predicting IDH Mutation Status in

Low-Grade Gliomas Based on Optimal Radiomic Features
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Combined with Multi-Sequence Magnetic Resonance Imaging,

2022 (24)” concluded that a multiparametric radiomics model of

T2-weighted-fluid-attenuated inversion recovery (T2-FLAIR) is

most effective in distinguishing IDH mutation status in low-grade

gliomas. However, Niu et al. (20) found that contrast-enhanced T1-

weighted imaging (CE-T1WI) radiomics model could effectively

predict IDH genotype in high-grade glioma, which is inconsistent

with the results of the the two aforementioned studies. Therefore,

despite numerous studies on using radiomics models to predict the

IDH genotype status of gliomas, the research results are not

conclusive and still exhibit certain differences. Further research

frommore clinical centers is required to enhance the accuracy of the

model’s results. Sun et al (25) concluded that a combined machine

learning algorithm exhibits excellent predictive performance in

non-invasively predicting the molecular subtypes of lower-grade

glioma (LGG) preoperatively. Several studies have incorporated

clinical data into radiomics to build a combined model and found

superior results (24–27). Zhou et al (28) and Tan et al (27).

concluded that incorporating age information can improve the

predictive results of the models. Furthermore, compared to

imaging features, age information has a higher predictive value.

This finding is of great importance for clinical practice, as clinical

information can be obtained preoperatively and can provide more

valuable information for treatment and prognosis. Therefore, more

research results are needed to corroborate this conclusion.

Furthermore, several studies have integrated functional sequences

like perfusion⁃weighted imaging(PWI) and diffusion tensor

imaging(DTI) to develop radiomics models for the prediction of

IDH gene status in gliomas (29, 30). These studies have achieved

satisfactory outcomes. However, a meta-analysis (1) indicates that

despite the growing adoption of advanced imaging sequences for

constructing feature models, traditional MRI sequences exhibit

superior specificity in predicting IDH gene status in

gliomas.Currently, most research is limited to studying low-grade

or high-grade gliomas, which are limited by pathological findings

and have variable results.

In this study, all high-grade and low-grade gliomas were

included and constructed radiomics models based on

multiparametric MRI sequences, including T1WI, T2-FLAIR, CE-

T1WI, and apparent diffusion coefficient (ADC).Additionally, a

combined model of radiomics features and clinical data has been

established, making the model results more stable and enabling a

more comprehensive prediction of the applicative value of the IDH

genotype in gliomas.
Materials and methods

Patients

Clinical and radiological data of 132 patients with glioma who

underwent preoperative MRI at the Aerospace Center Hospital

from December 2018 to October 2022 were retrospectively

collected. According to WHO classification of central nervous

system tumors, the pathological findings were grade II-IV glioma.
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Inclusion criteria were the following: (1) pathological data reported

as glioma; (2) preoperative cranial MRI examination; (3)Patients

over 18 years old;(4) complete clinical data; (5) no history of other

brain tumors. Exclusion criteria: (1) preoperative radiotherapy; (2)

poor quality MRI images with heavy artifacts; (3) incomplete or

missing clinicopathological data. The study finally included 114

patients with glioma, including 64 males and 50 females. Among the

114 patients, 83 were IDH-W and 31 were IDH-M. Clinical

information of patients was collected, including age, gender,

pathological grade of glioma, whether peritumoral edema,

whether necrosis was present in the tumor, whether the tumor

was enhancing, and location of the lesion. Patients were randomly

divided into training and validation cohort according to the ratio of
Frontiers in Oncology 03
7:3. A flow diagram of patients is shown in Figure 1. This paper is a

retrospective study, which was approved by our ethical committee.
MRI acquisition

MRI examination was performed using a 3.0T MRI scanner (skyra,

Simens, Germany) and an 8-channel phased-array coil. The patient was

examined in the supine position in head advanced scanning mode.

Conventional MRI scan sequence and parameters: T1WI: Repetition

time(TR)=1800ms, Echo time(TE)=8.5ms, Field of view(FOV)=

240×240mm2,matrix=256×256, layer thickness=5mm; T2WI:

TR=4000ms, TE=94ms, matrix=256×256, FOV=240×240mm2, layer
FIGURE 1

Flow diagram of the study population.
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thickness=5mm; Contrast-enhanced T1-weighted imaging(CE-T1WI):

TR=1800ms, TE=9ms,FOV=240×240mm2, matrix= 320×320,layer

thickness 5mm. The contrast agent was gadopentetate glucosamine at

a dose of 0.1 mmol/kg and a flow rate of 2.0-3.0 ml/s. The DWI

sequence was implemented with b values of 0 and 1000 mm 2/s.

TR=4300ms, TE=64ms, matrix= 164×164, FOV=240× 240mm2; layer

thickness 6 mm. Apparent diffusion coefficient(ADC) maps were

performed on the the workstation was generated automatically by DWI.
Data preprocessing and ROI segmentation

The images were analyzed separately and independently by two

radiologists with 3 years of experience in neurological MRI diagnosis

using a double-blind method, and each tumor was manually outlined

layer by layer, and the region of interest (ROI) of the entire tumor was

manually mapped using the Deepwise Multimodal Research Platform

version 2.2 (https://keyan.deepwise.com, Beijing Deepwise & League of

PHD Technology Co., Ltd, Beijing, China.). The outline included tumor

enhancement and areas of necrosis and cystic changes, but not

peritumoral edema (Figure 2). Two radiologists with 3 years of

experience in cranial MRI diagnostics simultaneously outlined regions

of interest and extracted features for interclass correlation coefficients

(ICC). One of the radiologists outlined and extracted features again after

2 weeks and compared them with the first features to evaluate the

concordance of imaging histology features within the group. features

with ICC > 0.75 were considered to have better concordance.
Feature extraction

All images were resampled to 2 mm×2 mm×2 mm for the same

resolution, and the intensity of them were scaled to 0-100 before
Frontiers in Oncology 04
radiomics feature extraction. For feature extraction, a total of 10

image filtering methods were applied to the images. The specific

details of these filtering methods can be found in Supplementary

Table S1. These methods involved mathematical processing

techniques such as Laplacian of Gaussian (LoG) filtering, wavelet

filtering, gradient calculation, Local Binary Patterns (LBP) in both

2D and 3D, as well as non-linear intensity transformations like

square, square root, logarithm, and exponential.It is important to

note that the features were not only extracted from the original

image but also from the images subjected to the aforementioned

preprocessing steps.

The features we analyzed in this study included the first-order

features, the shape features. The texture features included the gray-

level co-occurrence matrix (GLCM), gray-level run-length matrix

(GLRLM), gray-level size zone matrix (GLSZM), and gray-level

dependence matrix (GLDM). These features capture various aspects

of the image texture, providing information about the spatial

relationships and patterns within the image (21, 31–33).

Overall, a total of 1906 radiomics features were extracted for

each lesion in the study, including features derived from both the

original and filtered images. These features offer a comprehensive

representation of the lesion characteristics, potentially enabling

more accurate and detailed analysis in the context of the study.
Feature selection and radiomics model
construction

Different features have different means and variances, which can

vary widely; we performed Z-score normalization, and after

normalization, Z now equals 0 and STD equals 1, making all features

comparable. The features were then analyzed by the Mann-Whitney U-

test, and features with two types of differences (P<0.05) were retained.
FIGURE 2

Examples of ROI segmentation.
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To eliminate severe covariance, the linear correlation coefficient r
between features was first calculated, and one of the features was

removed when r ≥ 0.75 until the linear correlation coefficient

between all feature pairs was less than 0.75. The extracted features are

reduced and transformed using principal component analysis (PCA).

The PCA features obtained after conversion retain the most important

information in the original features, alleviate noise and redundant

information interference to a certain extent, and eliminate the

influence of the original features on each other. On this basis, feature

selection was performed for each feature and label pair using the F-test,

and all features were ranked by histological grading to calculate

individual F-values, and selection based on this ranking ensured that

themost informative ones could be selected. Finally, multi-factor logistic

regression analysis was performed to build a radiomics model.

Logistic regression model was used to build the prediction

model of IDH. The area under the curve (AUC) of the receiver

operating characteristic (ROC) was used to evaluate the diagnostic

efficiency of the model (0.5 < AUC < 0.7 for low diagnostic

efficiency, 0.7 < AUC < 0.9 for moderate diagnostic efficiency,

and 0.9 < AUC for high diagnostic efficiency), and calculate their

sensitivity, specificity and accuracy. Calibration curves were plotted

to analyze the model calibration efficacy.
Clinical model construction

Clinical characteristics were studied for gender, grading, and

age. Radiologists with 15 years of experience were evaluated for

imaging features including tumor border (well or ill), cystic necrosis

(yes, no), peritumor edema (yes, no), tumor enhancement, tumor

site (frontal, occipital, parietal, temporal, central, cerebellum,two or

more), and univariate analysis was performed to identify potential

clinico-radiological differences between the IDH-M and IDH-W

groups in the training and validation cohorts that were significantly

different characteristics (Table 1). A multifactorial logistic

regression approach was used to build clinical model.
Statistical analysis

The IBM SPSS 25.0 (https://www.ibm.com) software was used,

and comparisons of measures that conformed to a normal

distribution with homogeneous variances were performed using

the independent samples t test, otherwise the Mann-Whiney U test

was used. Count data were analyzed by chi-square test, and P < 0.05

was considered a statistically significant difference.
Results

Clinicopathological data

A total of 114 patients were finally enrolled and randomly

assigned to the training cohort (n = 79) and validation cohort (n =

35) in this study. There were 64 males and 50 females with an

average age of 50.3 ± 15.2 years. The clinical data of the patients are
Frontiers in Oncology 05
shown in Table 1. Among all clinical characteristics, age was the

count data, which was tested to be not normally distributed, so the

Mann-Whiney U test was used. The rest of the characteristics were

measures and the chi-square test was used. The results showed that

age and whether the tumor was enhanced in the clinical data were

statistically significant (P < 0.05); the differences in gender,

peritumoral edema, lesion site, and tumor necrosis between the

two groups were not statistically significant (P > 0.05).
Radiomics feature selection

The mean ICC of these features was 0.792 (95% CI 0.678 to

0.883), showing good interobserver agreement. We extracted 1906

features from each sequence (396 first-order features, 14 shape

features and 1496 texture features including 484 Gray Level Co-

occurence Matrix (GLCM), 352 Gray Level Run-Length Matrix

(GLRLM), 352 Gray Level Size Zone Matrix (GLSZM), and 308

Gray Level Dependence Matrix (GLDM). In total, 7624 radiomics

features were extracted from four MRI single sequences for each

patient. After calculating the linear dependent coefficient, 5868 out of

7624 features remained. After redundancy reduction, 242 features

were selected for the subsequent analysis. Finally, the most significant

features were selected by F-test to build a prediction model by logistic

regression method, including five features on T1WI, six features on

CE-T1WI, four features on T2-FLAIR, and four features on ADC. For

T1WI+CE-T1WI + T2-FLAIR + ADC images, eight features were

selected. The selected radiomics features are listed in Table 2.
Performance of the radiomics models

T1WI, CE-T1WI, T2FLAIR, ADC and T1WI+CE-T1WI + T2-

FLAIR + ADC models produced AUC values of 0.940, 0.947, 0.947,

0.932 and 0.974 in the training cohort and 0.780, 0.848, 0.792, 0.764,

0.872 in the validation cohort. The ROC curves, waterfall plots and

boxplots are shown in Figures 3, 4. The accuracy, sensitivity and

specificity of the radiomics models are shown in Table 3. The results

showed that the multiparametric model of T1WI + CE-T1WI + T2-

FLAIR + ADC had the best diagnostic efficacy, followed by the CE-

T1WI radiomics model.
Performance of the clinico-radiological
model

In the analysis of clinical data, the age of the patient and

whether the tumor is intensified or not are statistically significant.

In this study, these two characteristics were analyzed as a clinical

model, and the AUC values of 0.960 and 0.804 were obtained for the

training and validation cohorts. The clinical model was analyzed

combined with the radiomics model, and the AUC values for the

training and validation cohorts were 0.963 and 0.892, respectively,

showing that the combined clinical-radiological model had higher

diagnostic efficacy than the common radiological model. Table 3

summarizes the sensitivity, specificity and accuracy of the clinico-
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radiological model. the ROC curves, waterfall plots and boxplots are

shown in Figures 3, 4. Among all models, the clinical–radiomics

model including eight radiomics features and two clinical features

achieved a performance with a classification accuracy = 0.828 and

AUC = 0.892. Tests results for all variables included in the model

are listed in Supplementary Table S2.
Discussion

In this study, the IDH genotype of grade II-IV glioma was

predicted and analyzed based on a multiparametric MRI radiomics

model, and the clinical data were statistically significant in terms of

patient age and whether the tumor was enhancing or not, and the

clinical model and radiomics model were combined for prediction.

The combined multiparametric model of T1WI + CE-T1WI + T2-

FAIR + ADC had the best diagnostic performance. Thus, it can be
Frontiers in Oncology 06
seen that features obtained jointly from MR images of

multiparametric sequences can better predict glioma IDH

genotypes with higher diagnostic performancd than single sequence

studies, and that combined radiomics features of multiparametric

sequences can quantify comprehensive information on glioma

heterogeneity. CE-T1WI contains information on local

angiogenesis and blood-brain barrier disruption of the tumor. T2-

FLAIR reflects the anatomical information of the tumor, and ADC

provides information on the structure and density of the tumor cells.

we also found that the diagnostic performance of the radiomics

model of CE-T1WI was the highest in single-sequence studies, and its

diagnostic performance was higher than that of ADC maps. some

studies have shown that DWI sequences are not grading or stable

indicator of molecular subtypes, which may be responsible for this

result (29–34).

We finally extracted the most significant feature including five

features on T1WI, six features on CE-T1WI, four features on T2-
TABLE 1 Clinical and radiological characteristics of patients.

Training cohort (n=79) P Validation cohort (n=35) P

IDH-W
(n=58)

IDH-M
(n=21)

IDH-W
(n=25)

IDH-M
(n=10)

Gender 0.504 0.829

Male 31 (53%) 13 (60%) 14 (52.9%) 6 (66.7%)

Female 27 (47%) 8 (40%) 11 (47.1%) 4 (33.3%)

Age (years) 59.7 ± 15.8 44.4 ± 11.8 <0.001 56.6 ± 19.5 40.3 ± 13.5 <0.001

Grade 0.873 0.350

II 12 (21.2%) 4 (24%) 4 (17.6%) 3 (33.3%)

III 14 (25.8%) 7 (32%) 5 (17.6%) 2 (16.7%)

IV 32 (53.0%) 10 (44%) 16 (64.7%) 5 (50%)

Peritumoral edema 0.304 0.867

yes 52 (87.9%) 17 (84%) 22 (82.4%) 9 (83.3%)

no 6 (12.1%) 4 (16%) 3 (17.6%) 1 (16.7%)

Cystic and necrosis 0.924 0.714

yes 38 (62.1%) 14 (56%) 19 (76.5%) 7 (66.7%)

no 20 (37.9%) 7 (44%) 6 (23.5%) 3 (33.3%)

Enhancement 0.02* 0.09

yes 56 (95.5%) 17 (80%) 23 (94.1%) 7 (100%)

no 2 (4.5%) 4 (20%) 2 (5.9%) 3 (0%)

Tumor location 0.742 0.524

Frontal lobe 11 (18.2%) 7 (40%) 5 (17.6%) 3 ( (33.3%))

Temporal lobe 12 (19.7%) 5 (16%) 4 (11.8%) 2 (16.7%)

Occipital lobe 10 (15.2%) 2 (8.0%) 3 (11.8%) 2 (16.7%)

Parietal lobe 1 (1.5%) 0 (0%) 0 (0%) 0 (0%)

Central area 15 (31.8% 4 (20%) 10 (41.2%) 3 (50%)

Cerebellum 2 (3.0%) 0 (0%) 1 (5.9%) 0 (0%)

Two or more 7 (10.6%) 3 (16%) 2 (11.8%) 0 (0%)
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FLAIR, and four features on ADC. For T1WI+CE-T1WI + T2-

FLAIR + ADC images, eight features were selected which included 2

first-order features and 6 texture features. The first-order features

are obtained by calculating the tumor’s gray value and can respond

to the tumor’s gray intensity distribution. They also capture the

tumor’s heterogeneity, representing low-dimensional information

easily perceived by vision. Texture features, including GLSZM,

GLCM, and GLRLM, quantify the texture or tissue distribution

within the tumor. These features are difficult to perceive visually but

can provide information about the structure of tumor cells and the

microenvironment (13, 22). In our study, we used filters to extract
Frontiers in Oncology 07
radiomics features from the original images. Most of the final

independent imaging features comprise wavelet features, which

analyze the spatial frequency changes in a comprehensive way.

These features effectively capture high-frequency and low-

frequency signals in the image, allowing for a detailed analysis of

texture changes. The wavelet features can describe clinical problems

related to the visual features of tumor images (30). Additionally, it is

believed that wavelet features may contribute to our understanding

of tumor morphology, pathophysiology, and proteomics (35).

In 2016, WHO classified gliomas into mutant and wild-type

according to the IDH gene in the classification of central nervous
TABLE 2 Selected radiomics features based on T1WI, CE-T1WI, T2-FLAIR, ADC, T1WI+CE-T1WI+ T2-FLAIR + ADC model.

MRI sequences
Feature
number Selected Features coef relative_to_max

T1WI 5 wavelet-HHL_glcm Contrast_T1 -0.8068 -1

lbp-2D_glszm_LoWGrayLevelZoneEmphasis_T1 -0.2824 -0.3501

wavelet-LLH_qlszm_SmallAreaEmphasis_T1 0.2108 0.2613

lbp-2D_glszm_GrayLevelVariance_T1 0.4451 0.5517

lbp-3D-
k_gldm_SmaliDependenceHighGrayLevelEmphasis_T1 0.5541 0.6868

CE-T1WI 6 wavelet-HLH glcm ClusterShade_CE-T1WI 0.6507 1

lbp-3D-m2_glszm_GrayLevelNonUniformityNormalized_CE-
T1WI 0.4822 0.7411

wavelet-LHH firstorder Skewness_CE-T1WI 0.4627 0.7111

wavelet-HHH_firstorder_Mean_CE-T1WI -0.0938 -0.1442

logarithm_gldm_DependenceNonUniformityNormalized_CE-
T1WI -0.4393 -0.6751

lbp-2D_firstorder_Mean_CE-T1WI -0.6309 -0.9695

T2-FLAIR 4 wavelet-HHH firstorder Skewness_T2 0.7012 1

logarithm_g|cm_ClusterShade_T2 0.5346 0.7625

lbp-2D _gIrlm_ShortRunHighGrayLevelEmphasis_T2 0.4411 0.6291

wavelet-
HLL_gldm_LargeDependenceHighGrayLevelEmphasis_T2 -0.2599 -0.3707

ADC 4 lbp-3D-k_glcm_Correlation_ADC 0.6633 1

wavelet-LHL firstorder Mean_ADC 0.4714 0.7106

lbp-2D_glszm_SizeZoneNonUniformity 0.0671 0.1012

exponential firstorder90Percentile_ADC -0.2065 -0.3113

T1WI+CE-T1WI+ T2-
FLAIR + ADC 8

lbp-3D-m2_glszm_GrayLevelNonUniformityNormalized_CE-
T1WI -0.7622 -1

wavelet-HHH firstorder Skewness_T2 -0.6573 0.8624

lbp-2D_glszm_LoWGrayLevelZoneEmphasis_T1 -0.6396 -0.8391

wavelet-HLH glcm ClusterShade_CE-T1WI -0.5686 -0.746

wavelet-HHL_glcm Contrast_T1 -0.2276 -0.2986

lbp-2D _gIrlm_ShortRunHighGrayLevelEmphasis_T2 0.3577 0.4693

wavelet-LHH firstorder Skewness_CE-T1WI 0.378 0.496

lbp-3D-k_glcm_Correlation_ADC 0.568 0.7452
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system tumors (7, 8), and the IDH gene is an important genetic

marker of glioma that plays an important role in glioma

metabolism, pathogenesis and progression (2, 10). A growing

number of studies have shown the clinical importance of

genotype in developing treatment plans and assessing prognosis

(20–23). Pathology is still the gold standard for diagnosis, but

histological examination, as an invasive test, is invasive and has
Frontiers in Oncology 08
sample error, especially when stereotactic biopsy is performed. In

this study, we attempted to predict IDH genotype of glioma non-

invasively before surgery by the method of radiomics model based

on MRI images, and provide some reference and guidance for

clinical selection of surgical and postoperative radiotherapy

regimens, and the results showed that this method can predict

IDH genotype well.
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FIGURE 3

The ROC curves of the clinical model, radiomics models of T1WI, CE-T1WI, T2FLAIR, ADC, and T1WI+CE-T1WI + T2-FLAIR + ADC, and combined
model in the training cohort (A–G) and validation cohort (H–N) and the waterfall plot of the validation cohort (a-g).
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Radiomics can dig deeper into the intrinsic features of medical

images through machine learning methods and extract a large

number of quantitative features that cannot be observed by the

naked eye, which can support the implementation of precision

medicine and individualized treatment. Some radiomics-based

studies have also focused on the modeling of conventional

sequences, and the obtained conventional structural sequences

can reveal basic information about the tumor, such as the

location, size, whether the glioma is combined with necrotic

cystic lesions, the extent of edema, and the blood supply, which is

helpful to provide more informed clinical information (1, 13, 23,

25). In this paper, the clinical data of the tumors were compiled in

detail and statistically analyzed, in which age and whether the

tumor intensified were statistically significant, indicating that age

and tumor intensification were independent risk factors for

predicting the IDH genotype of glioma.

Previous studies have suggested that gender is a risk factor for

IDH mutation, potentially due to hormonal fluctuations in females
Frontiers in Oncology 09
(27, 36). However, our study found that gender did not exhibit

significant predictive capability in univariate logistic regression

analysis. This discrepancy underscores the need for additional

research to ascertain the relevance of gender in predictive

models.Although more and more scholars are using advanced

techniques of MRI to analyze the relationship between IDH

genotype and glioma, kim et al. (37) concluded that DWI and

PWI have high diagnostic performance in predicting IDH

mutations in low-grade glioma, with ADC features playing a

significant role.In contrast, our study found that CE-T1WI played

a more significant role, which is inconsistent with the results of this

article.And in addition Park et al. (30) found that adding DTI

imaging histology to conventional serial radiomics significantly

improved the predictive accuracy of IDH status in low-grade

glioma. However, a meta-analysis (1) revealed that despite an

increasing number of scholars using more advanced examination

sequences to establish feature models, the conventional MRI

sequence imaging model showed better specificity in predicting
FIGURE 4

The boxplots of the clinical model, radiomics models of T1WI, CE-T1WI, T2FLAIR, ADC, and T1WI+CE-T1WI + T2-FLAIR + ADC, and combined
model in the training cohort and validation cohort.
TABLE 3 The performance of the clinical model, radiomics models, and combined model.

Model Performance AUC ACC SEN SPE

T1WI Training 0.940(0.885-0.995) 0.861 0.862 0.857

Validation 0.780(0.620-0.940) 0.74 0.640 0.900

CE-T1WI Training 0.947(0.900-0.994) 0.848 0.862 0.810

Validation 0.848(0.714-0.982) 0.729 0.560 0.800

T2-FLAIR Training 0.947(0.900-0.993) 0.873 0.862 0.905

Validation 0.792(0.615-0.969) 0.771 0.800 0.700

ADC

T1WI+CE-T1WI
+T2-FLAIR+ADC

Training 0.932(0.876-0.988) 0.823 0.809 0.828

Validation 0.764(0.567-0.962) 0.686 0.800 0.640

Training 0.974(0.944-1.000) 0.873 0.952 0.845

Validation 0.872(0.742-0.992) 0.772 0.900 0.680

Clinical Training 0.960(0.922-0.998) 0.886 0.897 0.857

Validation 0.804(0.600-1.000) 0.729 0.885 0.600

Combined Training 0.963(0.927-0.990) 0.861 0.879 0.810

Validation 0.892(0.782-1.000) 0.828 0.760 0.950
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IDH genotype.Niu et al. (20) found that a radiomics model based on

preoperative enhanced MR was effective in predicting the IDH gene

in high-grade gliomas, this is consistent with the research findings

of this study, but we are not limited to a single MRI sequence.

Instead, it is based on the analysis of multiple-parameter

conventional MRI sequences and combined models, which are

more stable and accurate. The present study was not limited to a

single MRI sequence, but modeled and combined models based on

multiparametric conventional MRI sequences for analysis. Tan et al.

(27) studied the use of age as a clinical model to predict IDH

mutations in astrocytoma based on radiomics, clinical and

combined models and found that the combined model had higher

diagnostic performance, this part of the research results is

consistent with the findings of this study, but it only indicates the

importance of age as an independent risk factor for preoperative

prediction of IDH mutation in gliomas. However, this study also

includes tumor enhancement as a variable in the model.

Importantly, both age and tumor enhancement demonstrate

satisfactory results as important variables in the model, and

clinical data can be easily obtained before surgery. This is crucial

for the stability of the model and its clinical application. Li et al. (17)

extracted features from the enhanced, non-enhanced, necrotic,

edematous, tumor core, and six regions of the whole tumor on

multiparametric MRI, respectively, and showed that multiregional

radiomics models can predict the mutational status of glioblastoma

preoperatively. Most studies have focused on high-grade gliomas or

low-grade gliomas for experimental studies (16, 18, 20, 23–25, 31,

38). The present study did not include pathological grading in the

model characteristics, making the study unrestricted by

pathological grading, extending the clinical application of

radiomic models, and offering the possibility of preoperative

prediction of IDH gene status in glioma.

This study still has some limitations. Firstly, the sample size of

our study is relatively small, which may obscure the predictive value

of clinical data and radiomics features of patients. This should be

further investigated in larger cohorts. Secondly, we conducted a

retrospective study and selected the IDH genotype for analysis. As

we gather more cases, we will further investigate the relationship

between abnormal expression of other important genotypes and

imaging features. Lastly, our study is a single-center study, and in

the future, it is necessary to collect multi-center data to validate the

stability performance of the radiomics model.
Conclusion

The multiparametric radiomics model performs better than

other single sequence models in predicting the IDH genotype of

gliomas. After incorporating features such as patient age and

whether the tumor was enhancing or not, the results of the

clinical-radiomics model are more satisfactory, indicating that the

combined model is an effective tool for predicting the IDH

genotype. Furthermore, the variable parameters obtained in the

model contribute differently to the prediction of the IDH genotype.

These findings will be beneficial for future research on using brain

tumor imaging to predict molecular status and tumor invasiveness.
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