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Background: Breast cancer is the key global menace to women’s health, which

ranks first by mortality rate. The rate reduction and early diagnostics of breast

cancer are the mainstream of medical research. Immunohistochemical

examination is the most important link in the process of breast cancer

treatment, and its results directly affect physicians’ decision-making on follow-

up medical treatment.

Purpose: This study aims to develop a computer-aided diagnosis (CAD) method

based on deep learning to classify breast ultrasound (BUS) images according to

immunohistochemical results.

Methods: A new depth learning framework guided by BUS image data analysis

was proposed for the classification of breast cancer nodes in BUS images. The

proposed CAD classification network mainly comprised three innovation points.

First, a multilevel feature distillation network (MFD-Net) based on CNN, which

could extract feature layers of different scales, was designed. Then, the image

features extracted at different depths were fused to achieve multilevel feature

distillation using depth separable convolution and reverse depth separable

convolution to increase convolution depths. Finally, a new attention module

containing two independent submodules, the channel attention module (CAM)

and the spatial attention module (SAM), was introduced to improve the model

classification ability in channel and space.

Results: A total of 500 axial BUS images were retrieved from 294 patients who

underwent BUS examination, and these images were detected and cropped,

resulting in breast cancer node BUS image datasets, which were classified

according to immunohistochemical findings, and the datasets were randomly

subdivided into a training set (70%) and a test set (30%) in the classification

process, with the results of the four immune indices output simultaneously from

training and testing, in the model comparison experiment. Taking ER immune

indicators as an example, the proposed model achieved a precision of 0.8933, a

recall of 0.7563, an F1 score of 0.8191, and an accuracy of 0.8386, significantly

outperforming the other models. The results of the designed ablation experiment
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Abbreviations: ACC, accuracy; BACH, Breast Cancer Hist

RADS, Breast Imaging Reporting and Data System; BPN, backp

network; BSConv3×3, blueprint separable convolutions

ultrasound; CA, coordinate attention; CAD, computer-aided

channel attention module; CBAM, convolutional block attent

convolutional neural network; CUDA, Compute Unified De

DL, distillation layer; DPN, dual path network; DWCon

separable convolution 3×3; ECA, efficient channel attent

receptor; FN, false negative; FP, false positive; F1, F1 score

error linear unit; H&E, hematoxylin–eosin staining; HER-2,

growth factor receptor-2; MFD-Net, multistage feature distillat

magnetic resonance imaging; PR, progesterone receptor; PRE

recall; ROI, region of interest; SAM, spatial attention module

exception; SOTA, state-of-the-art; TMB, tumor mutation

negative; TP, true positive; ViT, Vision Transformer; 3D, thre
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also showed that the proposed multistage characteristic distillation structure

and attention module were key in improving the accuracy rate.

Conclusion: The extensive experiments verify the high efficiency of the

proposed method. It is considered the first classification of breast cancer

by immunohistochemical results in breast cancer image processing, and it

provides an effective aid for postoperative breast cancer treatment, greatly

reduces the difficulty of diagnosis for doctors, and improves work efficiency.
KEYWORDS

computer-aided diagnosis, deep learning, neural network, immunohistochemistry,
node of breast cancer
1 Introduction

Breast cancer is a malignant tumor of the mammary glands with

the highest incidence rate among women. It is difficult to treat if

found in advanced stages, but early detection can significantly

increase survival and improve the lives of millions of women.

Breast ultrasound (BUS) is a widely adopted imaging modality

for early breast cancer diagnosis and has the advantages of being

non-invasive, safe, and relatively inexpensive; BUS can reduce the

workload of radiologists and improve diagnostic accuracy (1). BUS

examination is divided into categories; BUS is a common mode,

which can show breast tomographic anatomy information and

dynamically observe the dynamic changes of breast tissue

structure over time in real time. However, in breast image

acquisition and interpretation, the accuracy of ultrasonography is

highly dependent on the skill and expertise of the radiologist (2). To

overcome mistakes in judgment due to multiple causes, a computer-

aided diagnostic (CAD) program was applied to BUS image

processing. CAD is an image analysis procedure that enables the

morphological analysis of breast lesions on BUS for effective

detection and classification.
ology images; BI-

ropagation neural

3×3; BUS, breast

diagnosis; CAM,

ion module; CNN,

vice Architecture;

v3×3, depthwise

ion; ER, estrogen
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e-dimensional.
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Immunohistochemistry is mainly based on the qualitative,

localized, or quantitative detection of a cell’s corresponding

antigen or antibody with a labeled antibody or antigen, observed

with a microscope or electron microscope after a chemical

chromogenic reaction. The microscopic morphological

appearance of breast tissue has always been the basis of

chemotherapeutic diagnosis by pathologists. Still, as the medical

level progresses and public health claims continue to improve, the

pathological specimens also progress toward a minimally invasive

direction (3). Due to the heterogeneity of cancer tumor tissue, a

large number of cancerous lymph nodes with different

manifestations on different immune cells have emerged, posing a

major challenge to diagnosis (4). For the mammary gland, which

has a rich blood supply and lymphoid tissue distribution, the

malignancy at this site may belong to the primary and may also

metastasize from other sites. Pathologists are equally plagued by

the search for microinvasion in carcinoma in situ or the

presence of vascular tumor thrombus and perineural invasion in

invasive carcinoma (5). Based on this, the application of

immunohistochemical staining techniques has highlighted a great

significance in the pathological diagnosis of breast cancer, and the

commonly used immunological markers for breast cancer are

P63, CK5/6, ER, PR, HER-2, P120, E-cad, EMA, MUC-1, EGFR,

Ki-67, P53, and so on. Using these immunological markers,

pathologists could provide better directions for further diagnosis

and chemotherapy.

Recently, deep learning techniques, especially convolutional

neural networks (CNNs) (6), have successfully solved different

classification tasks using BUS examination in the CAD domain

(7). Following this trend, Rakhlin et al. used several deep neural

network structures and gradient enhancement tree classifiers to

perform two and four classification tasks on breast cancer

histological images (8). Alternatively, Vang et al. improved the

multiclass breast cancer image classification sensitivity of the

normal and benign predicted classes by designing a dual path

network (DPN) to be used as a feature extractor (9). Golatkar

et al. proposed a deep learning-based method for the classification
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of H&E-stained breast tissue images released for the BACH

challenge 2018 by fine-tuning the Inception-v3 neural network

(10). In 2019, Haarburger et al. proposed a 3D CNN and a

multiscale curriculum learning strategy to classify malignancy

global ly based on an MRI of the whole breast (11).

Independently, Park et al. passed the resulting representation to a

hidden layer and then to a soft-max layer to obtain benign and

malignant predictions for each breast image (12). Patil et al.

managed to improve the interpretation of classification results by

localizing microscopic histopathology breast cancer images (13). In

2020, Boumaraf et al. classified mammographic masses into four

assessment categories using the CAD system with modified genetic

feature selection, featuring the backpropagation neural network

(BPN) (4). Alternatively, Kalafi et al. proposed a new framework for

classifying breast cancer lesions using an attention module in

modified VGG16 (14). In 2021, Li pretrained two neural

networks with different structures and used the convolutional

neural network to extract the characteristics of features

automatically, fuse the features extracted from the two structures,

and finally use the classifier to classify the fused feature (15). Mo

et al. first predefined the regions of interest (ROIs) and then

classified the lesion inside the ROIs; then, they used the so-called

HoVer-Trans block to extract the inter- and intralayer spatial

information horizontally and vertically (16). With the

development of immunohistochemical technology, it becomes

more and more involved in cancer classifications. Thus, Chen

e t a l . p ropos ed a new method fo r p r ed i c t i ng the

immunohistochemical index by using contrast-enhanced

ultrasound for several minutes (17). More recently, Jiang et al.

added an image classifier that utilized the same global image

features to perform image classification (18). The above studies

were focused on the binary and multiclass identification of benign

and ma l i gn an t b r e a s t c anc e r med i c a l imag e s . A s

immunohistochemistry techniques advance, the classification of

breast cancer images progressively al igns with these

developments; this paper mainly extracts breast cancer nodes

through a target detection network and then classifies breast

nodules into immunohistochemical categories.

This study attempts to make the CAD process more consistent

with radiologists’ diagnostic considerations by introducing a novel

deep learning framework. The main contributions of this study are

as follows:

1) We constructed a multistage feature distillation network

(MFD-Net) based on CNN; the network, initially created and

applied to image classification, was based on the innovative

concept of extracting image features at multiple levels, where

feature layers of different scales were extracted for the

classification of breast cancer nodes in the fine-grained domain.

By increasing different convolution depths using the depthwise

separable convolution and the reverse one, image features extracted

at different depths were fused to achieve multilevel feature

extraction, further improving the depth and performance of

feature extraction. In the subsequent process of image

classification, a significant improvement in accuracy was achieved.

2) We proposed a new attention module called ESCA attention

block; the newly added attention module optimized the
Frontiers in Oncology 03
classification network in spatial and channel directions

simultaneously. This allowed the network to focus on key

information within the feature maps extracted at each layer,

thereby improving the classification accuracy. Compared with

other attention modules, this module had a greater capacity to

enhance the performance of the classification network.

3) We created, annotated, organized, and used a breast cancer

node dataset containing 500 node images for the experiments.

Multiple scales of cancerous nodes were detected through the

YOLOv7 target detection network; nodes were cropped in the

target detection result map to extract the ROI from the node

images. Then, according to the immunohistochemical results of

these breast tissues, the breast node image ROIs were classified by

four immune indicators [estrogen receptor (ER), progesterone

receptor (PR), human epidermal growth factor receptor 2 (HER-

2), and Ki-67] to form a multilabel classification dataset.

4) To the best of the authors’ knowledge, this study is the first to

classify BUS image datasets based on immunohistochemistry

results. Additionally, we have introduced a novel classification

network for the first time and ultimately applied this proposed

classification network to BUS image datasets. Extensive experiments

have demonstrated that the proposed method outperforms other

advanced methods in classifying multiple immunohistochemical

indicators of breast cancer ultrasound images. This achievement

can be instrumental in screening large-scale breast cancer diseases.

Extensive experiments proved that the proposed method achieved

superior performance than other advanced methods in classifying

multiple immunohistochemical indicators of breast cancer

ultrasound images, which can be instrumental in screening large-

scale breast cancer diseases.

The rest of this paper is organized as follows. We initiated by

outlining the processing of the BUS image dataset we established

and its corresponding immunohistochemistry results in Section 2.

Following that, we introduced the proposed methodology in Section

3. After that, we described the experiments and results and next

provided a comparative discussion of our results in Section 4.

Finally, the main conclusions and limitations of the proposed

approach were drawn in the last section.
2 Materials

The Ethics Committee of the Provincial Hospital Institutional

Review Committee of Shandong First Medical University, China,

approved the protocol of this retrospective study. The patients

underwent ultrasonic and immunohistochemical examinations for

surgical planning between January 2020 and May 2022. A total of

500 axial B ultrasound images were retrieved from 294 patients who

underwent B ultrasound images for the assessment as “suspicious”

breast cancer nodes in the earlier examinations. We have enhanced

the dataset and expanded each ultrasound image to 20 and 500 BUS

datasets to 10,000 using rotation, mirroring, brightness change,

Gaussian noise, and other data enhancement technologies. Breast

ultrasonography is the use of ultrasonic physical signals to diagnose

breast diseases; ultrasound is delivered through the probe in the

human breast to reach the surface of various tissues and organs and
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produces echo signals, collecting strong and weak signals and long

and short echo times, thus forming the structure of human breast

tissue image examination (16). Typical breast cancer node B

ultrasound images are shown in Figure 1. For each image,

experienced radiologists draw the ground truth ROI for cancer

node detection, such as the red box in Figure 1.

Breast cancer node detection results are obtained by testing all

BUS images through the YOLOv7 detection network (19).

The specific process of inputting images into the YOLOv7

network is described as follows: First, ultrasound images of breast

cancer are processed and resized to 640 × 640 pixels before being fed

into the backbone network. The backbone serves as the central

component of the entire detection network, initially traversing

through four CBS convolutional layers composed mainly of Conv,

BN, and SiLU. Following these convolutional layers, the network

proceeds into the ELAN module, comprising multiple CBS

convolutional layers. The input and output feature sizes remain

constant, with a modification in channel number occurring after the

first two convolutional layers. Subsequent input channels align with

the output channels. In the final stage, there are three MP layers and

the output of ELAN. The MP layers primarily consist of a blend of

maximum pooling layers and convolutional layers, and the outputs

of the three MP layers correspond to the outputs of C3/C4/C5. In

the head section, the feature map C5 obtained from the final output

of the backbone undergoes SPPCSP processing, leading to a

reduction in channel count from 1,024 to 512. The SPPCSP

module, building upon the SPP module, incorporates a concat

operation at the end to merge it with the feature map before the

SPP module. The resulting C5 is initially integrated top-down with

C4 and C3, producing P3, P4, and P5. Subsequently, adopting a

bottom-up approach, P4 and P5 are fused. The channel counts are

adjusted through the outputs P3, P4, and P5. Lastly, a 1 × 1

convolution is applied to predict the objectness, class, and bbox

components. The final breast cancer node image is obtained by

clipping the result of the detection, and all breast cancer node

images are used as the datasets of the classification network. The

above process is shown in Figure 2.

For classification, after obtaining the breast cancer node

datasets of breast cancer, we selected four immune indices in
Frontiers in Oncology 04
immunohistochemistry as the basis for judging the image of

breast nodes; the four indicators are ER, PR, HER-2, and Ki-67.

When cells become cancerous, ER and PR are deleted to varying

degrees. If a cell still retains ER and PR, the growth and proliferation

of that breast cancer cell remain under endocrine regulation, called

hormone-dependent breast cancer; if ER and PR are missing, the

growth and proliferation of this breast cancer cell are no longer

under endocrine regulation, and it is called hormone-independent

breast cancer (20). HER-2 reflects the prognosis situation of breast

cancer, which has a kinase activity and can be detected by

immunohistochemistry, FISH, and so on; HER-2-positive

overexpression, which can be controlled by drugs targeting its

gene overexpression, can inhibit the progression of tumors (21)

effectively. Immunohistochemistry of Ki-67 belongs to the common

detection items in the pathology department, and it is an indicator

representing the value added to the cells. A higher index indicates a

higher degree of malignancy of the tumor cells, which indicates how

well the tumor proliferates. Its higher value, representing the faster

proliferation of tumor cells with a higher degree of malignancy,

tends to simultaneously predict a greater sensitivity to

chemotherapeutic agents and suitability for chemotherapy (22).

Breast cancer node images were classified according to the

immunohistochemical findings corresponding to the ultrasound

images provided by the provincial hospital of Shandong First

Medical University; the results of ER and PR are divided into two

groups: hormone-dependent breast cancer and hormone-

independent breast cancer. When the histochemical result is

regular, hormone-dependent breast cancer is detected; when the

histochemical result is negative, hormone-independent breast

cancer is present. HER-2 can be divided into four types: negative

and positive. Positive expression can also be divided into three

expression results according to the degree of positive expression. In

the immunohistochemical Ki-67 results, 14% is the boundary, less

than 14% is low expression, and more than or equal to 14% is high

expression. If it is more than 60%, it often indicates that the degree

of malignancy is very high, most of which are triple-negative breast

cancer, indicating the possibility of poor prognosis.

Based on statistical validation using the patient’s medical

records, it was found that the negative and positive results of
FIGURE 1

Experienced radiologists draw the ground truth ROI for cancer nodes.
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these four indicators are highly correlated with subsequent

treatment and diagnosis (such as biopsy surgery). Substantial

evidence is available in numerous publications. Junnan Xu has

found that ER, PR, HER-2, and Ki-67 expression levels can predict

the tumor mutation burden (TMB) in breast cancer patients, which

is significant for prognosis and treatment decisions (23). Mustapha

Abubakar et al. researched the combination of ER, PR, HER-2, and

Ki-67 in chemometric analysis for assessing breast cancer images,

concluding that these four indicators greatly impact the

chemotherapy decisions for breast cancer patients (24). Y. Yuan

et al. investigated the expression of ER, PR, HER-2, and Ki-67 in

primary and metastatic breast cancer. They concluded that the

expression of ER, PR, HER-2, and Ki-67 is associated with the

prognosis of breast cancer patients in both primary and metastatic

lesions (25).

Statistical analysis of patients in the BUS image dataset yielded

the following conclusions: in terms of gender, women accounted for

100% of the patients. Regarding age distribution, 13.6% of patients

were between 30 and 40, 78.4% were between 40 and 60, and 8%

were over 60. According to the medical records, 79.8% of patients

had a positive ER status, while 20.2% had a negative ER status. For

PR, 72.2% of patients had a positive status, and 27.8% had a negative

status. Regarding HER-2 expression, 16.4% had a score of 3+, 33.2%

had a score of 2+, 20.2% had a score of 1+, 16% had a score of 0, and

14.2% had a score of −. Regarding Ki-67 expression, 29.8% had low

expression, 57.2% had intermediate expression, and 13% had

high expression.

According to the above classification rules, the datasets of breast

cancer nodes are divided, as shown in Figure 3A. It can be seen from

the figure that the results of classification based only on the

immunohistochemical results show that there are many

classification categories, and different categories have

repeatability. This is a difficult task for breast doctors to judge

and test the prognosis. So, we have established a new classified

dataset based on the shape, status, and activity of each breast cell

observed under the microscope by a breast physician; each immune

index is divided into two categories: severe (+) and mild (−). Four

different patients were selected from the datasets, and the cell tissue
Frontiers in Oncology 05
under the microscope is shown in Figure 3B, while classified

datasets are shown in Figure 3C.
3 Methods

3.1 Multistage feature distillation network

The proposed overall architecture of convolutional neural

networks is a multistage feature distillation network (MFD-Net),

as shown in Figure 4, and the network architecture includes

multilayer DWConv3×3, multilayer BSConv3×3, ESCA attention

block, max pooling layer, fully connected layer, and soft-max

classifier. MFD-Net is the backbone of the network, which is used

to extract features from input images; ESCA attention block is a new

attention mechanism module, which combines channel attention

and spatial attention to enhance the model ability from both spatial

and channel perspectives; finally, through the pooling and full

connection layers, into the soft-max classifier, output

classification results are derived from the four immune indicators.

The proposed CAD network is the first to apply multilabel

classification to breast cancer ultrasound images, demonstrating

superior performance in the image classification process. In this

network, the multilevel feature distillation structure primarily

performs multilevel feature extraction on input feature maps,

combining the extracted multiple feature maps to extract fine-

grained global features in images accurately. Depth separable

convolution significantly reduces convolution parameters,

lowering computational costs and improving the stability of the

classification network. Including the ESCA attention module allows

for capturing more detailed information about the target of interest

while suppressing other irrelevant information.

After the node images are input into the multistage feature

distillation network, the image passes 1×1 convolution and enters

the stage of high-dimensional feature extraction. In MFD-Net, the

number of feature extraction channels will be compressed in a

certain proportion to form two different convolution channels, one

of which enters the multilayer BSConv3×3. The convolution
FIGURE 2

Processing stage of the classification datasets.
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module forms a stacked convolution layer called the depth layer,

and the other enters the multilayer DWConv3×3 convolution

module. After the DWConv3×3 convolution of the feature map is

followed by Conv1×1 convolutions of the feature map, making up

the feature distillation process, called the distillation layer. After

each subsequent multilayer BSConv3×3 convolution in the deep

layer, the feature extraction channel is repeatedly compressed to

form distillation layer branches. Finally, the feature extraction
Frontiers in Oncology 06
results of the depth layer and each distillation layer are fused.

Compression and reduction of the dimension are reduced by

Conv1×1 convolution to obtain the final feature extraction result

as shown in Equation 1.

Fead _ 1m = DL1(Feain), Fead _ 1 = dL1(Fead _ 1m),   Feadepth _ 1

= BL1(Feain) (1)
B

C

A

FIGURE 3

(A) Percentage of datasets of various immune indicators classified according to immunohistochemistry report. (B) Mammary cell diagram of four
patients under a microscope. (C) The diagnosis is made according to the observation of the breast physician under the microscope, and the
diagnostic results are classified into statistical figures of the datasets.
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DL and dL stand for the distillation layer, which generates the

features of the distillation layer, and BL stands for the depth layer,

which gradually extracts the features of fine-grain size to generate

the final features of the depth layer. The distillation layer was first

distilled by DL and then by dL for a second distillation to obtain the

final multilayer distillation characteristics. By analogy, the

remaining feature extraction steps are as follows as shown in

Equation 2.

Fead _ xm = DLx(Feadepth _ (x−1)), Fead _ x

= dLx(Fead _ xm),   Feadepth _ x = BLx(Feadepth _ (x−1)) (2)

Through the distillation features generated by the distillation

layer at different stages and the feature map finally generated by the

depth layer, the channel dimensions are transferred and fused.

Finally, the dimension is reduced and compressed through

Conv1×1 convolution as shown in Equation 3.

FeaFinal = Conv(Concat(Fead1 , Fead2 , Fead3 , Fead4 , , , Fead _ x , , Feadepth _ x))           (3)

Concat means to operate only along the channel dimension.

FeaFinal is a compressed feature, and  Conv (·) represents

Conv1×1 convolution.

3.1.1 Multilayer DWConv3×3 and
multilayer BSConv3×3

As shown in Figure 5A, multilayer DWConv3×3 is mainly due to

changes in the depthwise separable convolution (26). The

DWConv3×3 structure integrates depthwise (DW) and pointwise

(PW), employed for extracting feature maps during feature

extraction. In contrast to conventional convolution operations, this

approach reduces the number of parameters and computational

costs, thereby enhancing the efficiency of feature extraction. The

main change is to propose the depth convolution with different kernel

sizes to form multilayer depth convolution, use three convolution

kernels of different sizes on the new feature map, then combine them,

and use Conv1×1 convolution for the combined feature map scales of

the channel. Finally, use the residual connection to connect the input
Frontiers in Oncology 07
and output (27). The combination method in MFD-Net uses an

additive method; its advantage is that it can extract image features of

different depths and capture more information in space, and the

GELU activation function is added to stabilize model feature

extraction ability (28).

In Figure 5B, multilayer BSConv3×3 is mainly constructed

according to blueprint separable convolutions (BSConv) (29).

Because DWConv3×3 essentially conducts cross-kernel

correlations instead of correlations within a single kernel, the

BSConv3×3 structure involves swapping the order of DW and

PW based on DWConv3×3. This modification enables more

effective separation of standard convolutions, thereby enhancing

the extraction of fine-grained features. The principle of BSConv3×3

is that the convolution kernel of deeply separable convolution will

be optimized and trained using backpropagation, in which

Conv1×1 convolution is first decoupled in low rank. The

principle of the multilayer BSConv3×3 proposed is similar to that

of multilayer DWConv3×3 above, or ordinary depth convolution is

decomposed into depth convolutions of different kernel sizes and

then added.

In Conv1×1 convolution, the weight K is highly correlated in

line direction. Decomposition of Q not only enlarges the

convolution space but also reduces the number of parameters. We

did a low-rank decomposition of the weight K as follows as shown

in Equation 4.

K = KA � KB (4)

where KA and KB are low-rank decompositions of K ; following

the same procedure, low-rank decompositions are again performed

on KA and KB, as illustrated below as shown in Equations 5, 6.

 KA = P � Q0,  KB = Q0 � Q (5)

Q0 = ½m � Q�,m ∈ (0:0, 1:0) (6)

After the above rearrangement, the conventional depth

separable convolution can be transformed to the following

formula. By rearranging the weights kAQ0 1, …   kAQ0 M into the
FIGURE 4

Structural diagram of the multistage feature distribution network.
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M×1×1 array g  kAQ0 , and the weights kBP 1,…   kBP M into theM′×1×1

array f  kBP as shown in Equations 7, 8.

M
0
Q 0 = M � fkAQ0 , N

0
P 0 = M0 � ekBP (7)

NP 0 = N
0
P 0 � B(n) (8)

BSConv comprises three parts: i) the input tensor is projected

into aQ dimensional subspace via a 1×1 pointwise convolution with

kernels   kAQ0 1,…   kAQ0 M. ii) Another 1×1 pointwise convolution

with kernels kBP 1,… kBP M is applied to the result of the first step. iii)

A K×K depthwise convolution with kernels B(1),… B(n) is applied to

the result of step 2.

We extend the image to the space range, where k represents the

convolution kernel depth; suppose the input tensor size is h� w �
di, the output tensor size h� w � dj, so their calculation formula is

h� w � di � dj � k, the input channels are M, and the following

formulae can be obtained as shown in Equations 9–12.

N
0
P 0 = h� w � di �oM

m=0k
2
m,K = k1, k2,…kmf g (9)

NP 0 = h� w � di �oM
m=0k

2
m � B(n),K = k1, k2,…kmf g (10)

NP 0 = (M − 1)� h� w � di � dj

�oM
m=0k

2
m � B(n),K = k1, k2,…kmf g (11)
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NP 0 = h� w � di � (dj �M

+oM
m=0k

2
m)� B(n),K = k1, k2,…kmf g (12)

The above formulae mainly outline the convolution process in

Figure 5B, decompose ordinary depth separable convolutions into

separable convolutions with multiple different depths, and finally

output the characteristic graph through residual connection, and the

specific steps are as follows: 1×1 convolution + 1×1 convolution +

(3×3 convolution + 4×4 convolution + 6×6 convolution).

3.1.2 ESCA attention block
With the wide application of the human attention mechanism,

the visual attention mechanism is gradually popularized in neural

networks, such as the squeeze-and-excitation (SE) module (30) and

coordinate attention (CA) (31), which forces the adopted model to

pay more attention to the discriminative features of the objects to

improve its recording performance.

Based on the construction idea of CBAM (32), the ESCA

attention module is proposed. ESCA has two independent

submodules, the channel attention module (CAM) and spatial

attention module (SAM), which can improve the model

classification ability in channel and space. These steps are as

follows: paying attention to the input feature map on the spatial

first, then paying attention to the channel, combining them in

series, and finally output the feature map. The overall structure is

shown in Figure 6.

The main purpose of the spatial attention module is to achieve a

more comprehensive and deeper receptive field range. First, use
BA

FIGURE 5

(A) Multilayer DWConv3×3 structure. (B) Multilayer BSConv3×3 structure.
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Conv1x1 convolution to reduce the number of channels on the

input feature map. Then, use the convolution with 2×2 max pooling

and Conv to expand the receptive field range. Then, use upsampling

to obtain the features of the input size. Add a residual connection to

ensure that the output image retains the original features. Finally,

using Conv1x1 convolution and sigmoid functions, the result

obtained is a dot multiplied by the input to obtain the output

characteristics of the spatial attention module.

The channel attention module is mainly inspired by ECA

attention (33). The main purpose is to enhance the channel

characteristics of the input feature map, reduce parameter

calculation, and enhance the model’s accuracy. First, the input

feature map on the spatial dimension is pooled on a global average

to achieve spatial feature compression. Then, the compressed spatial

feature map learns channel characteristics by Conv1×1 convolution.

Finally, the channel attention feature map 1×1×C and the original

input feature map H×W×C are multiplied channel by channel to

output the feature map with channel attention.
3.2 Loss function

As this project carries out multilabel classification for

immunohistochemical tissues, soft-max is the most popular
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multiclassification classifier in recent years, and it can increase or

decrease the signal exponentially, highlighting the output results to

be enhanced (34). Therefore, the output layer often adds soft-max

as a classifier to complete the multiclassification purpose. The

output results take the cross-entropy loss in the loss function

selection to evaluate the distribution difference between the real

label and the predicted value (35). The cross-entropy loss function

is expressed as follows as shown in Equations 13, 14:

  L = −oC
i=1yi log (si) (13)

s (y = i) =
eZi

oC
j=0e

Zj , i ∈ 0,…,Cf g (14)

C is the category of immunohistochemical cells or the total

number of labels, yi is the sample’s true label and the ROI box’s

label, >0, and =1, si represents the probability that sample i is

predicted to be a positive class. Inspired by the concurrent soft-max,

the gradient descent formula adds concurrent soft-max to two

weighting coefficients (18) as shown in Equation 15.

wt+1 = wt − g
dL
dw

, (15)
FIGURE 6

Overall structure diagram of the ESCA attention mechanism.
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where L is the cross-entropy loss function, and w is the weight

parameter. This loss function was applied to the output layer, as

shown in Equations 16, 17.

L = −oC
i=1yi log (s*i ) (16)

s*(y = i) =
eZi

oC
j=0(1 − yi)(1 − rij)e

Zj + eZi
, i ∈ 0,…,Cf g (17)

where rij is the probability of the simultaneous occurrence of tag

i and tag j obtained through the advanced statistics of the training

set; others still use the soft-max classifier to calculate the

output results.
4 Results

The experimental platform was the Ubuntu 18.04 LTS

operating system. The experimental environment included

Python 3.8, CUDA 10.0, and PyTorch 1.10.0. The accelerator was

an NVIDIA GeForce GTX TITAN X graphical processing unit.

The standard evaluation criteria were used to evaluate the

performance of the multistage feature distillation network. They

included precision (PREC), recall (REC), accuracy (ACC), and F1

score (F1), which were defined as follows:

PREC =
TP

TP + FP
,  REC =

TP
TP + FN

,  F1 = 2

� PREC� REC
PREC + REC

,  ACC =
TP + TN

TP + TN + FP + FN

where TP, FP, TN, and FN represent true positives, false

positives, true negatives, and false negatives, respectively.

The dataset used for the entire experiment is a breast cancer

ultrasound image dataset curated by ourselves. The process of

experimenting with the classification network mainly involves the

following steps: firstly, organizing the breast cancer ultrasound

dataset; secondly, defining the network structure; next, training

the defined network model; then, testing the network model; and

finally, predicting breast cancer ultrasound images. The breast

cancer ultrasound image dataset consists of ultrasound images

from 294 patients, totaling 10,000 images.
4.1 Model contrast experiments

First, the MFD-Net was trained and verified on the breast

cancer node datasets, divided into a 70% training set and 30%

verification set, and selected batch size of 8 and training epoch of

200. The four selected immunohistochemical indicators ER, PR,

HER-2, and Ki-67, respectively, output precision, recall, accuracy,

and F1, then their performance was compared with those of the 10

most popular classification models in recent years, namely,

ShuffleNetV2 (36), EfficientNet (37), MLP-Mixer (38), Twins

(39), PoolFormer (40), VAN (41), T2T-ViT (42), Swin

Transformer v2 (43), MobileNetV3 (44), and RepVGG (45). For
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example, Table 1 shows the precision, recall, accuracy, and F1 score

of ER output of various models on the same validation datasets.

The results obtained by the proposed method were compared

with those predicted by other 10 state-of-the-art neural networks as

shown in Tables 1–4 where bold values represent the training

results of the proposed model MFD Net, emphasizing that all

training results are superior to other models. Thus, the proposed

classification network outperformed all 10 state-of-the-art networks

in accuracy, precision, recall, and F1. Figure 7 shows the accuracy

comparison of the four immune indicators in different network

models. It can be seen from the figure that the accuracy of the

network model proposed in this paper is better than the popular

SOTA models in the comparative experiment.

Furthermore, in comparison with deep learning methods, the

proposed network structure is also compared with the network

structure used in the articles on breast cancer published in

international academic conferences or journals in the past 3 years.

Since these articles are limited to single immunological markers,

they are binary classified according to immunohistochemical

results. Among them, Kalafi et al. carried out experiments on

invasive ductal carcinoma types of malignant lesions and

fibroadenoma types of benign lesions in the improved VGG

network in BUS images in 2021 (14). Rasaee and Rivaz also

classified benign and malignant breast nodules in BUS images in

2021 and carried out classification experiments on them through

the new network of improved classification of ResNet-50 (46). In

2022, Gheflati and Rivaz used different enhancement strategies to

classify BUS images through Vision Transformer (ViT) for the first

time (47). Muhammad et al. developed an end-to-end integrated

pipeline image classification for BUS, using the pretrained VGG16

and the closely connected neural network learning method for

experiments (48). The MFD-Net network was modified into a

binary classification network, and the network structure for the

classification of BUS images was designed. After that, a comparative

experiment was carried out with the ER immune index as an

example. The experimental results are listed in Table 5.

It can be seen from Table 6 that the proposed network structure

is superior to three models in precision, three models in recall, and

four models in accuracy and F1. The proposed network’s

performance has been the best among the binary classification

networks for BUS image classification in the past 2 years.
4.2 Module contrast experiment

In the MFD-Net proposed for the first time, multilayer depth

separable convolution and multilayer reverse depth separable

convolution are used in the classification network. Compared

with ordinary depth separable convolution and reverse depth

separable convolution, more feature maps can be extracted, more

feature information can be captured, and the deep separable

convolution and multilayer depth separable convolution are

added to MFD-Net to experiment under the same conditions of

other factors. The results are summarized in Table 6.
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It can be seen from Table 6 that the multilayer depth separable

convolution can effectively improve each index in the

classification tasks.
4.3 Ablation experiment

Ablation experiments were conducted on the breast nodule

datasets to further study the contribution of each component of

MFD-Net to its performance. The essence of the ablation

experiment is to highlight the advantages of innovation points in

the model design process and to ensure improvement of innovation

points in training or testing other datasets. In the MFD-Net

network, the most important innovation point is to use the
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structure of characteristic multistage distillation to design the

overall network backbone and carry out three characteristic

distillations of different modules on the input characteristic map;

the feature distillation module determines the feature extraction

effect of fine-grained images. To further show the effect of feature

distillation structure used in fine-grained images, three different

feature distillation modules were ablated, and the results are shown

in Table 7 below.

Each distillation module of the designed distillation network

has played a role in the classification of fine-grained images, and the

higher the distillation level, the higher the accuracy. Multilayer

BSConv3×3 forms the basic backbone of MFD-Net, making the

accuracy of the network reach the same level as that of the SOTA

algorithm in recent years; on this basis, multilayer DWConv3×3 is
TABLE 2 PR immune index taken as an example for classifying the performance of different structures.

Model Precision Recall Accuracy F1

ShuffleNetV2 87.39% 70.05% 77.88% 80.75%

EfficientNet 86.78% 70.44% 78.65% 77.76%

MLP-Mixer 84.36% 67.25% 76.35% 74.84%

Twins 82.56% 68.36% 78.54% 74.79%

PoolFormer 82.78% 67.37% 79.56% 74.28%

VAN 84.28% 68.78% 78.21% 75.74%

T2T-ViT 86.30% 70.36% 80.33% 77.51%

Swin
Transformer
V2

85.44% 68.35% 81.56% 75.94%

MobileNetV3 83.65% 69.58% 81.52% 75.96%

RepVGG 85.85% 71.78% 82.05% 78.18%

MFD-Net 88.36% 75.53% 82.19% 81.44%
TABLE 1 ER immune index taken as an example for classifying the performance of different structures.

Model Precision Recall Accuracy F1

ShuffleNetV2 88.64% 75.25% 82.58% 81.39%

EfficientNet 87.24% 73.12% 81.54% 79.55%

MLP-Mixer 76.67% 65.25% 80.42% 70.50%

Twins 80.43% 68.75% 80.56% 74.13%

PoolFormer 73.88% 69.24% 82.65% 71.48%

VAN 87.24% 73.12% 81.50% 81.07%

T2T-ViT 88.64% 72.25% 82.58% 79.61%

Swin
Transformer v2

88.66% 70.36% 82.78% 78.45%

MobileNetV3 86.79% 70.88% 83.62% 78.03%

RepVGG 75.95% 71.88% 82.46% 73.85%

MFD-Net 89.33% 75.63% 83.86% 81.91%
Since the four immune indicators of the network are output simultaneously, to make the advantages of the proposed classification network more obvious, the four immune indicators are
extracted and compared with 10 different classification networks, taking the ER immune index as an example. Table 2 shows the PR immune index. Table 3 shows the HER-2 immunity index,
and Table 4 shows the Ki-67 immunity index.
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added. The secondary feature extraction of the feature map greatly

improved the accuracy; the reason for adding c to the final

distillation layer was to reduce the dimension of the overall

feature map and also to improve the classification network’s

accuracy slightly. Therefore, the multilevel feature distillation

structure enhanced the accuracy of the classification network.

The ESCA attention module has shown good performance in

improving the accuracy of the MFD-Net network. It was based on

the construction idea of the CBAM attention module, which

combined spatial attention with channel attention to improve the

classification ability of the model. Both of the attentions affected the

accuracy value. The ablation experiment of the ESCA attention

module was carried out with the same other factors, and the results

are listed in Table 8.
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As can be deduced from Table 8, adding an ESCA attention

module improved the accuracy by one percentage point compared

with the network without this module. Thus, adding the ESCA

attention module to the MFD-Net improved the accuracy, with

both channel and spatial attention submodules contributing to

this enhancement.
5 Conclusions and limitations

This study presents a deep learning model to classify BUS

images based on early immunohistochemical results of breast

cancer patients, which is mainly used for the predictive treatment

and diagnosis of breast cancer patients. For the first time, this model
TABLE 3 HER-2 immune index taken as an example for classifying the performance of different structures.

Model Precision Recall Accuracy F1

ShuffleNetV2 78.69% 68.01% 82.58% 72.96%

EfficientNet 78.50% 67.53% 81.35% 72.60%

MLP-Mixer 77.58% 68.56% 79.13% 72.79%

Twins 76.89% 67.25% 80.54% 71.74%

PoolFormer 78.59% 67.66% 82.69% 72.76%

VAN 77.25% 68.15% 81.86% 72.41%

T2T-ViT 80.33% 68.63% 82.39% 74.02%

Swin
Transformer
V2

79.67% 70.05% 80.63% 74.55%

MobileNetV3 80.66% 70.47% 82.66% 75.22%

RepVGG 78.89% 72.56% 84.05% 75.59%

MFD-Net 82.36% 75.32% 84.45% 79.61%
TABLE 4 Ki-67 immune index taken as an example for classifying the performance of different structures.

Model Precision Recall Accuracy F1

ShuffleNetV2 81.36% 74.97% 81.56% 78.18%

EfficientNet 82.87% 74.77% 80.32% 78.61%

MLP-Mixer 80.24% 68.17% 79.36% 73.71%

Twins 79.58% 67.81% 78.61% 73.22%

PoolFormer 80.89% 69.12% 79.68% 74.54%

VAN 81.78% 69.23% 82.05% 74.98%

T2T-ViT 81.55% 70.56% 81.25% 75.65%

Swin
Transformer
V2

82.36% 73.48% 82.03% 77.66%

MobileNetV3 84.56% 74.03% 82.78% 78.94%

RepVGG 83.54% 72.36% 82.56% 77.54%

MFD-Net 85.33% 77.33% 83.56% 81.13%
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inputs four immunohistochemical results into the classification

network simultaneously and outputs four immunohistochemical

classification results simultaneously, thus realizing the

multiclassification of mammary ultrasound images. Moreover,

this network model has performed better than the advanced

classification network in recent years. This CAD method is a

reliable second opinion for seasoned radiologists and a valuable
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resource for junior ones. In the future development of medical

imaging, this CAD method can be integrated with radiologists’

experience and domain knowledge, enhancing clinical relevance.

This study proposes a multistage feature distillation network

structure, and it has been applied to image classification for the first

time with good results. In addition, depthwise separable

convolution and reverse depthwise separable convolution are
FIGURE 7

Comparison of the accuracy of the proposed network model and the SOTA models in four immune indicators.
TABLE 5 ER immune index taken as an example for classifying the performance of network structure proposed by popular articles in the last 3 years.

Method Precision Recall Accuracy F1

Kalafi
et al. [16]

90.93% 72.5% 81.67% 80.67%

Rasaee and
Rivaz [48]

86.63% 74.12% 78.54% 79.88%

Gheflati and
Rivaz [49]

85.45% 75.2% 80.42% 80.01%

Muhammad
et al. [50]

88.15% 76.3% 80.62% 81.84%

This study 89.33% 75.6% 83.56% 81.91%
TABLE 6 The ER immune index taken as an example for the ablation experiment of the multilayer deep separation convolution module in MFD-Net.

Method Precision Recall Accuracy F1

DWConv3×3,
BSConv3×3

87.54% 75.02% 82.17% 80.79%

Multilayer
DWConv3×3,
multilayer
BSConv3×3

89.33% 75.63% 83.56% 81.91%
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applied to distillation networks, increasing different convolution

core depths to multilayer depthwise separable convolution and

multilayer reverse depthwise separable convolution, which

showed good performance in classification tasks. A new attention

mechanism is designed in the proposed network structure and

applied to immunohistochemical classification in ultrasound

images to allow the model to learn more important texture

information. Comparing the accuracy of the proposed network

with that of several advanced classification networks, it is proven

that the proposed model is superior to existing algorithms in

immunohistochemical classification of ultrasound images and can

achieve the effect of simultaneous classification of multiple immune

indices, which is a breakthrough in the whole breast cancer image

processing field.

The proposed CAD implementation can alleviate several medical

diagnostic problems. First, the diagnostic results of the same ultrasound

image by different radiologists may be influenced by human factors.

Applying quantitative criteria in CAD methods ensures accurate and

consistent results, which may remove barriers to observer differences

(49). Secondly, the CADmethod has good diagnostic performance and

can be used as an assistant tool to help radiologists diagnose breast

cancer clinically (50). According to the immunohistochemical report

sheet, the correct diagnosis direction can be made in the future to

prevent the occurrence of late symptoms of breast cancer (51). Finally,

the results of immunohistochemical classification by CAD can greatly

reduce the manpower and resources required in the later treatment of

breast cancer and improve the efficiency of physicians (52).

However, this study has several limitations. First, due to time

constraints, relatively few BUS images and corresponding

immunohistochemical reports are collected herein. Second, the

experiments were only performed on the BUS datasets from the

provincial hospital of the first medical university in Shandong,

China, and no validation was performed on other datasets.

Therefore, there may be a systematic bias in the results. Third,

breast cancer immunohistochemical results are derived by
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physicians through a variety of techniques, so the results are

highly dependent on the physician’s experience.

In conclusion, a deep learning-based CAD framework guided by

BUS images as a dataset and immunohistochemical results analysis is

proposed to design a novel multilevel feature distilled classification

network (MFD-Net) for the immunohistochemical classification of

BUS images. This study is the first to apply multiple

immunohistochemical classifications to BUS images. The proposed

method outperforms the classification networks in recent years in

classification accuracy and the classification network applied in a

breast image article in the last 2 years. Utilizing the CAD model

proposed in this study notably improves the efficiency of identifying

fine-grained medical images. Additionally, it effectively addresses the

challenge of multilabel recognition in medical imaging, assisting

radiologists in the multilabel identification of medical images. The

proposed CAD method can serve as a reliable second opinion for

radiologists, helping them to avoid misdiagnosis due to work overload.

In addition, it can provide useful advice to junior radiologists with

limited clinical experience. Future studies can consider adding the

radiologists’ experience and domain knowledge to the deep learning-

based CAD approach to make it more clinically meaningful.
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