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Objective: This retrospective study aimed to establish ultrasound radiomics

models to predict central lymph node metastasis (CLNM) based on

preoperative multimodal ultrasound imaging features fusion of primary

papillary thyroid carcinoma (PTC).

Methods: In total, 498 cases of unifocal PTC were randomly divided into two sets

which comprised 348 cases (training set) and 150 cases (validition set). In addition,

the testing set contained 120 cases of PTC at different times. Post-operative

histopathology was the gold standard for CLNM. The following steps were used to

build models: the regions of interest were segmented in PTC ultrasound images,

multimodal ultrasound image features were then extracted by the deep learning

residual neural network with 50-layer network, followed by feature selection and

fusion; subsequently, classification was performed using three classical classifiers

—adaptive boosting (AB), linear discriminant analysis (LDA), and support vector

machine (SVM). The performances of the unimodal models (Unimodal-AB,

Unimodal-LDA, and Unimodal-SVM) and the multimodal models (Multimodal-

AB, Multimodal-LDA, and Multimodal-SVM) were evaluated and compared.

Results: The Multimodal-SVM model achieved the best predictive performance

than the other models (P < 0.05). For the Multimodal-SVM model validation and

testing sets, the areas under the receiver operating characteristic curves (AUCs) were

0.910 (95% CI, 0.894-0.926) and 0.851 (95% CI, 0.833-0.869), respectively. The

AUCs of the Multimodal-SVM model were 0.920 (95% CI, 0.881-0.959) in the cN0

subgroup-1 cases and 0.828 (95% CI, 0.769-0.887) in the cN0 subgroup-2 cases.
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Conclusion: The ultrasound radiomics model only based on the PTCmultimodal

ultrasound image have high clinical value in predicting CLNM and can provide a

reference for treatment decisions.
KEYWORDS

lymph node metastasis, multimodality, papillary thyroid carcinoma, radiomics,
ultrasound
Introduction

The incidence of thyroid cancer continues to increase, with the

main pathological type being papillary thyroid carcinoma (PTC),

which accounts for 80–90% of diagnosed cases (1). An important

risk factor affecting survival and recurrence of PTC is cervical

lymph node metastasis (LNM) (2). The central region of the neck

is usually the most dangerous and the earliest to metastasize (3).

Previous studies had showed that approximately 30–80% of cases

with PTC were associated with central lymph node metastasis

(CLNM) (4). In view of the high-clinical risk associated with

positive lymph nodes in PTC patients, some researchers have

recommended routine central lymph node dissection (CLND) in

the initial surgery to improve treatment outcomes (5). However, it is

still debated whether prophylactic CLND is beneficial in the case of

well-differentiated PTC. Prophylactic CLND has been associated

with an increased risk of postoperative complications, such as

transient and permanent hypoparathyroidism, unexpected

recurrent laryngeal nerve, and peripheral vascular injury (6, 7).

During the PTC therapy, the presence or absence of CLNM could

affect the surgical approach and postoperative staging. A

standardized surgical approach and cervical lymph node

dissection strategy may increase the curative rate of the disease

and reduce the rate of complications. Therefore, accurate

assessment of CLNM noninvasively before surgery is critical as it

helps clinicians develop surgical plans and assess prognosis.

Ultrasound is extensively used as the imaging method for thyroid

and cervical lymph nodes (8, 9). However, owing to the special

anatomy of the central region of the neck, the direct preoperative

detection ability of ultrasound for CLNM is limited, with a sensitivity

in the range of 15–40% (10, 11). Therefore, there is an urgent need for

more accurate and efficient methods to assess the risk of CLNM in

PTC patients. Because the characteristics of the primary tumor are

closely related to its invasiveness and metastasis, the cervical lymph

node status can be assessed further by analyzing the grayscale, color

Doppler flow imaging (CDFI), and strain elastography ultrasound

characteristics of the primary PTC (12, 13). In recent years, radiomics

has been used in clinical practice for preoperative prediction and

prognostic assessments of diseases. Researchers have developed

models based on traditional radiomics features (such as intensity,

texture, and wavelet features) of grayscale or elastography images of

primary PTC to predict CLNM. The areas under curves (AUCs)

range in the validation set was found to be in the range of 0.727–0.858
02
(14–16), these outcomes suggest a new research direction for

preoperative assessment of CLNM.

With the continuous development and application of artificial

intelligence in the medical field, deep-learning algorithms have

attracted widespread attention because of their excellent

performance in image recognition tasks and have proven to be

useful in medical imaging (17, 18). Deep-learning algorithms have

been used extensively for medical image diagnosis and prediction

owing to their speed, accuracy, and reproducibility advantages (19).

Additionally, studies have indicated that the accuracy and reliability

of traditional radiomics for medical image classification or prediction

can be improved with the introduction of deep-learning algorithms

(20). Grayscale ultrasound of PTC reveals the lesion characteristics

from a morphological viewpoint, CDFI reveals the characteristics of

the blood flow distribution in the lesion area, and elastography

provides information on the relative stiffness of the lesion. These

imaging tests can be implemented as noninvasive ultrasound

examinations (21), and the combined application of these tests may

provide more imaging information and indirectly reflect more

characteristics associated with tumor growth, invasiveness, and

metastasis. To our knowledge, the combination of multimodal

ultrasound features of primary PTC tumors and their use to

develop a radiomics model to predict CLNM has not been reported.

Therefore, this study aimed to develop a prediction model using

multimodal ultrasound image feature fusion based on radiomics

and to preoperatively evaluate the risk of CLNM in PTC patients.
Materials and methods

Patients and datasets

This retrospective study was approved by the Ethics Committee

of The Second Affiliated Hospital of Harbin Medical University, and

the requirement for informed patient consent given the study’s

nature was waived (approval number: KY2021-152).

We included patients (1) with a postoperative pathological

diagnosis of PTC (2), who underwent thyroid surgery with CLND

for the first time (3), whose preoperative intrathyroid lesions were not

treated using other methods, such as induction chemotherapy or neck

radiation therapy (4), whose thyroid ultrasound examination was

performed in our institution within 1 week before surgery, and (5)

cases wherein the ultrasound imaging of the primary tumor was visible.
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The exclusion criteria were as follows (1): distant metastasis or other

malignant tumors (2), skip metastasis (3), incomplete ultrasound

imaging information or the suspected tumor lesions on ultrasound

were inconsistent with the pathological results (4), undetected thyroid

tumors by ultrasound, and (5) incomplete medical records.

Overall, 928 cases with resectable tumors were comprehensive

surgical treatment in The Second Affiliated Hospital of Harbin

Medical University from January 2020 to December 2020. In total,

498 patients with unifocal PTC for the first operation conforming to

the inclusion criteria were selected (Supplementary Text 1). The

Scikit-learning frame (Python, version 3.6.8) was used to divided

the patients into the training (n=348) and validation (n=150) sets at

a ratio of 7:3 randomly. Subsequently, 231 cases with resectable

tumors were comprehensive surgical treatment in the same hospital

from February 2021 to April 2021. Among 120 patients with

unifocal or multifocal PTC who were screened with the same

criteria used for the testing set (Supplementary Text 1). The

procedures for the enrollment of patients are shown in Figure 1.

The cervical lymph node status was determined based on the

postoperative pathological results (CLNM-positive and CLNM-

negative). Clinical data were obtained from medical records. The

clinical characteristics of the patients are presented in Table 1.
Ultrasound image acquisition

Preoperative ultrasound images were collected by two board-

certified sonographers (Q.D. and Y.T., with 15 and 4 years of
Frontiers in Oncology 03
experience, respectively) using a HITACHI HIVISION Avius

(Hitachi Medical Corporation) equipped with a 5–13MHz linear

probe. Based on the thyroid scanning method and imaging

parameter adjustment requirements, ultrasound images were

adjusted to achieve optimal thyroid-imaging effects (9).

Transverse and longitudinal grayscale, CDFI, and strain

elastography static images showing the maximum diameter of the

lesion were acquired and stored twice for all unifocal cases, with

each image containing as many typical malignant features as

possible (Supplementary Text 2). The ultrasound image of tumor

with the largest volume among multifocal cases were acquired and

stored twice according to the above procedure. The dynamic images

of the complete thyroid were acquired and stored in all PTC cases at

the same time. The Kappa consistency test was performed on the

image quality of the same sonographer. Finally, a total of 3708 high-

quality static images were selected and converted to the portable

network graphic format for deep-learning feature extraction with an

image resolution of 1024 × 768. The tumor size was defined as the

maximum diameter measured by ultrasound in the transverse or

longitudinal cross-section. Ultrasound reports the cervical lymph

nodes status according to other relevant studies (9, 22).
Segmentation of regions of interest and
feature extraction

The lesion regions were manually segmented by two

sonographers (Q.D. and D.L., with more than 10 years of
FIGURE 1

Process of patient enrollment for the study. LN, lymph node; PTC, papillary thyroid carcinoma; US, ultrasound.
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experience, respectively), and regions of interest (ROI) annotation

was performed on the lesion regions of each section image for each

modality using ImageJ software (version 1.48, National Institutes of

Health, USA). The Kappa consistency test was performed on the

consistency of the static images selected by the two sonographers

and the satisfaction of the ROI annotation. The ROI refers to the

smallest rectangular box that contained the boundaries of the tumor

(i.e., the bounding box) and the area by tracing along the edge of the

lesion (i.e., the mask) in each image (Supplementary Text 3). An

example of multimodal ultrasound image ROI annotation of

primary PTC is shown in Figure 2.

To avoid losing potential feature information, no preprocessing,

such as enhancement or noise reduction, was performed on the raw

images before data analysis. In addition, because information such

as blood vessels around the lesion, image markers, and annotations

may have interfered with the model training and led to incorrect

learning, only the masked region was used as the input data in

this study.

For image feature extraction, the primary tumor regions

annotated with different modal image ROI (i.e., the mask) were

used as input images, and the pretrained deep convolutional neural

network (CNN) model of the residual neural network with 50-layer

(ResNet50) network architecture was used for feature extraction

(Figure 3). The CNN is a well-known and popular type of deep-

learning architecture, which can also learn useful texture features
Frontiers in Oncology 04
automatically for classification, thus producing results superior to

those of other methods (23). ResNet50 (Keras Applications, https://

keras.io/api/applications/) is one of the best-performing model

architectures for representation, which has proven to be

competitive for differential diagnosis using various medical

images (24, 25). In the present study, during the model training

process, the masked regions of the primary tumor were input in the

pretrained ResNet50 network (image feature extraction framework)

and were connected to the subsequent image classification task. The

ResNet50 network was pretrained using the ImageNet (http://

www.imagenet.org/) dataset with default network parameter

settings. This network is capable of extracting multiscale and

multidimensional image features for operational analysis. In this

study, the ResNet50 network consisted of five convolutional layers,

six pooling layers, and one fully connected layer. The network

respectively extracted high-dimensional features from the

multimodal ultrasound images at different scales and network

layers for the final classification task; more than 15000 deep

features were extracted from each image (Figure 3).
Feature selection and fusion

After the image features were extracted, dimensionality

reduction was performed using the least absolute shrinkage and
TABLE 1 Patients characteristics of the three datasets.

Characteristics

Training set Validation set Testing set

CLNM (+)
(n=167)

CLNM (–)
(n=181)

P value
CLNM (+)
(n=74)

CLNM (–)
(n=76)

P value
CLNM (+)
(n=58)

CLNM (–)
(n=62)

P value

Age, years

range 21~68 22~69 21~57 24~70 24~69 22~66

Mean ± SD 42.4 ± 10.7 46.9 ± 9.3 <0.001 40.8 ± 9.0 46.3 ± 8.8 <0.001 41.7 ± 11.0 46.4 ± 8.7 0.012

<45 101(60.5) 68(37.6)
<0.001

44(59.5) 28(36.8)
0.006

36(62.1) 22(35.5)
0.004

≥45 66(39.5) 113(62.4) 30(40.5) 48(63.2) 22(37.9) 40(64.5)

Gender, n (%)

Male 47(28.1) 27(14.9)
0.003

17(23.0) 12(15.8)
0.265

16(27.6) 8(12.9)
0.044

Female 120(71.9) 154(85.1) 57(77.0) 64(84.2) 42(72.4) 54(87.1)

US tumor size, mm

range 3.7~41.6 2.7~30.6 3.7~53.4 4.2~19.9 4.9~28.2 3.2~25.7

Mean ± SD 12.0 ± 6.7 7.9 ± 4.2 <0.001 13.2 ± 8.8 7.7 ± 3.0 <0.001 13.5 ± 6.1 9.9 ± 5.1 <0.001

≤10mm 85(50.9) 149(82.3)
<0.001

39(52.7) 66(86.8)
<0.001

20(34.5) 44(71.0)
<0.001

>10mm 82(49.1) 32(17.7) 35(47.3) 10(13.2) 38(65.5) 18(29.0)

US reported LN
status, n (%)

Suspicious 61(36.5) 7(3.9)
<0.001

32(43.2) 2(2.6)
<0.001

16(27.6) 4(6.5)
0.003

No suspicious 106(63.5) 174(96.1) 42(56.8) 74(97.4) 42(72.4) 58(93.5)
fro
Categorical variables were described as the number of patients (percentages are listed in parentheses).
Continuous variables are presented as mean ± standard deviation (SD). The P-value indicates whether a significant difference exists between the CLNM (+) and CLNM (–). US, ultrasound;
LN, lymph node.
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FIGURE 2

Multimodal ultrasound image ROI annotation of a primary PTC in the transverse (A) and longitudinal (B) sections. A1 and B1, grayscale; A2 and B2,
CDFI; A3 and B3, strain elastography.
FIGURE 3

Schematic of deep feature extraction, selection, and fusion for the ResNet50 network.
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selection operator (LASSO) algorithm (26). Various features were

retained according to the correlations among the modal features.

Subsequently, the features were selected for the final classification

task according to two principles (1): the elimination of high-

dimensional features extracted from the network (e.g.,

morphological and contour features) and (2) the balancing of

network features of different dimensions to ensure that the model

achieved high accuracy for classification with minimal overfitting

and underfitting.

In the feature fusion phase, the grayscale image features of the

transverse and longitudinal sections were fused to build the

unimodal model; all the features of the grayscale, CDFI, and

strain elastography images of the transverse and longitudinal

sections were fused to build the multimodal model. The feature

fusion methods of each modal for the prediction model are shown

in Figure 3. All the fusion methods are based on traditional early

fusion; this is a feature-level fusion technique performed at the stage

of feature appearance that directly combines features extracted from

unimodal data of different cross-sections to emphasize intra-model

interactions while suppressing inter-model interactions (27).
Classification and model construction

In the model classification and prediction phase, the unimodal

and multimodal feature fusion data are respectively applied to three

types of classifiers classify, i.e., adaptive boosting (AB), linear

discriminant analysis (LDA), and support vector machine (SVM),

completing the model building. A brief description of these

classifiers is shown in Supplementary Text 4. The process of

constructing the models is shown in Figure 4. In this study, a

total of six CLNM prediction models were obtained: Unimodal-AB,

Unimodal-LDA, Unimodal-SVM, Multimodal-AB, Multimodal-

LDA, and Multimodal-SVM. To avoid overfitting and

underfitting, threefold cross-validation was used to train and test

these models according to the sample size of the available dataset to
Frontiers in Oncology 06
ensure that the maximum amount of information was obtained

from the limited data and to build a more robust model.
Model evaluations and statistical analysis

The six trained prediction models were tested in the validation and

testing sets and the model with the best performance was used to

perform evaluations for the cN0-stage subgroup cases. For each dataset,

the models’ CLNM classification results of 0 or 1 were used as the

predicted outcomes [0 indicated CLNM (–) and 1 indicated CLNM

(+)]. The predicted results of each model were compared with the

actual lymph node status in the pathology report [CLNM (–) and

CLNM (+) were marked as 0 and 1, respectively]. All the code for the

model construction and data analysis was stored on GitHub (ID:

https://github.com/daixiaoxiao520/Multi-module). Data operations

were performed on a computer that operated 64-bit Windows 10

with a Nvidia 2080 Ti graphics card and 11.6 GB of video memory.

The software programs Python (version 3.6.8), SPSS version

25.0 (IBM, Armonk, New York, USA.), and Medcalc version 19.4.0

were used for data processing and statistical analysis. Categorical

and continuous variables are expressed as frequencies and

percentages and as mean ± standard deviation, respectively. Chi-

squared or Fisher’s exact tests were used for rate comparisons.

Independent samples t and Mann–Whitney U tests were used for

mean value comparisons. Inter- and intra-observer agreement was

evaluated using Kappa consistency test. Comparisons between

AUCs were made by using the DeLong’ test (28). The criterion

for statistically significant differences was P < 0.05.

Results

Clinical and pathological data

In the training, validation and testing sets, the positive CLNM

rates were 48.0% (167/348), 49.3% (74/150) and 48.3% (58/120),
FIGURE 4

Workflow for building the radiomics models based on multimodal US image feature fusion. G, grayscale; C, CDFI; E, elastography; US, ultrasound; T,
transverse section; L, longitudinal sections; AB, adaptive boosting; LDA, linear discriminant analysis; SVM, support vector machine.
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respectively. There was no significant difference in the positive rate

among the three sets (P=0.963). Table 1 briefly compared baseline

data, such as age, gender, tumor size by preoperative ultrasound,

and lymph-node status of central or/and lateral neck by

preoperative ultrasound. In this study, 38.3% (190/496) of cN0

staging PTC cases were pathologically confirmed CLNM (+). The

weighted Kappa consistency indicated a high degree of intra- and

inter-observer agreement (range, 0.744-0.946) (Supplementary

Tables 1, 2).
Frontiers in Oncology 07
Performance of ultrasound radiomics
model

In this study, the AUC, accuracy, sensitivity, specificity, positive

predictive value (PPV), negative predictive value (NPV), F1-score,

recall and precision values from the six models are shown in Table 2.

The receiver operating characteristic (ROC) curves of each model in

the training, validation and testing sets are shown in Figure 5. In the

three unimodal models, Unimodal-SVM had the best performance and
TABLE 2 Performance of the ultrasound radiomics models for predicting central lymph node metastasis.

Data set Metrics
Unimodal Multimodal

AB LDA SVM AB LDA SVM

Training
set

AUC
(95%CI)

0.857*
(0.830-0.884)

0.851*
(0.827-0.875)

0.894*
(0.872-0.916)

0.877*
(0.853-0.901)

0.909*
(0.893-0.925)

0.936
(0.920-0.952)

Accuracy 0.787 0.773 0.816 0.790 0.828 0.842

Sensitivity 0.759 0.774 0.808 0.806 0.807 0.823

Specificity 0.812 0.772 0.823 0.775 0.846 0.861

NPV 0.771 0.774 0.811 0.800 0.814 0.829

PPV 0.801 0.772 0.821 0.782 0.840 0.856

F1-score 0.769 0.763 0.808 0.790 0.817 0.840

Recall 0.759 0.774 0.808 0.806 0.807 0.823

Precision 0.801 0.772 0.821 0.782 0.840 0.856

Validation
set

AUC
(95%CI)

0.764*
(0.717-0.811)

0.816*
(0.791-0.842)

0.877*
(0.838-0.916)

0.852*
(0.805-0.899)

0.865*
(0.851-0.879)

0.910
(0.894-0.926)

Accuracy 0.680 0.720 0.820 0.747 0.807 0.847

Sensitivity 0.688 0.687 0.831 0.724 0.776 0.800

Specificity 0.671 0.747 0.810 0.770 0.838 0.893

NPV 0.683 0.704 0.827 0.736 0.789 0.817

PPV 0.677 0.731 0.814 0.759 0.827 0.882

F1-score 0.688 0.687 0.814 0.743 0.803 0.839

Recall 0.688 0.687 0.831 0.724 0.776 0.800

Precision 0.677 0.731 0.814 0.759 0.827 0.882

Testing
set

AUC
(95%CI)

0.724*
(0.704-0.744)

0.754*
(0.732-0.776)

0.806*
(0.784-0.828)

0.743*
(0.721-0.765)

0.762*
(0.744-0.78)

0.851
(0.833-0.869)

Accuracy 0.583 0.611 0.722 0.583 0.722 0.750

Sensitivity 0.714 0.600 0.875 0.667 0.750 0.857

Specificity 0.500 0.615 0.600 0.524 0.700 0.682

NPV 0.636 0.606 0.827 0.611 0.737 0.827

PPV 0.588 0.609 0.686 0.583 0.714 0.729

F1-score 0.571 0.462 0.737 0.571 0.706 0.727

Recall 0.714 0.600 0.875 0.667 0.750 0.857

Precision 0.588 0.609 0.686 0.583 0.714 0.729
Bold values indicate the best results. * represents that there is a significant difference existed when multimodal-SVM compared with other five models. AB, adaptive boosting; LDA, linear
discriminant analysis; SVM, support vector machine; AUC, areas under curve; 95%CI, 95% confidence interval; NPV, negative predictive value; PPV, positive predictive value.
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the AUCs were 0.877 and 0.806 in the validation and testing sets,

respectively. The accuracy, sensitivity, specificity, and precision of the

Unimodal-SVM were 0.820, 0.831, 0.810, and 0.814 in the validation

set and 0.722, 0.875, 0.600 and 0.686 in the testing set, respectively. In

the three multimodal models, Multimodal-SVM yielded the best

performance and the AUCs were 0.910 and 0.851 in the validation

and testing sets, respectively. The accuracy, sensitivity, specificity, and

precision of the Multimodal-SVM were 0.847, 0.800, 0.893, and 0.882

in the validation set and 0.750, 0.857, 0.682 and 0.729 in the testing set,

respectively. Multimodal-SVM outperformed the other five models in

the validation and testing sets according to the DeLong’s test (P < 0.05),

with higher AUC, accuracy, and precision values. The classification

confusion matrices that report the ratio of true-positive, false-positive,

true-negative, and false-negative results for the ultrasound radiomics

models are shown in Table 3.
Performance of multimodal-SVM
model for cN0-stage tumors

The performances of Multimodal-SVM for predicting CLNM in

PTC cases in the cN0 subgroup were analyzed. There were 396

patients in the cN0 subgroup-1 from the training and validation
Frontiers in Oncology 08
sets, and the AUC, accuracy, precision, sensitivity, specificity, NPV,

and PPV achieved by the model were 0.920, 0.866, 0.859, 0.884,

0.855, 0.880, and 0.859, respectively. There were 100 patients in the

cN0 subgroup-2 from the testing set, and the AUC, accuracy,

precision, sensitivity, specificity, NPV, and PPV achieved by the

model were 0.828, 0.800, 0.795, 0.818, 0.789, 0.813, and 0.795,

respectively, as shown in Table 4. The ROC curves of Multimodal-

SVM for predicting the presence of CLNM in the cN0-stage

subgroup of cases for different datasets are shown in Figure 6.

The Multimodal-SVM model exhibited good performance for

predicting CLNM for the cN0 stage. It is worth noting that the

actual CLNM rates are all higher (P < 0.001) for patients with

predicting CLNM (+) in the both subgroup datasets (Figure 7).
Discussion

In this study, the grayscale, CDFI and strain elastography

ultrasound image features of PTC primary tumors in transverse

and longitudinal sections were extracted for feature selection and

fusion using the generic ResNet50 network. Classical classifiers (AB,

LDA, and SVM) were then used for classification, and six radiomics

models for predicting CLNM of PTC were developed. The best-
FIGURE 5

ROC curves of the six ultrasound radiomics models in the three datasets.
TABLE 3 Confusion matrices of the models for the different datasets.

Prediction

Unimodal (True) Multimodal (True)

AB LDA SVM AB LDA SVM

(+) (–) (+) (–) (+) (–) (+) (–) (+) (–) (+) (–)

Training set

CLNM (+) 0.76 0.19 0.77 0.23 0.81 0.18 0.81 0.22 0.81 0.15 0.82 0.14

CLNM (–) 0.24 0.81 0.23 0.67 0.19 0.82 0.19 0.78 0.19 0.85 0.18 0.86

Validation set

CLNM (+) 0.69 0.33 0.69 0.25 0.83 0.19 0.72 0.23 0.78 0.16 0.80 0.11

CLNM (–) 0.31 0.67 0.31 0.75 0.17 0.81 0.28 0.77 0.22 0.84 0.20 0.89

Testing set

CLNM (+) 0.71 0.50 0.60 0.38 0.88 0.40 0.67 0.48 0.75 0.30 0.86 0.32

CLNM (–) 0.29 0.50 0.40 0.62 0.12 0.60 0.33 0.52 0.25 0.70 0.14 0.68
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performing model—i.e., Multimodal-SVM—obtained satisfactory

predictions for both the validation and testing sets, with AUCs of

0.910 and 0.851, respectively. These results of this study indicated

that a modeling approach based on a multimodal ultrasound image

feature fusion framework combined with classical classifiers is

feasible for predicting CLNM, and the approach can improve the

predictive accuracy compared with the unimodal grayscale

ultrasound in a limited number of training datasets (14, 16). The

PTC patients with absence of any preoperative evidence of lymph

node metastasis (cN0 stage) have a high proportion of CLNM

confirmed by postoperative pathology. Owing to the low sensitivity

associated with the direct detection of CLNM by preoperative

ultrasound, the multimodal ultrasound radiomics model can be

applied to guide decision making before surgery and as a

noninvasive and objective tool for screening the CLN status of PTC.

Studies have indicated that ultrasound image and clinical features

of PTC primary tumors are strongly correlated with LNM (29, 30).

Although these features may indicate some important information,

quantitative and objective assessments are impossible. Meanwhile,

because the accuracy varies among sonographers according to the

subjective visual and empirical assessment of ultrasound image

features, the accuracy of preoperative evaluation of CLNM is

directly affected by operator-dependent qualitative analysis. In this
Frontiers in Oncology 09
study, the Multimodal-SVMmodel was applied to assess the status of

CLN by only using preoperative multimodal (grayscale, CDFI, and

strain elastography) ultrasound images of PTC primary tumors.

Regardless of whether the suspected CLNs were detected by

preoperative ultrasound, the predictive performance of the model

was not affected. Only if high-quality preoperative ultrasound images

of the primary tumor are acquired, accurate prediction results could

be obtained using the proposed framework of deep-learning feature

extraction, selection and fusion, and prediction evaluation process,

thus confirming the superiority and objectivity of the prediction

model and indicating its broad application prospects. The results of

this study highlight the effectiveness of artificial intelligence

prediction methods based on medical image data processing for

clinical diagnosis and treatment.

In this study, the traditional radiomics feature extraction was

not applied in the multimodal ultrasound feature extraction stage;

instead, the automatically extracted multidimensional features of

each modality from the output of the deep-learning CNN network

were selected and fused and then input to the traditional classifier

for prediction. The model was tested on multimodal ultrasound

images; it yielded better results than the unimodal models tested for

predicting CLNM. In recent years, deep learning has been

extensively employed for medical image classification, and as an
TABLE 4 Performance of the Multimodal-SVM model for the cN0 subgroup.

Data sets
AUC

(95%CI)
Accuracy Precision Sensitivity Specificity NPV PPV

cN0 subgroup-1
0.920

(0.881-0.959)
0.866 0.859 0.884 0.855 0.880 0.859

cN0 subgroup-2
0.828

(0.769-0.887)
0.800 0.795 0.818 0.789 0.813 0.795
FIGURE 6

ROC curves of the Multimodal-SVM model for the cN0 subgroups.
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important branch of artificial intelligence, it is considered the most

advanced image classification technique (31). Previous research

reported the advantages of the deep learning algorithm that treats

the imaging as a pixel-by-pixel volume in the task of prediction, and

this quantitative assessment of imaging information can result in

more accurate and reproducible imaging diagnoses than qualitative

reasoning (32). Deep-learning algorithms differ from judgments by

human vision on medical images in that the algorithm makes the

final prediction of the overall image features in different anatomical

regions rather than one or more features in the lesion image (33). In

contrast to traditional radiomics feature extraction methods, deep

learning achieves hierarchical feature extraction (from global to

local) and has a greater advantage with regard to the number of

features extracted. Compared with several related studies (14–16,

34–37), the combination of deep learning algorithms and shallow

machine learning classification algorithm to establish a prediction

model is somewhat innovative.

After the model was trained with a large number of manually

labeled datasets, the prediction was made according to the image

features of the lesion area of the primary tumor of PTC, increasing

the amount of information used for evaluation, and maximizing the

use of existing image data. This method of constructing prediction

models has also been applied to X-ray, computed tomography, and

magnetic resonance imaging multimodal images and has achieved

good performance for classification and prediction (38, 39). In our

study, the AUCs of Multimodal-SVM exceeded those of traditional

radiomics models based on grayscale, shear wave elastography and

contrast-enhanced ultrasound images for predicting CLNM (AUC:

0.727–0.880) reported in previous studies (14–16, 35). Compared

with the previous study, the Multimodal-SVM model showed high

precision while maintaining high sensitivity (34). Furthermore, the

results were better than those of the traditional radiomics based on

computed tomography images for predicting LNM (AUC: 0.709–

0.822; accuracy: 0.642–0.670) (40, 41). The model for predicting

cases in the cN0-stage subgroup also yielded good performance

outcomes, thus indicating the clinical usefulness of the model for

assessing the cervical lymph nodes status of PTC.

In this study, the transverse and longitudinal image features of

primary tumors were fused for modeling. The multimodal fusion of
Frontiers in Oncology 10
transverse and longitudinal ultrasound image features provided

more scales and diverse high-dimensional image information

compared with those from a single section or a unimodal case.

Previous studies have indicated that computer-aided diagnosis or

radiomics methods combining CDFI or elastography image features

can increase the accuracy and sensitivity of disease prediction and

classification and can thus improve the diagnostic and predictive

performance (42, 43). Our study proved that combining CDFI and

strain elastography with grayscale ultrasound images to build a

radiomics model with the multimodal ultrasound image features

fusion offers better predictive performance than the radiomics

model with the unimodal (grayscale) image features fusion.

Several limitations of this study should be noted. First, this study

was a single-center retrospective study, and although it proved that

the prediction model achieves good predictive performance, future

prospective studies are needed to collect relevant data from multiple

institutions for further validation to reduce possible biases. Second,

obtaining high-quality multimodal images is a prerequisite for using

the model; thus, quality control of ultrasound imaging is crucial, and

standard operating procedures should not be disregarded. Third, the

size of the multimodal datasets should be increased. In future studies,

we will continue to introduce images acquired using techniques such

as superb microvascular imaging and contrast-enhanced ultrasound,

or introduce other imaging and clinical data to increase the

diversity of data and obtain more valuable multimodal data for

model optimization.
Conclusion

We demonstrated that an ultrasound radiomics model can

predict with high accuracy the presence of CLNM from

multimodal ultrasound images of primary PTC. The clinical value

of multimodal ultrasound imaging in disease prediction and

evaluation is thus improved. This strategy may be an effective

approach to early screening for CLNM in clinical lymph node-

negative PTC tumors. The multimodal ultrasound radiomics model

has great potential in serving as an important decision-support tool

in clinical applications.
A B

FIGURE 7

Performance of Multimodal-SVM model in the cN0 subgroup-1 (A) and subgroup-2 (B).
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