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Introduction: This study aimed to evaluate the feasibility of using general Raman

spectroscopy as a method to screen for breast cancer. The objective was to

develop a machine learning model that utilizes Raman spectroscopy to detect

serum samples from breast cancer patients, benign cases, and healthy subjects,

with puncture biopsy as the gold standard for comparison. The goal was to

explore the value of Raman spectroscopy in the differential diagnosis of breast

cancer, benign lesions, and healthy individuals.

Methods: In this study, blood serum samples were collected from a total of 333

participants. Among them, there were 129 cases of tumors (pathologically

diagnosed as breast cancer and labeled as cancer), 91 cases of benign lesions

(pathologically diagnosed as benign and labeled as benign), and 113 cases of

healthy controls (labeled as normal). Raman spectra of the serum samples from

each group were collected. To classify the normal, benign, and cancer sample

groups, principal component analysis (PCA) combined with support vector

machine (SVM) was used. The SVM model was evaluated using a cross-

validation method.

Results: The results of the study revealed significant differences in the mean

Raman spectra of the serum samples between the normal and tumor/benign

groups. Although the mean Raman spectra showed slight variations between the

cancer and benign groups, the SVM model achieved a remarkable prediction

accuracy of up to 98% for classifying cancer, benign, and normal groups.

Discussion: In conclusion, this exploratory study has demonstrated the

tremendous potential of general Raman spectroscopy as a clinical adjunctive

diagnostic and rapid screening tool for breast cancer.
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1 Introduction

According to the World Health Organization’s International

Agency for Research on Cancer, breast cancer surpassed lung

cancer as the leading type of cancer worldwide in 2020. In China,

due to lifestyle changes, the incidence of new cases of breast cancer

has ranked first among all female malignancies. Notably, both the

incidence and death rates of breast cancer are steadily increasing

year by year, and the age of onset is progressively becoming younger

(1–4). Breast cancer represents a prevalent malignant tumor that

significantly impacts women’s survival and quality of life (5).

Detecting the disease at an early stage and initiating timely

treatment are vital strategies for controlling disease progression,

enhancing treatment effectiveness, reducing mortality rates, and

ultimately improving patient prognosis (6).

Breast cancer screening is widely recognized as a crucial

preventive measure that effectively facilitates the early diagnosis,

treatment, and cure of breast cancer patients (7). The appropriate

utilization of effective screening techniques has the potential to

enhance survival rates and reduce mortality. Currently, clinical

breast cancer screening predominantly relies on various imaging

methods such as breast ultrasound, mammography, and magnetic

resonance imaging (MRI) . Among these techniques ,

mammography is primarily recommended in the guidelines of

European and American countries for breast cancer screening (8).

However, the sensitivity of mammography decreases significantly

from 98% in fatty breasts to 48% in dense breasts. Considering

that Chinese women tend to have a higher proportion of dense

breasts and an earlier age of onset compared to Western women,

the sensitivity of X-ray screening can be compromised, and there

may even be radiation risks. Consequently, this screening

approach may not be suitable for the Chinese population (9).

MRI is another commonly employed breast examination

technique with a sensitivity ranging from 94% to 100%.

However, it can lead to a high rate of over-treatment due to its

relatively low specificity (10). Additionally, MRI scans are more

expensive compared to other methods. Ultrasound is widely

utilized for breast cancer screening and early diagnosis, but it

suffers from low resolution and a higher margin of error.

Furthermore, breast cancer is often insidious in its early stages,

displaying no obvious symptoms. Imaging diagnostic images

exhibit a high degree of similarity between cancerous and non-

cancerous cases. As a result, imaging is typically used as an adjunct

method, providing initial identification of tumor shape and type

but unable to accurately discern the tumor’s nature (11–14).

Consequently, histopathological examination remains the gold

standard for diagnosing breast cancer. However, this method

involves invasive procedures, is time-consuming, and lacks

diagnostic timeliness, thereby limiting its widespread application

in screening (15–19). In routine breast examinations, imaging and

physical examination are typically conducted, and malignant

suspicious masses require puncture biopsy and histopathology

examination. Approximately 70% to 90% of patients are

diagnosed as benign, leading to unnecessary trauma, mental

stress, and financial burdens for patients (20–22). Therefore,

there is an urgent clinical need for an objective, rapid,
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convenient, and sensitive screening method for early detection

of breast cancer.

Raman spectroscopy is a spectroscopic technique that leverages

the Raman scattering effect to capture and transmit intrinsic

information about the chemical structures of diverse bio-

molecules. It provides unique “molecular fingerprint” features for

label-free, labeled, and quantitative analysis of cells, tissues, body

fluids, and other biological samples (23, 24). Raman spectroscopy

offers several advantages, including non-invasiveness, no

requirement for sample preparation, non-contact measurements,

preservation of sample structure, rapid analysis, ease of operation,

and high resolution, etc. These attributes have demonstrated

exceptional value in various research areas, such as tumor

diagnosis, disease prediction, and understanding pathogenesis. In

particular, serum, which primarily consists of water, carbohydrates,

proteins, phospholipids, and polysaccharides, exhibits distinct

Raman fingerprint spectra, with Raman signals of these

components stronger than that of water. The concentrations of

these biological substances are closely related to the secretion and

degradation of cells or tissues. Malignant transformation brings

about morphological and functional changes accompanied by

significant biochemical alterations that inevitably manifest in

alterations in the composition, type, and content of various

substances in the serum (25). Raman-based methods can

effectively detect and quantify the molecular signature of these

changes, providing valuable references for cancer diagnosis.

Moreover, serum is easily accessible, further emphasizing the

significance of serum Raman spectroscopy-based analysis and

research in the field of biomedicine. For instance, previous study

has demonstrated the potential of Raman spectroscopy based on

serum as a safe and effective screening technique for COVID-19

(26). Surface-enhanced Raman spectroscopy (SERS) has also been

employed to detect serum samples from patients with lung nodules

and healthy individuals, revealing the great potential of

nanoparticle-based SERS combined with SVM as a clinical

auxiliary diagnostic and screening tool for lung adenocarcinoma

nodules (27). Additionally, Pichardo-Molina et al. (25) conducted

Raman spectroscopy analysis on serum samples from 11 breast

cancer patients and 12 healthy individuals, utilizing machine

learning to identify differences between the control and

experimental groups. This research indicated that Raman

spectroscopy can assist in the detection of breast cancer

compared to healthy individuals, and that serum-based Raman

spectroscopy holds promise for breast cancer diagnosis. Zeng et al.’

research (28) introduced a rapid diagnostic method based on serum

Raman spectroscopy and convolutional neural networks for

screening triple-negative breast cancer, HER2-positive breast

cancer, and a healthy control group. The study achieved favorable

diagnostic outcomes. Considering the limitations of traditional

diagnostic methods, the development of a non-invasive, fast, cost-

effective, and user-friendly breast cancer adjunct diagnostic

technology holds significant value. Raman spectroscopy is a

powerful analytical technique capable of measuring the content of

biomolecules in serum samples. When combined with deep

learning algorithms, it can establish classification models based on

Raman spectroscopy, enabling quantitative and objective diagnosis
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of patients. This study also highlights the potential for a rapid, cost-

effective breast cancer screening method using serum Raman

spectroscopy and deep learning algorithms.

In the past few decades, various Raman spectroscopy applications

for breast cancer research have been conducted worldwide, providing

data support for the development of breast cancer screening

programs. However, most current research has primarily focused

on the detection of breast cancer cells, tissues, and tumor markers.

With the continuous advancement of Raman spectroscopy

technology, Surface-Enhanced Raman Spectroscopy (SERS) has

emerged. SERS effectively enhances the weak Raman spectral

signals of biomacromolecules by utilizing noble metals (such as

gold, silver, copper) or composite materials containing noble metals

as substrates. Consequently, SERS technology has rapidly developed

and garnered extensive attention in the field of biomedical research.

Currently, most studies are exploring the significant value of SERS in

breast cancer screening, diagnosis, and postoperative assessment. For

example, Enrique and his team’s study (29) successfully achieved

breast cancer detection using surface-enhanced Raman spectroscopy

(SERS) on serum samples. By analyzing characteristic peaks in the

Raman spectra, they could differentiate normal samples from cancer

samples with high sensitivity and specificity. This non-invasive

diagnostic tool has the potential to complement current detection

techniques, requiring minimal sample preparation and providing

objective, specific, and rapid results. Cervo and colleagues’ research

(30) explored the potential of surface-enhanced Raman scattering

(SERS) analysis of serum as a candidate method for detecting early

and locally advanced breast cancer. The study utilized serum samples

from three groups of participants and established predictive models

through principal component analysis (PCA) and linear discriminant

analysis (LDA). The performance of these models was assessed

through cross-validation. The research findings indicate that SERS

spectroscopy combined with multivariate data analysis can

differentiate between healthy individuals and breast cancer patients,

even distinguishing between different clinical stages of breast cancer.

However, there are limited articles that apply regular Raman

spectroscopy to serum samples from breast cancer patients. While

many studies have demonstrated the diagnostic potential of serum

SERS for breast cancer, the preparation and application of the

surface-enhanced substrates, such as gold or silver nanoparticles,

associated with SERS technology, can be complex and may lack

stability, making it less feasible for implementation, particularly in

grassroots medical facilities. In order to explore a more convenient

and readily accessible diagnostic technology, this study aims to

investigate the feasibility of applying regular Raman spectroscopy

to breast cancer screening.

Building upon the aforementioned background, we wonder to

investigate the feasibility of utilizing general Raman spectroscopy as

a screening tool for breast cancer, offering a more convenient and

accessible diagnostic technique. In this study, we aim to test the

Raman spectra of serum samples obtained from breast cancer

patients, benign cases, and healthy individuals. By combining

these spectra with machine learning algorithms, we intend to

employ mathematical methods to analyze the results. This

approach enables us to transform the challenge of material

recognition of Raman spectroscopy into a classification problem
Frontiers in Oncology 03
of machine learning. This study is a retrospective study with

pathological diagnosis as the gold standard to label serum. SVM

was used to establish a classification model for analyzing the

benignity and malignancy of breast neoplasms. Our study

endeavors to explore the significance of utilizing Raman

spectroscopy for early breast cancer screening, with the intention

of establishing a foundation for selecting appropriate diagnostic

modalities and equipping clinicians with valuable auxiliary tools for

surgical interventions and accurate diagnoses. By exploring the

value of early breast cancer screening, we seek to contribute to the

advancement of diagnostic practices and improve patient outcomes.

This research has the potential to enhance the overall management

of breast cancer, enabling timely interventions and personalized

treatment strategies based on early detection.
2 Materials and methods

2.1 Research object

This study, with the approval of the Ethics Committee for

Medical Research and New Medical Technology of Sichuan Cancer

Hospital (IRB approval number SCCHEC-02-2022-140), obtained

informed consent from all subjects. The serum samples used in this

study were collected at Sichuan Cancer Hospital in China, adhering

to specific inclusion and exclusion criteria.
(1) Controls group: ① All healthy subjects in the control group

were female. ② No significant abnormalities in blood

routine, hepatic function, and renal function. ③

No history of malignant tumors. ④ No organ dysfunction

of the heart, liver, or kidneys. ⑤ Healthy subjects who

had not undergone radiotherapy, chemotherapy, or

immunotherapy were included.

(2) Benign breast lesions group: ① All patients in this group

were female. ② Pathological diagnoses confirmed the

presence of benign conditions such as fibroadenoma,

adenopathy, intraductal papilloma, mammary hyperplasia,

among others. ③ There was no history of any other

malignant tumors among the patients. ④ Participants did

not exhibit any dysfunction in their heart, liver, kidneys, or

any other organs. ⑤ No surgery, radiotherapy,

chemotherapy, or other treatment was administered prior

to the collection of serum samples.

(3) Breast malignant tumor group: ① All patients in this group

were female. ② Pathological diagnoses confirmed the

presence of malignant breast tumors. ③ Participants

did not have a history of any other malignant tumors.

④ Individuals did not present any dysfunction in their

heart, liver, or kidneys. ⑤ No surgery, radiotherapy,

chemotherapy, or immunotherapy had been administered

prior to sample collection.
The control group consisted of 113 healthy individuals, with

an average age of 46.40 years. The cancer group included 129

patients, with an average age of 46.97 years. Additionally, the
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benign group comprised 91 patients, with a mean age of 46.43

years. Detailed information regarding age, clinical stage, disease

location, and other relevant characteristics of all individuals can

be found in Table 1.
2.2 Test method

Introduction of the instrument: The instrument used in this

study is a medical Raman spectrometer. Its model is RTS

Endoscopy (Zolix, Beijing, China). This system comprises

several key components, including a laser, Raman probe, deep-

cooled CCD camera, volume phase holography (VPH)

spectrometer, among others. The Raman probe has a

spectrometer end, a sample end, and a laser end. The

spectrometer end of the system is equipped with an SMA fiber

adapter and sequential double-edge filters. These filters effectively

block any back-scattered Rayleigh signals, allowing only Raman

signals to pass through.The sample end has been customized to

securely hold the cuvette, which acts as the container for the

serum samples being tested. On the other hand, the laser end

features an SMA fiber adapter and collimating lens, enabling the

generation of a well-collimated 785nm laser. Moreover, an

internal laser line filter is employed within the system to ensure

a clean laser profile. In the instrument, the spectrometer was

equipped with a thermoelectrically cooled CCD camera, and the

Raman signal was focused into an optical fiber through a lens and

then the signal was directed into the spectrometer through that

fiber. For this study, a single-mode semiconductor laser with a

wavelength of 785 nm was employed for Raman excitation.

However, it should be noted that the laser power applied to

the test samples during experimentation was adjusted to

approximately 70 mW to maintain optimal conditions and

minimize any potential impact on the samples.

Collection of serum: For each subject, a total of 2 mL of

fasting venous blood was collected between 6-7 am on the

following day, following an 8-hour fasting period. It is

important to note that no anticoagulants were added to these
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blood samples. Subsequently, the collected blood samples were

subjected to centrifugation at 4000 R/min for 10 minutes using a

centrifuge. This process facilitated the separation of the upper

serum layer, which was then extracted as the sample for analysis.

Once collected, all serum samples obtained from the participants

were promptly stored in a refrigerator at a temperature of -80 °C

to ensure preservation until further testing. This storage

condition was chosen to maintain the integrity and stability of

the samples for subsequent analyses.

Experimental operation steps: To ensure consistency and

accuracy in our experimental procedures, we followed the following

steps. Firstly, we stored the serum samples obtained from the

inspection section of the Sichuan Cancer Hospital in a refrigerator

at -80°C until further testing. The time taken from thawing to testing

was kept consistent for each serum sample. Secondly, according to

this research protocol, before we started the experiment (i.e. before

sampling the serum samples), we performed spectral calibration of

the spectroscopic instrument using a neon lamp. Next, we loaded a

specific quantity of anhydrous ethanol into the cuvette and used an

exposure time of 3 seconds to measure the spectrum of alcohol. Thus

performed wave number calibration. This process facilitated

wavelength calibration, which was essential for subsequent analysis.

Thirdly, after completing the calibration steps, we proceeded by

adding each serum sample to the cuvette individually. We then

measured the Raman spectra of the serum using the same

integration parameters. It was crucial to maintain a light-proof

environment throughout the experiment, and all the operations

were performed by the same person to ensure consistency. We

placed the cuvette in a specific slot of the Raman spectrometer

to ensure that the laser path passes through the wall of the tube at

a certain angle. Lastly, during spectral acquisition, we collected spectra

in the range of 200 to 2000 cm-1. After cosmic-ray removal from the

spectral data, each serum sample underwent 10 scans conducted by

the same experimenter. Multiple spectra were collected for each

sample to ensure the accurate characterization of the heterogeneous

composition of the sample. Raman data were recorded 10 times for

each serum sample and the mean spectrum for each sample was taken

for further analysis.
TABLE 1 Clinical characteristics of individuals under investigation.

Cancer Benign Normal p value

Total 129 91 113

Age, y
46.97 ± 6.79
(28~57)

46.43 ± 8.94
(28~69)

46.40 ± 7.15
(29~64)

0.418

Location

Left 65 49

Right 64 42

Clinical stage

Stage I 104

Stage II 25

tumor size 1.08 ± 0.60 1.07 ± 0.57 0.963
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2.3 Data processing and analysis

The acquired raw Raman spectra from the serum samples

exhibited prominent fluorescence backgrounds and noise,

necessitating preprocessing of the spectral data before conducting

analysis. Our objective was to preprocess the 3330 spectra obtained

from 333 serum samples to identify molecular bands and functional

groups. All the spectral lines were intercepted in the range of 600

cm-1~1800 cm-1. Additionally, due to potential background shifts

caused by instrumentation, we performed noise reduction and

baseline removal on each raw spectrum (31). To extract the pure

Raman signals, a Vancouver Raman algorithm based on a seventh-

order polynomial was employed to fit all serum auto-fluorescence

backgrounds, this polynomial was then subtracted to correct the

baseline. Subsequently, each background-subtracted Raman

spectrum was normalized by the integrated area under the curve.

Thus, the influence of spectral intensity variability generated by

possible laser power fluctuations could be reduced, and the spectral

shapes and Raman peak intensities could be compared between the

different groups of serum samples (32). Simultaneously, we also

conducted an average processing of the Raman spectroscopic data

from the serum samples. Each serum sample was recorded ten

times, and the average value was taken as the data representing that

particular serum sample for subsequent analysis and modeling. (We

used the average of the spectra for each serum sample as the

datapoint for the SVM analysis.) Following these preprocessing

steps, the spectral data were transformed into normalized data for

training purposes. Principal Component Analysis (PCA) was then

applied to the training data to extract spectral features. We selected

the principal components that retained 99% of the information as

the features for further analysis. PCA was applied to extract spectral

features and thus classify individual spectra based on their Raman

spectral fingerprints. PCA used a singular value decomposition

method to decompose independent variations as principal

components (PCs), where the contribution of each PC was

referred to as its score. Then a linear transformation was applied

to omit less important variables and displayed the features of the

original data for dimensionality reduction purposes. PCA is a

widely used classical tool for feature extraction in multivariate

statistical analysis. Finally, the preprocessed data described above

was utilized for classification purposes, enabling the identification

and differentiation of serum samples based on their Raman

spectral fingerprints.
2.4 Model establishment and verification

This article focuses on the combination of Raman spectroscopy

with machine learning algorithms for data classification. Machine

learning algorithms provide an effective means of analyzing Raman

spectral data, enabling the extraction of useful features from each

dataset and subsequent classification based on these features.

Support vector machine (SVM) is renowned for its capability to

effectively handle complex datasets and high-dimensional feature

spaces. In this study, our Raman spectroscopic data inherently

exhibits non-linearity, and SVM is well-suited to capture complex,
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allows it to potentially model the underlying structure of the data

more effectively than linear methods. The choice of classification

algorithm can also be influenced by specific research objectives and

expected outcomes. Our primary research goal was to accurately

classify serum samples into different categories (normal, benign,

malignant) based on their Raman spectral fingerprints. While linear

methods like PLS-DA can be effective, our specific aim was to

capture potential non-linear patterns in the data. SVM’s capacity to

model non-linear relationships aligned better with our research

objectives. Furthermore, previous research (33) has demonstrated

the significant potential of label-free serum surface-enhanced

Raman analysis combined with support vector machine

diagnostic algorithms in non-invasive prostate cancer screening.

Their study found that SVM’s diagnostic performance surpasses

that of linear algorithms like PCA-LDA. Because the support vector

machine (SVM) is a relatively young multivariate technique, it is

considered superior to traditional linear methods due to its ability

to handle binary classification problems with non-linear boundaries

by mapping sample datasets into higher-dimensional spaces. We

also have previous research experience (27) that demonstrates the

effectiveness of SVM in handling similar types of data. SVM has

achieved success in prior studies with similar features; hence, in this

study, SVM was once again the chosen classification method.

Finally, it is worth noting that SVM provides the flexibility to

adapt to various datasets by adjusting parameters such as the kernel

function and regularization. This adaptability can help mitigate the

risk of overfitting. For the above reasons, in our study, SVM stands

out as a highly effective classifier among various existing algorithms.

Not only does SVM classify the data, but it also optimizes the

decision boundary by maximizing the margin between data clusters.

It is worth noting that SVM is a linear binary classifier (34).

However, in the case of multivariate datasets, we employed a one-

vs-all multi-class implementation to transform the binary classifier

into a multiple-class discrimination model (35, 36). Furthermore,

we utilized LIBSVM within the MATLAB environment to tri-

classify the testing data into three categories: normal, benign, and

malignant. LIBSVM is a comprehensive software tool designed for

support vector classification, regression, and estimation of

distribution. It supports various SVM formulations, efficient

multi-class classification, cross-validation of model selection,

weighted SVM for unbalanced data, and automatic model

selection to generate cross-validation accuracy profiles, among

other features (37).

Upon completing the aforementioned operations, we ventured

even further, implementing a dual-layer cross-validation scheme to

avoid overestimation and over-fitting, thereby scrutinizing the

algorithm’s performance in the classification of Raman spectral

data (38). Within this scheme, we partitioned the data into two

distinct components: the model building dataset and the

independent testing dataset. To construct the SVM model, we

randomly allocated 80% of the data for model development. This

80% subset was then divided into two subparts with 5-fold cross-

validation. Specifically, 80% of the data served as the training set,

while the remaining 20% constituted the validation set.

Subsequently, we proceeded to test performance using an entirely
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independent 20% subset, distinct from both the training and

validation sets. We repeated the process 100 times until all

samples were tested independently. Each fold was used only once

as a completely independent test set. We looped the process 100

times for accurate performance estimation.

The flowchart for the development and validation of the SVM

prediction model for breast cancer is shown in Figure 1.
3 Results

3.1 Clinical features

In the cancer group, the median age of female patients was 48

years old, with an age range of 28-57 years. In the benign group,

the median age of female patients was 46 years old, and their age

range was 28 to 69 years. In the normal control group, the median

age of these healthy subjects was 47 years old, ranging from 29 to

64 years.
3.2 Raman spectroscopy and
statistical analysis

As we can see in Figure 2, there are some differences between the

average Raman spectrum of serum from breast cancer patients and

serum from healthy individuals. Since both groups had a significant
Frontiers in Oncology 06
presence of biomacromolecules in their respective serum samples,

there were similarities in the vibrational information within the

spectra. However, the peak intensities differed due to variations in

the content of each biomacromolecule present in the serum. Several

representative peaks were identified that showed differences between

the experimental group and the control group. Comparative analysis

revealed significant differences in spectral peaks at 784cm-1, 835cm-1,

925cm-1, 986cm-1, 989cm-1, 1002cm-1, 1020cm-1, 1056cm-1, 1114cm-1,

1127cm-1, 1139cm-1, 1285cm-1, 1295cm-1, 1346cm-1, 1367cm-1,

1437cm-1, 1531cm-1 and 1650cm-1. Table 2 provides details on the

main differences in spectral variations between breast cancer and

control groups, along with the assignment of characteristic peaks

(39–51).

Figure 2 displays the mean normalized spectra of the breast

cancer group, the benign lesion group, and the normal control

group. The shaded colors in the figure indicate the standard

deviation, providing insight into the data variability. In Figure 3,

the spectra differences between any two groups are shown

separately. Observing the figure, it becomes evident that the

molecular fingerprints of the spectra of the breast cancer group

closely resemble those of the benign lesion group, potentially

leading to mislabeling of some samples from these groups by the

classifier. However, the figure also highlights a clear distinction

between the spectra of the normal group and those of the breast

cancer or benign groups.

Figure 4 illustrates the classification results of breast cancer,

benign lesions, and normal individuals using the SVM model
FIGURE 1

Model establishment and verification.
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proposed in this study, achieving an overall accuracy rate of 98%.

The figure shows that out of the 129 samples with malignant breast

cancer, only 3 ± 1 samples were incorrectly labeled as benign, and 5

± 2 samples were incorrectly labeled as normal. Among the 91

benign cases, 8 ± 2 samples were misclassified, with 5 ± 1 cases

classified as cancer and 3 ± 1 cases classified as normal. In

comparison, 8 ± 3 of the 113 normal control samples were

incorrectly classified, with 4 ± 1 samples labeled as benign and 4

± 2 samples labeled as cancer. The classification of spectra between

the cancer group and the benign group exhibited a higher error rate

due to the close similarity in molecular fingerprints of the Raman

spectra within these two groups. In Figure 5, the Receiver Operating

Characteristic (ROC) curve of the SVM model proposed in this

study is depicted. The figure demonstrates that the area under the

curve (AUC) for the breast cancer group, benign lesion group, and

normal control group are 0.990, 0.987, and 0.987, respectively.

These results indicate that our model has a high ability to

discriminate between cancers, making it a potential tool for breast

cancer screening.

Table 3 presents the sensitivity, specificity, and accuracy values

for each category. Analyzing these values reveals that our proposed

SVM model effectively differentiates between breast cancer, benign

lesions, and normal individuals. Notably, our machine learning

model exhibits a notable advantage in accurately differentiating

normal samples, with a high accuracy rate of up to 0.99.

Furthermore, the two-level cross-validation and testing of samples

in this study were completely independent of the samples used in

the optimization. This ensured a reliable and reproducible method

that can be extended to real clinical environments.
4 Discussion

Currently, there is a lack of effective preventive measures for

breast cancer. Early detection and treatment are crucial in reducing
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mortality rates and improving prognosis. However, the existing

methods for clinical tumor diagnosis, including tumor marker

detection, imaging diagnosis, and histopathological diagnosis,

have several limitations. Tumor marker detection, for example, is

a method of early tumor monitoring based on molecular biology

and is susceptible to individual differences and false positives caused

by benign diseases (52, 53). While genetic sequencing technology of

tumor-associated circulating DNA shows promise for breast cancer

detection, it is expensive, has complex procedures, and its clinical

utility is uncertain (54). Imaging methods, as mentioned in the

introduction, carry certain risks and limitations, including high

costs, false positives, over-diagnosis, and radiation exposure.

Histopathology, considered the “gold standard” for tumor

diagnosis, is a complex discipline heavily reliant on the

experience and skills of clinical pathologists (55–57). Moreover,

the pathological biopsy is more time-consuming, the timeliness of

its diagnosis is poor, and it is an invasive modality (58). In

summary, these methods are not suitable for rapid screening of

early breast cancer in large-scale populations. Therefore, there is an

urgent need for a fast, safe, real-time, non-invasive, label-free,

sensitive, accurate, and convenient screening and diagnostic

technology for breast cancer.

Raman spectroscopy has gained significant attention in the field

of biomedicine due to its high sensitivity, non-destructiveness, and

ability to provide fingerprint resolution while having minimal

impact on the water environment. It has demonstrated the

capability to provide specific molecular characterization of various

biological samples and substances, including detecting changes in

chemical bonds corresponding to biological macromolecules.

Raman spectroscopy can express the metabolic and immunological

state in the body by detecting the composition of serum. When an

organ in our body becomes cancerous, apoptosis or immune

abnormalities can lead to alterations in the serum composition, as

well as the structure and quantity of various biomolecules. Raman

spectroscopy can detect changes in tumor-related metabolites
A

B

C

FIGURE 2

The mean normalized Raman spectra of the benign lesion group (A), the normal control group (B), and the breast cancer group (C).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1258436
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lin et al. 10.3389/fonc.2023.1258436
present in the blood during circulation. These biochemical changes

manifest before the appearance of common clinical symptoms

observed through medical imaging, offering a unique opportunity

to explore subtle molecular-level changes in the serum of patients

with early-stage breast cancer. Therefore, Raman spectroscopy holds

the potential to be an effective tool for early cancer screening (59).

Moreover, Raman spectroscopy screening of serum requires only 2-3

mL of blood, posing no harm to the human body. It can be
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performed even in grass-roots hospitals without various expensive

and complicated medical equipment. As a result, Raman

spectroscopy-based early screening is a convenient, easily

implementable, and cost-effective technique for breast cancer

screening. However, it’s important to note that Raman

spectroscopy applied to breast cancer screening does not replace

the gold standard, which is pathological diagnosis. Instead, it serves

as a primary screening method. Nevertheless, the use of Raman

spectroscopy is valuable in achieving cancer screening in more

and larger populations, facilitating early detection of breast

cancer patients.

In this study, by comparing the differences in the spectra, we

could obtain the results of the variation in peak intensity. The

differences observed among the three groups were influenced by the

content of various biomolecules such as proteins, lipids, sugars, and

nucleotides. Interestingly, there were also some similar changes in

serum Raman signals between the malignant tumor and benign

lesion groups, indicating the presence of shared components in the

serum of these patients. Spectroscopic analysis revealed an increase

or decrease in the percentage of the total Raman active component

of certain bio-molecules in the serum of breast cancer patients

compared to healthy subjects. For instance, the peak at 784 cm-1

corresponded to cytosine, a primary component of nucleic acids. In

the cancer group, the intensity of this Raman peak was higher than

in the control group. This may be attributed to the accumulation of

nucleic acids and circulating DNA in the blood, resulting from cell

necrosis and apoptosis during tumor progression (39). Peaks at 835

cm-1, 986 cm-1, 989 cm-1, and 1002 cm-1 represented characteristic

peaks of amino acids such as tyrosine, proline, tryptophan, and

phenylalanine, respectively. These peaks showed lower intensities in

the cancer group compared to the controls. In the context of cancer,

the rapid and uncontrolled cell proliferation leads to an increased

demand for amino acids involved in DNA and protein synthesis,

resulting in reduced serum concentrations of these amino acids

(40). Phenylalanine has also been considered as a potential tumor

marker (41, 42). Furthermore, the peaks at 1020 cm-1 and 1367 cm-1

were attributed to tryptophan, while 1056 cm-1 was attributed to L-

glutamate. These peaks were enhanced in the cancer group,

indicating elevated levels of free glutamate and tryptophan in

patients, which is consistent with previous findings (43). The

1114 cm-1 peak was assigned to the C-C stretch of breast lipid,

and its intensity was increased in the cancer group, which aligns

with findings from Nargis et al. (44). The peak at 1531 cm-1

represented carotenoids, we know that the main carotenoids in

human blood are lutein, lycopene, and b-carotene, which have

antioxidant effects (45). Related studies have shown that breast

cancer patients suffer from oxidative stress behavior and their

antioxidant capacity was reduced, resulting in increased depletion

of antioxidants in the serum and a decrease in b-carotene levels (46,
47). The peak at 1650 cm-1 corresponded to the a-helix of amide I,

while the peak at 1285 cm-1 belonged to the a-helix of amide III.

The relative intensities of these peaks decreased in the cancer group,

which indicated that the a-helix of amide had been absorbed during

the metabolism process and the spatial structure of the main chain

might have been disrupted. This suggested an increase in disordered

conformation and a decrease in ordered conformation of proteins.
TABLE 2 Average position and Assignment of Raman spectroscopy of
serum samples.

Peak
Position
(cm-1)

Band Assignment Tentative
Contribution

784 cm-1
Phosphate backbone of DNA

d(C3CO) deformation

Cytosine
L-Histidine
Citric acid

835 cm-1 para-substituted benzene ring Tyrosine

925cm-1
C(6)-OH D-Mannose

L-Glutamate
D-(-)-Fructose

986cm-1 Proline

989cm-1 Tryptophan

1002cm-1

trigonal ring breathing of the benzene
ring.

N(C–O) stretch

Phenylalanine

b-D-glucose
N-

Acetylglucosamine

1020cm-1

indole ring

n(C–O) and n(C–C) stretches

Tryptophan
N-Acetyl-D-
glucosamine

glucose
Glucuronic acid

Lactose
D-

(+)-Galactosamine

1056cm-1 L-Glutamate

1114cm-1 C-C stretch breastlipid

1127cm-1

Amino acids
Fatty acids
Saccharides
D-fructose-6-
phosphate

1139cm-1

stretching vibrational n(C-N)
D-Mannose
Amide III

1285cm-1 a-helix Amide III
phosphatide

1295cm-1 d(CH2) twist vibrations Fatty acids

1346cm-1 Glycine
˛a-D-glucose

1367cm-1 CH3 indole rings Tryptophan

1437cm-1 CH2 scissoring, d(CH2, CH3)
Bending vibrations

Lipids

1531cm-1 n(C=C) stretching b-carotene

1650cm-1 a-helix Protein Amide I
frontiersin.org

https://doi.org/10.3389/fonc.2023.1258436
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lin et al. 10.3389/fonc.2023.1258436
Breast cancer cells require nutrients for growth and consume lipids

and proteins to meet their energy needs, leading to reduced levels of

these components in the blood (48). In conclusion, the reason for

these changes is that breast cancer causes the consumption of

substances such as carbohydrates, amino acids, and proteins in

the tissues or cells during the cancerous process is different from

that of normal people. With tumorigenesis and progression,
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apoptotic and necrotic cells would release various biochemical

components, when blood flowed through tumor tissue, these

metabolites such as proteins and nucleic acid fragments would

enter the circulation and produce unique small changes in the

circulating blood micro-environment. These alterations in relative

concentrations of relevant biochemical components are directly

reflected in the Raman spectra (49–51). The above analysis shows
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FIGURE 3

The difference between any two groups of the spectrum, (A) Breast cancer vs. Normal groups, (B) Breast cancer vs. Benign groups, and (C) Benign
vs. Normal groups.
FIGURE 4

The classification results from our proposed SVM model.
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that there are differences in bio-molecules in the blood of breast

cancer patients and healthy controls, and the reason for such

differences is related to the biological behavior of breast cancer.

And further demonstrating the effectiveness of this serum-based

Raman spectroscopy analysis method for diagnostic screening and

evaluation of breast cancer. It also provides a theoretical basis for

the diagnosis of breast cancer using Raman spectroscopy combined

with classification algorithms. But it should be noted that the above-

oversimplified peak intensity analysis only used limited Raman

peak information. Furthermore, there were significant changes and

overlaps in serum Raman spectra between normal subjects and

cancer patients. Hence, in this study, we used multivariate statistical

analysis to combine the entire spectra and automatically identify the

most essential diagnostic features to improve the efficiency and

differentiation accuracy of serum analysis.
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In the research process, we also conducted a negative control

study. We performed classification tests by randomizing the

spectral labels (normal, benign, tumor) using the same SVM

classifier settings as the correct data labels. The test results

showed that the accuracy was approximately 43% with a variation

of ±5%. This means that by randomizing the spectral labels in the

dataset, we effectively disrupted any meaningful correlation

between the spectra and the category labels. Through this

method, we were able to demonstrate that when category labels

are no longer associated with the actual sample features, the

classifier’s performance significantly declines. The noticeable drop

in SVM classifier performance after randomizing the data labels

indicates that our results are not due to random factors. This further

adds a layer of credibility to our research results, confirming that the

classifier captures meaningful information rather than arbitrary

associations. It ensures that the classification results we observed are

meaningful rather than accidental or overfit outcomes.

Li et al. (48) conducted an analysis of serum Raman spectra

from 171 invasive ductal carcinoma (IDC) patients and 100 healthy

volunteers. They employed serum Raman spectroscopy in

conjunction with multiple classification algorithms to develop an

auxiliary diagnostic method for early detection of breast cancer.

Their results showed the reliability of combining serum Raman

spectroscopy with classification models under large sample

conditions. Another study by Wang et al. (60) involved collecting

Raman spectra from the sera of 241 healthy volunteers, 463 breast

cancer patients, and 100 Ductal carcinoma in situ (DCIS) patients.

Their research explored the feasibility of using Raman spectroscopy

in combination with convolutional neural network (CNN) to

establish a model capable of classifying these three distinct

spectra. The results of their study highlighted the potential utility

of CNN as an auxiliary diagnostic tool for breast cancer and DCIS.

In alignment with these studies, our own research revealed a clear

distinction between normal serum and serum samples obtained

from individuals with malignant tumors or benign lesions,

underscoring the sensitivity of Raman spectroscopy in this

domain. Testing the composition of serum enables the expression

of the metabolic and immune status within the body. This is

significant since alterations in serum composition can occur due

to apoptosis or immune abnormalities, and these changes can

reflect the difference between malignant and benign tumors. To

enhance classification accuracy and facilitate early detection of

breast cancer patients, we conducted statistical analysis employing

three groups of variables: the normal control group, benign lesion

group, and breast cancer malignancy group. This approach allows

for more precise categorization of patients and aids in the

identification of breast cancer cases at an earlier stage, potentially

reducing excessive medical treatment.

The preliminary data from this study suggests that Raman

spectroscopy holds promise as a diagnostic tool for breast cancer,

comparable in accuracy to existing clinical diagnostic techniques,

while providing surgeons with rapid and objective diagnostic

information. However, further exploration and development of

Raman spectroscopy in the context of breast cancer are warranted.

Several key advantages make it an attractive option for diagnosis.

Firstly, it demonstrates good sensitivity and specificity, comparable to
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FIGURE 5

Receiver-operating characteristic (ROC) curve of SVM model.
TABLE 3 Performance parameters of the SVM.

Class
Performance
parameter

Value ± Std 95% CI

Cancer

Sensitivity 0.932 ± 0.014 0.922-0.945

Specificity 0.951 ± 0.011 0.952-0.967

Accuracy 0.987 ± 0.003 0.986-0.989

Benign

Sensitivity 0.901 ± 0.016 0.901-0.910

Specificity 0.971 ± 0.007 0.968-0.973

Accuracy 0.986 ± 0.003 0.985-0.988

Normal

Sensitivity 0.931 ± 0.017 0.926-0.937

Specificity 0.959 ± 0.010 0.956-0.963

Accuracy 0.990 ± 0.002 0.989-0.991
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current clinical techniques. Secondly, it allows for the collection of

spectral information without the need for special staining or

preparation, enabling real-time and objective diagnosis.

Nevertheless, it is important to acknowledge that tumors are

complex systems that exist within intricate physiological contexts.

Therefore, relying solely on a single-dimensional view of tumors

might be limited. To establish the specificity of Raman spectroscopy

for breast cancer, it is necessary to consider potential similarities in

serum changes across different types of cancer, as well as the influence

of diseases in other organs that may impact serum composition.

Additionally, in the future, we need to further integrate clinical data

with spectral data to strengthen the correlation between spectral

fingerprints and the actual health status of patients. Integrating

clinical data not only enhances the specificity of the models but

also increases confidence in the accuracy of the ground truth labels,

thereby increasing the reliability of the SVM classifier. We will strive

to enhance the specificity and reliability of the classification model by

incorporating additional clinical data. This will enhance the clinical

relevance and applicability of our research findings, making them

more robust and reliable for breast cancer diagnosis and

differentiation. Furthermore, while this study focused on the

metabolic and immune perspectives of serum analysis, there is also

a need to explore the classification of breast cancer using imaging

techniques. Future research could combine imaging and Raman

spectra to establish a more comprehensive diagnostic model for

breast cancer, enhancing the reliability of diagnostic results.

Additionally, it is worth noting that the data in this study are

derived from a single-center, and further evidence should be

accumulated through joint multi-center prospective studies to

strengthen our findings. Currently, Raman spectroscopy technology

is not widely adopted or promoted in clinical practice, and the field is

still at the stage of experimental research and remains fragmented in

terms of technology, screening protocols, and diagnostic criteria.

Larger-scale in vitro and in vivo studies with standardized processes

and protocols are necessary to provide more stable and accurate data,

as well as to establish diagnostic databases and criteria. Such efforts

will enable a more comprehensive and precise analysis of early breast

cancer information. Based on existing literature, it is evident that

various sample types, Raman devices, and diagnostic algorithms can

be utilized in the study of Raman spectroscopy technology for breast

cancer screening. However, standardized processes and protocols for

diagnosis using Raman spectroscopy have yet to be established,

presenting a challenge in achieving uniformity. Nevertheless, as

Raman spectroscopy devices and diagnostic algorithms are

improved and further refined, taking full advantage of their ease,

speed, and nondestructive nature, there is potential for clinical

implementation and widespread use in the future. This would

contribute to a new type of clinical diagnostic technique for breast

cancer, ultimately supporting standardized breast cancer screening at

the grassroots level in China. The promotion of early detection and

treatment of breast cancer, along with improvements in the overall

survival rate of patients, holds significant importance for the well-

being and health security of the Chinese population.

While our study has demonstrated the promise of Raman

spectroscopy for serum-based classification, there is indeed scope

for enhancing the depth and breadth of information extraction
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from serum samples. Specifically, if we aim to extend the

applicability of this method to predict metastatic progression and

therapeutic outcomes, it is imperative to consider advanced

spectroscopic techniques and emerging approaches. One of the

key limitations of spontaneous Raman spectroscopy is its inherent

sensitivity, which can pose challenges when attempting to detect

subtle variations in serum composition, especially in the context of

metastatic disease and therapeutic responses. To address this

limitation, we should explore the potential of Surface-Enhanced

Raman Spectroscopy (SERS) assays. SERS can significantly amplify

Raman signals, enabling the detection of trace-level molecules and

providing more detailed information about serum components.

Incorporating SERS into our spectroscopic approach could

potentially unlock the capability to identify specific biomarkers

associated with metastatic progression and therapeutic responses.

This would represent a valuable step towards a more comprehensive

and predictive serum analysis method.Furthermore, considering the

complexity of cancer biology and its heterogeneous nature, a

multimodal spectroscopic approach is a promising avenue to

explore. By integrating various spectroscopic techniques, such as

Raman spectroscopy, fluorescence spectroscopy, and others, we can

obtain complementary information about serum samples. This

holistic approach can enhance our ability to capture a broader

spectrum of molecular and biochemical changes associated with

cancer progression and treatment outcomes. Additionally, the

integration of machine learning algorithms and data fusion

techniques can facilitate the interpretation of multimodal spectral

data and improve predictive modeling. These advancements hold

the promise of extending the reach of our method beyond

classification to the prediction of metastatic behavior and

therapeutic responses, contributing to more personalized and

effective cancer diagnostics and treatment monitoring.
5 Conclusion

In this study, we employed general Raman spectroscopy to

detect serum as an initial screening method for breast tumors. Our

study included a substantial sample size of over 300 participants,

ensuring comprehensive data collection. The findings revealed a

significant distinction between the serum of healthy individuals and

those with benign lesions or malignant tumors. Our proposed SVM

model achieved 98% accuracy in predicting the differential

diagnosis of malignant tumors, benign lesions, and healthy

individuals. These results demonstrate the considerable potential

of serum Raman scattering as an adjunctive diagnostic tool for

breast cancer. General Raman spectroscopy emerges as a fast,

effective, and convenient approach for classifying and screening

Breast Neoplasms, offering complementary diagnostic information

for early breast cancer screening. It holds important research value

and has the potential to become a new screening method in clinical

practice for breast cancer screening. Furthermore, the insights

gained from this study can serve as a reference for the diagnosis

of other malignancies. In conclusion, Raman spectroscopy proves to

be a promising diagnostic tool for breast cancer, warranting further

exploration and development. Its ability to provide valuable
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diagnostic information through serum analysis makes it a valuable

addition to the field of breast cancer screening.
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