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Lymphomas are a heterogenous group of lymphoid neoplasms with a wide

variety of clinical presentations. Response to treatment and prognosis differs

both between and within lymphoma subtypes. Improved molecular and genetic

profiling has increased our understanding of the factors which drive these clinical

dynamics. Immune and non-immune cells within the lymphoma tumor

microenvironment (TME) can both play a key role in antitumor immune

responses and conversely also support lymphoma growth and survival. A

deeper understanding of the lymphoma TME would identify key lymphoma

and immune cell interactions which could be disrupted for therapeutic benefit.

Single cell RNA sequencing studies have provided a more comprehensive

description of the TME, however these studies are limited in that they lack

spatial context. Spatial transcriptomics provides a comprehensive analysis of

gene expression within tissue and is an attractive technique in lymphoma to both

disentangle the complex interactions between lymphoma and TME cells and

improve understanding of how lymphoma cells evade the host immune

response. This article summarizes current spatial transcriptomic technologies

and their use in lymphoma research to date. The resulting data has already

enriched our knowledge of the mechanisms and clinical impact of an

immunosuppressive TME in lymphoma and the accrual of further studies will

provide a fundamental step in the march towards personalized medicine.
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1 Introduction

Lymphoma is an umbrella term for an incredibly heterogenous

group of disorders, with the latest World Health Organization

(WHO) classification listing over 100 subtypes. These are broadly

categorized into B-cell, T-cell and NK-cell lymphoid proliferations

and lymphomas, with further subcategorization based on

clinicopathologic, molecular, and genetic data (1). Common to all

lymphomas is the important clinical distinction between high-grade

and low-grade disease; the natural history and response to

treatment vary greatly between these two groups.

Lymphoma tumors reside in a complex ecosystem – the tumor

microenvironment (TME) – consisting of malignant cells, immune

cells, stromal cells, blood vessels, and the extracellular matrix. The

composition of the TME is determined by the interaction between

the malignant cell and inflammatory host response, with distinctive

TME patterns found in specific subtypes of lymphoma (2). These

TME patterns show variable immune cell infiltration and in line

with other cancers it is recognized that these immune cells, rather

than simply representing an attempt by the immune system to

eradicate lymphoma, can in fact enhance and support tumor

growth and promote immune evasion with the support of stromal

components of the TME (3). There is a growing appreciation of the

importance of tissue-resident immune cells in remodeling the TME,

including through the induction of tissue-specific tertiary lymphoid

structures (TLS) which may support antitumor immune responses;

the presence of TLSs in some solid cancers correlates with improved

response to immune checkpoint blockade therapy (4). Detailed

characterization of tissue-resident immune cells in lymphoma and

their influence on prognosis and treatment response is lacking.

Treatment options for lymphoma are varied and selecting the

most appropriate strategy requires a holistic assessment of the

patient and their lymphoma subtype, including molecular and

genetic abnormalities of the tumor. Broad classes of treatment

include chemotherapy, radiotherapy, immunotherapy, and

targeted molecular therapies. Frontline therapy for lymphoma

typically involves chemoimmunotherapy regimens with or

without the addition of radiotherapy. In those patients who fail to

respond or who relapse following this approach, there is increasing

focus on novel cellular-based therapies which redirect the immune

system to initiate cell death. Bispecific antibodies are molecules with

two different antigen-binding sites which bypass immune evasion

and redirect and engage T cells to lyse malignant cells (5). In

lymphoma the current bispecific antibodies in clinical use have

binding sites for CD3+ T cells and CD20+ tumor antigens and have

demonstrated efficacy in B cell lymphoma (6, 7). Chimeric antigen

receptor (CAR) T cell therapy, whereby autologous T cells are

isolated and engineered to specifically target antigens on the

malignant cell surface (e.g. CD19 on B cell lymphoma) is

established in the treatment of B cell lymphomas including diffuse

large B cell lymphoma (DLBCL), follicular lymphoma and mantle

cell lymphoma (8–13). Targeted molecular therapies are also used

in the second or subsequent line of therapy. They function by

exploiting specific vulnerabilities in cancer cells, for example

Bruton’s tyrosine kinase inhibitors (BTKi) in mantle cell

lymphoma (14).
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Immunotherapies have also been developed which target the

lymphoma TME. Perhaps the best established example is a group of

drugs termed checkpoint inhibitors which target and block

checkpoint molecules - negative regulators of T cell activation

which include programmed cell death 1 (PD1) (15). Tumor cells

can upregulate PD1 ligands to induce T cell exhaustion and mold

the TME towards a supportive niche; blocking the PD1 axis with

PD1 inhibitors (e.g. pembrolizumab and nivolumab) has been

shown to have substantial anti-tumour activity in relapsed or

refractory Hodgkin lymphoma (16, 17), primary mediastinal B

cell lymphoma (18) and also in T cell (19, 20) and NK/T cell

lymphoma (21). However the initial effectiveness and duration of

response of checkpoint blockade differs both between and within

lymphoma subtypes.

A deeper understanding of the lymphoma TME is required to

identify key interactions which could be disrupted for therapeutic

benefit and to dissect the key players in lymphoma immune evasion,

thereby improving our understanding of the variability in response

rates and duration of response to immunotherapy seen in different

subtypes of lymphoma. This information would contribute to the

treatment paradigm shifting away from a ‘one size fits all’

chemotherapy approach and towards precision medicine.

Understanding of the spatial context of the lymphoma TME

primarily evolved through techniques such as histology,

immunohistochemistry and immunofluorescence microscopy.

Advances are continuously being made in multiplexed imaging

techniques, such as the Co-Detection by indEXing (CODEX)

platform which can visualize up to sixty DNA-conjugated

antibodies (22). Characterization of the tumor and immune cell

subpopulations within the TME can be studied using proteomic

techniques such as mass cytometry or cytometry by time-of-flight

(CyTOF) (23). These techniques offer valuable information on the

spatial distribution of protein expression, but remain limited in the

number of parameters studied within a single experiment (24) and

are not spatial transcriptomic technologies and so will not be

explored further in this article.

The ideal method to explore the TME would be a high-

dimensional technology, combined with spatial information as to

where particular cells are located and to which cells they are in close

proximity. In this article we will explore one such technique, spatial

transcriptomics, and review existing studies which harness this

technology to better understand the lymphoma TME and the

translational impact of the data generated.
2 Introduction to spatial
transcriptomic technologies

Spatial transcriptomic technologies were developed to address

the loss of spatial context when performing high resolution

transcriptome analyses. For example, single cell transcriptomics

usually requires the dissociation of tissues into a single cell or single

nuclear suspension, which will disrupt the organization of cells

within tissues. Single cell RNA sequencing (scRNAseq) allows for

the unbiased analysis of cellular identity so can resolve

heterogeneity within cell types (25). However, without knowing
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the position of cells in relation to other cells or structures, other

techniques must be used to explore the cellular architecture of

tissues. Spatial transcriptomics can measure gene activity whilst

mapping where in the tissue this activity is occurring.

Spatially resolved transcriptomics was named Nature Method of

the Year for 2020 and the approaches to generate and analyze the data

are rapidly developing (26). Spatial transcriptomic techniques can be

broadly separated into two omics-based categories; image-based or

next generation sequencing (NGS) based approaches, and some of the

available technologies are summarized in Figure 1. The selection of

methods for spatial transcriptomics will depend on the experimental

aim and the balance between the number of detected transcripts and

spatial resolution, as well as other factors such as cost, size and

preservation method of tissue, and access to image-processing and

bioinformatic pipelines. Table 1 compares key features between the

established techniques of spatial transcriptomics.
2.1 Image-based spatial transcriptomic
technologies

Image-based spatial transcriptomic technologies use microscopes

to detect and quantify the RNA within the tissue. Nucleic acids are

labeled with complementary fluorescent probes using in situ

hybridization (ISH) which is an established technology within the

clinical setting (27); for example c-MYC protein expression is

routinely used in the clinical diagnosis and prognosis of aggressive

B-cell lymphomas (28). A great advantage of ISH is it can generate

spatial data about gene expression and genetic loci (29).

Immunohistochemistry (IHC) can also complement ISH data by

increasing the accuracy of cell type identification.

When ISH first became available it was largely qualitative, until

single molecule fluorescence ISH (smFISH) emerged allowing each

transcript to be labeled and quantified. The technique usually
Frontiers in Oncology 03
requires multiple DNA probes that have the same fluorescent tag

and are all complementary to the target transcript. This increases

the signal and reduces any signal-to-noise ratio (30).

There are many forms of ISH that are available today. They can

either be targeted to specific RNA transcripts or provide genome

scale measurements. RNAScope is a commercially available ISH

assay that works on both fresh frozen (FF) and formalin-fixed

paraffin-embedded (FFPE) tissue sections. The technology has

vastly improved the sensitivity and specificity compared to

standard smFISH whilst increasing signal detection. It works by

using “double-Z” shaped probes which bind specifically to the RNA

molecules and allow for sequential hybridizations to amplify the

signal. Multiplexing is possible for up to twelve targets from FFPE

tissue and up to forty-eight targets from FF tissue. The readout is

detected on an epifluorescent microscope (31). The drawback of

RNAScope is the limited number of genes that can be targeted in

one experiment. Two technologies have sought to address this:

seqFISH+ and MERFISH. Both methods can target thousands or

tens of thousands of genes in one experiment, by using

combinatorial labeling and sequential imaging with each having a

slightly different probe design. However both come with a high

price tag and, at the moment, they are both still only available for FF

tissue (32, 33).

In situ sequencing (ISS) is another image-based spatial

technology that employs a similar concept of ISH but uses a

unique padlock probe design and rolling circle amplification to

amplify the DNA of bound probes. This amplified cDNA is then

sequenced in situ by further ligation of probes which are

fluorescently labeled to enable signal readout (34). The ISS

technology has been commercialized on a number of occasions

with the original protocol under the name of FISSEQ (35). It is now

available through 10x Genomics’ Xenium platform which has

automated much of the process. Although another costly

approach, the commercialization has the added benefit of
FIGURE 1

A summary of spatial transcriptomic technologies divided into image-based and sequencing-based technologies, with subdivisions based on the
techniques employed. Created with BioRender.com.
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customer support and dedicated analysis tools. STARmap has

expanded on the ISS approach in 3D intact tissue but these

experiments can require long capture times which are not yet

fully automated (36).
2.2 Sequencing-based spatial
transcriptomic technologies

Sequencing-based spatial transcriptomic technologies use DNA

sequencers to detect the spatially resolved transcripts in the tissue.

There are two main methods by which this can be achieved. Firstly,

laser-capture microdissection (LCM) has been adapted to identify

and isolate regions of interest on tissue sections and analyze their

RNA content. Geo-seq enables this to be done at single cell level

(37) whilst Tomo-seq profiles genome-wide expression of 50-100

mm cryosections (38). The most contemporary method is the

commercialized GeoMx DSP platform from Nanostring. This can

also allow for single cell level profiling and works with both FF and

FFPE tissue sections. Specific transcripts are bound with probes that

are cleaved and sequenced at regions of interest. The number of

sequencing libraries is dependent on the number of regions of

interest and so cost is variable (39).

The other approach is to capture mRNA from the tissue directly

by using space-specific barcoded oligos, in an array-like fashion, so

that their location is retained. Spatial Transcriptomics (ST) was the

first method to employ this design using glass slides with barcodes

directly situated on top. FF tissue sections are mounted directly on

the slides and the tissue is permeabilized to release the mRNA,

which is then subsequently barcoded and captured via the polyA

tail. cDNA is created on the surface of the slide and then cleaved, so

that NGS-ready libraries can be prepared (40). ST is another

method that has been commercialized by 10x Genomics

(Visium), who have increased resolution by decreasing the

barcoded areas from 100 mm to 55 mm, whilst also making the

method available for FFPE tissue via probe capture rather than

polyA. To complement the Visium FFPE method, a slide transfer

instrument, called CytAssist, enables researchers to automate the
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transfer of material from pre-mounted sections to the proprietary

Visium slides.

The limitation to the Visium platform is still resolution and

other technologies have sought to improve this. Slide-seqV2 and

HDST have a resolution of 10 mm and 2 mm respectively and both

use barcoded beads at each capture location on the slide to increase

gene recovery (41, 42). Stereo-seq has achieved an even greater

resolution of 0.5 mm by the addition of wells onto chips patterned

with DNA-nanoballs to capture RNA in situ which is then reverse

transcribed on the chip and cleaved for further library preparation

(43). Stereo-seq is currently in the early stages of commercialization

by BDI and the company has pledged to keep prices low.

Deterministic barcoding in tissue for spatial omics sequencing

(DBiT-seq) is currently the only technology available that delivers

barcodes to the tissue itself using microfluidics. The capture area

can be flexible and can range from 10, 25, or 50 mm, which can be

useful when profiling tissues with homogeneous regions (44). At the

moment, the great advantage of DBiT-seq is that it is easily

combined with protein detection by using oligo conjugated

antibodies, however some say the method is labor intensive and

throughput is fairly low.

As will be outlined in subsequent sections, the Visium (10x

Genomics) and GeoMx DSP (Nanostring) commercial platforms

are established in lymphoma research and Figure 2 summarizes the

workflow of these technologies.
2.3 Analysis of spatial transcriptomic data

The aim of spatial transcriptomic data analysis is to assimilate

gene expression data with spatial locations to obtain useful

biological insights. Spatial transcriptomic data analysis will vary

depending on the technology employed and the final data output

(e.g. microscope images or sequence reads), and each experiment

requires a bespoke approach. The bioinformatic analysis of spatial

transcriptomic data is an expert and rapidly moving field; although

a detailed review of the complexities and approaches for each

technology is beyond the scope of this article, this section will
TABLE 1 A comparison of important features of key spatial transcriptomic techniques currently in wide use.

Technology Technique Aim of study Efficiency of transcript
detection

Transcriptome-wide
or targeted profiling

Single
cell

Tissue
area

Image-based smFISH
e.g. RNAScope

Hypothesis testing High Targeted Yes Limited

ISS
e.g. Xenium
10x Genomics

Hypothesis testing Low Targeted Yes Limited

Sequencing-
based

Barcoding
e.g. Visium
10x Genomics

Hypothesis
generating

Low Transcriptome-wide No Large

ROI
e.g.
GeoMx DSP
NanoString

Hypothesis
generating

Low Transcriptome-wide Yes Limited by
ROI
smFISH, single molecule fluorescence in situ hybridisation; ISS, in situ sequencing; ROI, region of interest; DSP, digital spatial profiler.
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introduce some key concepts in data analysis. Common steps

include image preprocessing, normalization of data, integration of

scRNAseq data for cell-type deconvolution and further downstream

analysis including inference of cell-to-cell interactions (45).

Initial preprocessing steps are similar to the quality control

considerations in a typical scRNAseq experiment and include

normalization to account for the variance in sequencing depth

across spots. However cell density can vary considerably across a

tissue and it is important to account and normalize for technical

artifacts without losing data which represents true biological

variance. For image-based spatial transcriptomics (e.g. smFISH-

and ISS-based methods), key aspects of preprocessing include image

registration, high-throughput transcript signal detection and

localization, and then cell segmentation. For sequencing-based

spatial transcriptomics (e.g. Visium), steps include processing and

dividing the original tissue image, aligning transcripts to reference

genomes and then combining these outputs. The resulting data

output for both image- and sequencing-based technologies is a

gene-by-cell count matrix alongside a location matrix of cell

coordinates (46).

The data from spatial transcriptomics is very complex, and

dimensionality reduction techniques such as principal component

analysis (PCA) or manifold learning are required to visualize the

data within a 2D space and to cluster cells with similar

transcriptomes, utilizing methods such as agglomerative

clustering (47). These workflows are similar to those utilized in

scRNAseq experiments, but with the clear advantage that the results

can be overlaid onto the tissue image to allow visualization of gene
Frontiers in Oncology 05
expression data in the histological context. Spatially variable

features can then be identified based on differential expression in

anatomical regions within the tissue (48).

As discussed in the previous section, many whole-

transcriptome spatial transcriptomic technologies do not yet offer

single-cell resolution, which means each spot will likely include

multiple cells. Existing scRNAseq datasets, matched to the

particular tissue/pathology, are often integrated with the spatial

transcriptomic data to predict which cells are present within each

spot. Methods to integrate data include mapping and

deconvolution. Mapping is used more frequently in image-based

spatial transcriptomic methods to assign annotations established in

scRNAseq data to spatial locations in the tissue section.

Deconvolution strategies are more commonly employed in

sequencing-based technologies by calculating the probabilities

that specific cell-type transcriptomes are represented within each

capture area (46). The user can then characterize and visualize

spatial patterns of tissue cellular heterogeneity including the

proximity of cells to each other. Further downstream analysis

includes exploring potential cell-to-cell interactions, inferred

ligand-receptor pairings and cell trajectory analysis. The resulting

spatial network patterns and defined cellular neighborhoods are of

great interest when considering lymphoma cells within their tumor

microenvironment (49). Figure 3 summarizes the bioinformatic

workflow in spatial transcriptomic analysis.

A current difficulty in approaching and critically appraising the

bioinformatic analysis of spatial transcriptomic data is the huge

variety in computational approaches which exist and which
FIGURE 2

An overview of Visium (10x Genomics) and GeoMx Digital Spatial Profiler (DSP) (NanoString) technologies for FFPE tissue. 1. For Visium, (a) sections
from an FFPE tissue block are placed on a Visium Gene Expression slide and then b imaged (either H&E or IF) to provide histological context and for
downstream analysis. c The Visium slide contains capture areas where capture probes will bind to RNA and incorporate spatial barcodes, before d
preparation of libraries for e next generation sequencing. 2. In GeoMx DSP, a FFPE blocks are sectioned onto slides and then DSP barcoded probes
will bind RNA (and/or protein). b The tissue section can then be imaged and reviewed to select a region of interest, before e) measuring count
expression levels within the region of interest using next generation sequencing. Created with BioRender.com.
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fonc.2023.1258245
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pickard et al. 10.3389/fonc.2023.1258245
continue to grow; for scRNAseq analysis alone there are over 1500

software analysis tools (50). The fact that distinct research groups

will analyze and hold data in different formats limits the

reproducibility of results and reusability of the data and an

important future direction will be the streamlining and perhaps

even standardization of bioinformatic pipelines to ensure a

consistent and clinically-relevant approach. As a bare minimum,

researchers should be encouraged to provide open access regarding

methods and interoperability of data; the growing field of research

software engineering will play a crucial role in supporting this

process (51). A further issue is the size of the data generated,

particularly if spatial transcriptomic data is combined with other

modalities such as proteomics and chromatin accessibility; storage

methods and processing speeds can be problematic even in large,

established laboratories (52).
3 Spatial transcriptomic analysis in
lymphoma: studies to date

The following section will review the use of spatial

transcriptomic techniques in distinct lymphoma subtypes,

followed by a discussion of the limitations of the technology,

and future directions of lymphoma research. Table 2 summarizes

the current, published studies which have utilized spatial
Frontiers in Oncology 06
transcriptomic technologies to improve our understanding of the

lymphoma tumor microenvironment.
3.1 Hodgkin lymphoma

Classic Hodgkin lymphoma (cHL) accounts for around 15% of

lymphoma diagnoses and presents with a bimodal age distribution,

affecting young adults with an additional smaller peak in older

adults. Treatment is based on chemotherapy alone or in

combination with radiotherapy depending on individual disease

burden. The stage of disease at diagnosis will affect the likelihood of

cure but typically reported figures range between 60 to 90% (60). As

described in the previous section, the addition of PD1 inhibitors

improves outcomes in the relapsed or refractory setting,

demonstrating the importance of targeting the interaction

between tumor cells and the immune system.

cHL has a unique microenvironment due its distinctive cellular

organization. A lymph node infiltrated by cHL is predominantly

composed of non-malignant immune cells, including numerous T-

cells, NK cells, mononuclear phagocytes, monocytes and dendritic

cells. The Hodgkin tumor cells are rare and represent only a very

small fraction of the lymph node cellularity (2). These tumor cells

are able to evade the antitumor immune response and create a

tumor-tolerant microenvironment. T and NK cells represent a
A B D

E

C

FIGURE 3

A summary of key steps of data analysis in spatial transcriptomics. (A) Pre-processing steps include quality control (QC) metrics and image
registration. (B) A common starting point for downstream bioinformatic analysis is a gene-by-cell count matrix and a matrix of cell coordinates. (C)
Normalization, dimensionality reduction and clustering allows the visualization of gene expression data in 2D and overlaid onto the tissue image. (D)
Integration of scRNAseq data allows deconvolution and cell type mapping of the spatial transcriptomic data to allow visualization of cell locations
within the spatial context of the original tissue section. (E) Bioinformatic pipelines can then be used to explore key aspects of cell signaling and cell-
microenvironment analysis such as (i) cell-to-gene interactions, (ii) ligand-receptor pairing, (iii) cell-to-cell interactions and (iv) trajectory analysis.
Created with BioRender.com.
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significant proportion of cells in the microenvironment established

by malignant Hodgkin cells, however they are rendered functionally

ineffective. Immune system diversion is achieved via the acquisition

of regulatory properties, such as LAG3-, PD-1-, and CTLA4-

expression on T cells leading to exhausted T cell phenotypes.

Moreover, there appears to be a unique spatial arrangement of T-

cells such that the most immunosuppressive subpopulations lie in

closest proximity to the malignant Hodgkin cells [reviewed in (60)].

Aoki et al. detailed the functional and spatial characteristics of T-

cells in cHL at single cell resolution using scRNAseq data

complemented with spatial assessments (immunohistochemistry

and imaging mass cytometry). They identified a regulatory T-cell

like immunosuppressive subset of LAG3+ T cells lying in close

proximity to the tumor cells and thus contributing to the immune

escape phenotype (61).

Stewart et al. (53) used the Nanostring GeoMx platform to analyze

ten FFPE Hodgkin lymphoma lymph nodes. The authors used PD-L1

to identify Hodgkin/Reed-Sternberg cells (HRSCs) and identified

regions of interest (ROIs) in both PD-L1high and PD-LIlow areas of

tissue. Single cell transcriptome profiles of both normal and

pathological lymph nodes were used to provide an overview of the

cellular ecosystem of HL. These data were then used as a reference to

deconvolute the spatial transcriptomic profiles of cells within the

distinct ROIs. Two neoplastic PD-L1high clusters were identified

which showed divergent localization of immune cells; one cluster of

HRSCs was enriched for T helper cells (Th), exhausted CD4+ T-cells

(ThExh) and NK-cells, whereas the other was enriched for

mononuclear phagocytes (MNPs) including classical monocytes,

macrophages and conventional dendritic cells (cDC2). Conventional

dendritic cells andmonocytes expressed immunoregulatory checkpoint
Frontiers in Oncology 07
molecules PD-L1, TIM-3 and the tryptophan-catabolizing enzyme

IDO1, there fore contr ibut ing to the tumor-to lerant

microenvironment. Classical monocytes appeared to play an

important role in retaining immunosuppressive and phenotypically

exhausted T-cells as well as the exclusion of plasmacytoid dendritic

cells. Ligand-receptor interactions were interrogated and confirmed the

expression of inhibitory molecules by MNPs in close proximity to

HRSCs. Correlation of the transcriptional profile with gene expression

data showed that high expression of genes associated with the MNP-

rich module was correlated to early treatment failure. This study

demonstrates the spatial polarization of tumor-associated MNPs to

provide an immunoregulatory niche in close proximity to HRSCs and

suggests that the inflammatory cDC2-monocyte-macrophage niche is

associated with inferior response to treatment. The identification of

these spatial tissue niches could allow improved characterisation of HL

tumors prior to therapy, and subsequent targeting of therapies to

deplete the inflammatory and immunosuppressive MNPs, alongside

existing strategies such as PD-1 blockade.
3.2 High-grade B cell non-Hodgkin
lymphoma

3.2.1 Diffuse large B cell lymphoma
DLBCL is the commonest category of high-grade NHL but is a

heterogeneous disease with differing clinical outcomes based on

distinct malignant B cell states. Several classifications exist based on

cell of origin, gene expression profiling, and bulk genetic and

transcriptomic analysis (62–65). ScRNAseq profiling demonstrates

a similarly heterogeneous tumormicroenvironment (66) with distinct
TABLE 2 A summary of currently published studies utilizing spatial transcriptomics in lymphoma, including key discoveries from the dataset.

Lymphoma
subtype

Technology Reference Tissue No. of
samples

Region of
interest
selection

Discovery

Hodgkin
lymphoma

Nanostring
GeoMx DSP

Stewart et al.,
2023 (53)

FFPE 10 CD274/
PDCD1 (PD-
L1)

Enrichment of distinct and recurring tissue niches within
cHL lymph nodes, including MNP networks, are associated
with patient outcome

DLBCL NanoString
GeoMx DSP

Sangaletti
et al., 2020
(54)

FFPE 8 CD20/
CD271/SMA

Intra-tumour heterogeneity exists in immune and stromal
networks in DLBCL which correspond to MYC expression

DLBCL NanoString
GeoMx DSP

Liu et al., 2023
(55)

TMA
(tissue
microarray)

47 CD68/CD3/
CD20

Macrophage subsets in DLBCL are spatially located. Certain
macrophage signatures are prognostic and could be
therapeutically targeted

PCNSL 10x Genomics
Visium

Heming et al.,
2022 (56)

FFPE 4 N/A Spatial distribution of malignant B cell niches enhances local
immunosuppression and contributes to therapy resistance

PCNSL 10x Genomics
Visium

Xia et al., 2023
(57)

FFPE 4 TME hot/cold PCNSL tumor cells evolve through a TME remodeling
pattern, with FKBP5+ cells contributing to a barrier effect;
tumor subgroups have their own spatial functional zones

Follicular
lymphoma

10x Genomics
Visium

Attaf et al.,
2022 (58)

Fresh
frozen

1 N/A Distinct malignant B cell states localized to specific niches
within the lymph node follicle

AITL 10x Genomics
Visium

Du et al., 2022
(59)

Fresh
frozen

1 N/A The TME of AITL is immune-suppressive, with
upregulation of CCR4 and its ligands CCL17 and CCL22.
DLBCL, diffuse large B cell lymphoma; PCNSL, primary central nervous system lymphoma; AITL, angioimmunoblastic T-cell lymphoma.
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sub-categorizations of the TME identifiable through functional gene

expression signatures (67). The composition of the TME has

prognostic value (68, 69).

Studies utilizing spatial transcriptomic technologies are limited

in DLBCL. Sangaletti et al. used a murine DLBCL model to

demonstrate the impact of the stromal microenvironment on

lymphoma gene expression and tumor heterogeneity (54).

Different types of mesenchymal cell meshworks exist within the

same DLBCL tumor, including those rich in the myofibroblastic/

reticular cell maker smooth muscle actin (SMA) and the

mesenchymal stromal cell/pericytic marker nerve growth factor

receptor (NGFR). The immune and stromal composition of

spatially-resolved DLBCL microenvironments was investigated

using eight human FFPE samples with the NanoString GeoMx

Digital Spatial Profiler (DSP) and four distinct ROIs were profiled

within each sample based on expression of SMA+ or NGFR+

stromal networks. Differential gene expression analysis suggested

that SMA-rich stromal networks were positively enriched in

immunoregulatory and vascular stroma-associated transcripts as

compared to NGFR-rich stromal networks. The use of spatial data

allowed the authors to identify the intra-lesional heterogeneity of

mesenchymal foci within the same DLBCL lesion which

corresponded to MYC expression; the presence of an NGFR-rich

foci correlated to downregulated MYC expression within the same

tumor area. It can therefore be hypothesized that the extent and

differential selection of these intra-lesional stromal loci could

impact disease progression and response to treatment.

Liu et al. used the NanoString GeoMx DSP to comprehensively

characterize DLBCL tumor-associated macrophages (TAMs) (55).

They identified eight distinct subsets of macrophages with distinct

biological characteristics and which localized to different tissue

regions. Macrophage signatures in DLBCL included upregulation

of CD163, complement system genes and signaling pathways

triggered by TNF-alpha via NF-kB, which confer a pro-tumor

immunoregulatory transcriptional profile. The spatial localization

of distinct macrophage signatures within DLBCL provides a

springboard for further work to evaluate their interaction with

lymphoma cells and other immune cells within the TME.

3.2.2 Primary central nervous system lymphoma
PCNSL is a rare subtype of non-Hodgkin lymphoma which

pathologically resembles DLBCL, but is confined to the CNS.

Genetic and molecular studies have shown recurrent driver

mutations in PCNSL, many of which are involved in NF-kB

signaling (62, 63, 70). Multi-omic data integration reveals

molecular subtypes of PCNSL which can be identified through

bulk RNA sequencing and which both correspond to distinct tumor

microenvironment signatures and correlate with overall survival

(67, 71). In the most recent iteration of the WHO classification

system, PCNSL is grouped alongside primary large B-cell

lymphoma of the vitreoretina and primary large B-cell lymphoma

of the testis under the umbrella term ‘large B-cell lymphomas of

immune-privileged sites’ (1). The TME and methods of tumor

immune evasion in lymphomas arising in immune sanctuaries are

distinct from systemic DLBCL, an example being the loss of HLA

class I and II expression on PCNSL cells (72). To further elucidate
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the immune contexture of PCNSL, Alame et al. (73) used bulk RNA

sequencing analysis to highlight three distinct immune cell

signatures with high, intermediate or low immune gene

expression levels; PCNSL tumors lacking an immune-rich TME

correlated with inferior clinical outcomes. This study also

demonstrated clinically relevant immune checkpoint ligand-

receptor interactions, with high PD-L1-expressing tumor

associated macrophages (TAMs) and high TIM-3 expression

associated with an immune-rich TME and improved outcomes.

Wei et al. (74) performed scRNAseq on fresh PCNSL tissue and

demonstrated an immune rich milieu including plentiful infiltrating

B cells, T cells, macrophages and dendritic cell populations; single

cell analysis allowed greater resolution to determine the sub-clusters

of each immune cell type and to infer functional heterogeneity, for

example highlighting the potential importance of CD74 in

regulating communication between PCNSL cells and T cells,

macrophages and dendritic cells.

Heming et al. (56) devised an approach to perform scRNAseq

and single-cell B cell receptor signaling (scBCR) on cells released

from PCNSL biopsy into surrounding fluid (termed the “Whiskey

Method”) from two patients with PCNSL. They identified significant

intratumor heterogeneity in both malignant and non-malignant B

cells, including differential expression of chemokines and varied

patterns of B cell development. T cells featured an increase in those

expressing canonical markers of T-cell exhaustion, including immune

checkpoint proteins such as TIM-3 and PD1 as described previously,

and T cells with a regulatory CD4+ phenotype. Receptor-ligand

interactions were predicted between malignant B cells and T cells/

myeloid cells and suggested several means through which the tumor

could evade the host immune response. Four malignant B cell clusters

(mBc) were identified. The mBc4 cluster was characterized by

expression of genes involved in cancer proliferation and enhanced

expression of immune checkpoint ligands. Heming et al. went on to

perform spatial transcriptomics on four patient samples using Visium

Spatial Gene Expression for FFPE (10X Genomics) and integrated

their scRNAseq data. The malignant B cell clusters demonstrated

focal spatial enrichment in all biopsies, and areas dominated by the

mBc4 cluster showed increased expression of exhaustion markers

(LAG3, PDCD1, HAVCR2, TIGIT) suggesting that this subtype of

malignant cell is able to induce a stronger immunosuppressive TME,

and supporting the projected ligand-receptor interactions from the

scRNAseq data. The demonstration of transcriptional heterogeneity

by both dissociated cell and spatially-resolved techniques increases

the strength of the hypothesis that tumor cell niches confer local

immunosuppression and therapy resistance and will be key in the

development of individualized therapy.

Xia et al. (57) used Visium to analyze different categories of

TME in PCNSL. They used pathological assessment to identify four

PCNSL samples which resembled each of their four classifications;

‘hot’, ‘invasive margin excluded (IME)’, ‘invasive margin

immunosuppressed (IMS)’ and ‘cold’. In brief, the hot TME

demonstrated wide distribution of T cells, whereas the cold TME

featured very few T cells. In IME, few T cells were found inside the

tumor, but there was extensive accumulation around the invasive

margin, whilst in IMS there were also few T cells in the tumor but

less accumulation in the invasive margin compared to IME.
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Differentially expressed gene (DEG) analysis and gene set variation

analysis (GSVA) demonstrated that tumor cell clusters varied in

their function in the distinct TMEs. Tumor cells in the ‘hot’ TME

were more likely to be in a state of passive immune defense

compared to cancer cells in a ‘cold’ TME which were in a state of

negative immune regulation. Developmental trajectory analysis of

the tumor cell groups allowed the authors to demonstrate a TME

remodeling pattern whereby the ‘hot’ tumor pattern appeared to be

a starting point leading to either ‘cold’ or ‘IME’ tumors with

immune cell depression and dominance of tumor cells, with the

IMS TME as a transitional state where the tumor and immune cells

are vying for control. This developmental trajectory is influenced by

T cell abundance; if there are few cytotoxic T cells in the TME the

tumor cells will branch towards a ‘cold’ cell state, whereas if there

are abundant T cells the likely route is to the ‘IME’ terminal state

with its associated tight junction to block immune cell activity. By

identifying the key genes involved in this transition, it may be

possible to better understand and potentially reverse this pathway.

Converting a tumor back to a ‘hot’ rather than ‘cold’ or ‘IME’ TME

could render it more susceptible to immunotherapy and, indeed,

unique changes in expression of PD1 and PDL1 showed temporal

and spatial heterogeneity within the distinct TMEs. Efficacy of

immunotherapy could also be enhanced by targeting the tumor

cells which form a barrier environment, and this study postulates

FKBP5 as a key gene associated with both this process and

tumor progression.
3.3 Low-grade B cell non-Hodgkin
lymphoma

3.3.1 Follicular lymphoma
Follicular lymphoma is classified as an indolent, low grade

lymphoma however the clinical course and response to therapies

can be heterogeneous. Poorer outcomes are seen in those patients

with progression of disease within 24 months (POD24) (75).

Specific features of the TME, including gene expression signatures

of immune response, are associated with disease progression and

survival in follicular lymphoma (76–79). Mondello et al. (80)

utilized IHC, CyTOF and CODEX to demonstrate that a lack of

intrafollicular CD4+ expression correlates with poorer outcomes

and can be incorporated into risk stratification models. These

intrafollicular CD4+ T cells are of the active, non-exhausted

central memory phenotype which provide immune response

against the lymphoma cells, and the lack of these cells in more

aggressive follicular lymphoma may be modulated by aberrant

expression of BCL-6 target genes by the lymphoma cells.

Han et al. (81) used their scRNAseq-derived signatures of T-cell

subpopulations in follicular lymphoma to reveal four distinct

subtypes of TME. The T-cell depleted TME was associated with

inferior outcomes and correlates with increased levels of tumour cell

MHCII expression and which will likely result in poorer responses

to therapy such as immune-checkpoint blockade. Radtke et al. (82)

utilized scRNAseq alongside multiplexed antibody-based imaging

to further reveal the rich diversity of immune cells within the TME

of follicular lymphoma, including rarer populations which can be
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difficult to identify in bulk RNA sequencing such as endothelial and

fibroblast cell subsets. The Iterative Bleaching Extends multipleXity

(IBEX) imaging method performed in this study revealed distinct

features of the TME in patients with more clinically aggressive

disease, including expansion of desmin-positive fibroblasts around

the neoplastic B cell follicles and increased proportions of DC-

SIGN-positive cells within the follicles, which were in direct

communication with IRF4-positive malignant B cells. The

reprogramming of lymphoid stromal cells to follicular lymphoma

cancer-associated fibroblasts (FL-CAFs) results from bidirectional

interaction between malignant FL B cells and lymphoid stromal

cells, including upregulation of CXCL12, CCL19 and CCL21, and

TGF-b signaling (83).

Attaf et al. (58) used scRNAseq to demonstrate intra-tumour

heterogeneity in FL, finding recurrent malignant B cell states which

appear to result from functional plasticity in response to TME cues,

particularly signaling from Tfh cells. They went on to perform

spatial transcriptomic analysis on a single fresh frozen FL lymph

node section using Visium Spatial Gene Expression. They focussed

their analysis on distinct tissue areas in relation to the malignant

tumor follicles and used reference-based deconvolution from their

scRNAseq dataset. Distinct malignant B cell states mapped to

different tumor areas, with germinal center and memory B cell-

like states preferentially localizing to centrofollicular and

interfollicular zones respectively. Perifollicular (PF) zones

contained multiple malignant B cell states and were abundant in

Tfh-activated cell states and markers of follicular dendritic cells

(FDCs). These localizations suggest distinct immune and stromal

cells promote survival of particular malignant B cell states within

distinct tissue niches. This heterogeneity and plasticity in malignant

B cell states and their localization with the TME could explain the

variable responses to therapy in FL and eventual relapse and

represents a future therapeutic avenue.
3.4 T cell non-Hodgkin lymphoma

T-cell lymphoma represents a large spectrum of disease

subtypes which typically carry inferior prognosis compared to B-

cell lymphoma. The World Health Organisation (WHO) classifies

T-cell lymphomas into subtypes with peripheral T-cell lymphoma

not otherwise specified (PTCL NOS) and angioimmunoblastic T-

cell lymphoma (AITL) being the most common (84).

Du et al. used Visium Spatial Gene Expression to evaluate the

tumor microenvironment in a single excised fresh frozen lymph

node from a patient with AITL (59). AITL is derived from T

follicular helper cells (TFH) and the authors defined the original site

of disease by CD4-positive TFH cells within the germinal center

region (TFH-GC). Existing scRNAseq datasets from lymphoid

tissue was used to conduct differential expressed gene analysis

and genes encoding CCL17 and CCL22 were significantly

upregulated in the TFH-GC region, with spatial colocalization of

T-regulatory cells (Treg). There was also an increased proportion of

cycling B cells and vascular smooth muscle cells within the core

tumor area, with decreased levels of NK cells and CD8+ cytotoxic T

cells, suggesting an immunosuppressed TME. Both CCL17 and
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CCL22 are ligands for CCR4, and recruit Treg cells to the TME as

evidenced in cutaneous T cell lymphoma (CTCL) (85). The anti-

CCR4 molecule mogamulizumab has shown promise in CTCL (86),

and Du et al’s study suggests this mechanism is a potential

therapeutic avenue in AITL.

There is no published use of spatial transcriptomics in

cutaneous T-cell lymphoma (CTCL). However, Phillips et al. used

scRNA-seq and imaging techniques to demonstrate that

topographical differences between PD-1-positive T-cells correlates

strongly with pembrolizumab response (87). This work highlights

the importance of understanding the spatial arrangements of cells

within the tumor microenvironment, which could be further

evaluated using spatial transcriptomics.
4 Limitations of spatial
transcriptomics in lymphoma

The holy grail of spatial transcriptomic technologies would be a

technique which offers transcriptome-wide profiling at single-cell

resolution and with robust and efficient gene detection. However, at

present spatial transcriptomic technologies fall short in one or more

of these areas and investigators are required to select the technique

to best match their tissue and experimental hypothesis (88). The

seven studies summarized in Table 1 include a combined total of

seventy five patient samples; clearly the small sample size limits

wider translational impact, particularly in the setting of significant

heterogeneity both between and within lymphoma subtypes. It

could be argued that spatial transcriptomics remains a relatively

new technology and so there will likely be a significant increase in

studies which utilize this technology in the coming years. However

these techniques remain technically complex, both in regards to

sample preparation and downstream bioinformatic analysis. Spatial

transcriptomic techniques also remain reliant on the selection of

histological sections which may under-represent the full complexity

and heterogeneity of the tumor or organ in which it resides (89).

Expense is an issue, with the high-throughput processes and

comprehensive gene capture of the resulting data reflected in

higher price brackets compared to traditional methods such as

IHC and IF. It could be argued that spatial transcriptomics remains

a hypothesis-generating area of discovery research. The studies in

Table 1 utilized protein level validation methods alongside spatial

transcriptomic data (e.g. multiplex immunohistochemistry/

immunofluorescence), however methodologies for simultaneous

spatial profiling of the transcriptome and proteome are evolving.

The selection of ST technique in the lymphoma studies to date

likely reflects the commercial technologies available at the time of

study inception and compatibility with archived samples in FFPE or

fresh frozen format. The two technologies used in these studies,

Visium and GeoMx DSP, utilize NGS for sequencing and are

transcriptome-wide techniques which offer an unbiased overview

of the tissue milieu. However there is a trade off with lower

detection efficiency of genes and a lack of single-cell resolution:

55 um per barcoded spot for Visium (analogous to 1 - 10 cells) and

700 - 800 um in GeoMx (88). While NGS-based technologies tend
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to allow coverage of a large tissue area, the lymphoma studies

utilizing GeoMX selected a region of interest (ROI) based on

morphology and protein expression. This can be advantageous in

providing more efficiency in detection of transcripts within cells of

interest but it also introduces bias in the data which is generated and

which will not represent the tumor or TME as a whole.
5 Spatial transcriptomics in
lymphoma: the future

Spatial transcriptomic technologies are compatible with both

FFPE and fresh frozen samples which allows the retrospective

analysis of tissue and, as the number of studies increases, will

provide the spatially-resolved single-cell transcriptional profile of

different subtypes of lymphoma and shine a light on the spatial

interactions of the lymphoma cells and TME. The combination of

spatial transcriptomics and deep learning models could improve

pathological classification of lymphoma and identify diagnostic,

prognostic or predictive markers such as individual gene markers,

presence and abundance of certain cell subpopulations, and gene

signatures (90).

Epigenetic alterations play a key role in the development of

lymphoma through regulating gene expression and thus altering the

tumor cell biological activity and the regulation of immune cell

activation and infiltration within the TME (91). Epigenomics can be

studied at a single cell level by chromatin accessibility profiling

through techniques such as the assay for transposase-accessible

chromatin using sequencing (ATAC-seq) (92), and can be

combined with spatial barcoding to provide spatial epigenetic

mapping (spatial-ATAC-seq) (93). Epigenetic alterations in

lymphoma include those involved in DNA methylation (e.g.

DNMT1), histone acetylation (e.g. CREBBP), histone methylation

(e.g. EZH2) and non-coding RNA (e.g. miR-155) (94). Personalized

therapies can be used to target these alterations, for example

tazemetostat, an oral EZH2-inhibitor, produces durable responses

in the setting of relapsed and refractory follicular lymphoma (95).

The study of lymphoma using newer techniques of spatial multi-

omics, including epigenomics, will therefore further improve the

identification of therapeutic targets (96).

Many of the studies discussed in this article focus on the

interaction between tumour cells and the TME, however studies

which utilise spatial transcriptomics also provide valuable insights

into lymphoma tumour cell heterogeneity. This information will

identify potential for therapeutic approaches which target the

spatial organization of distinct subclasses of tumour cells, for

example lymphoma cell clusters which induce variable local

immunosuppression at the tumor invasive margin and tumor

core (97). Translational applications of spatial transcriptomic

studies are summarized in Figure 4.
6 Discussion

The existing literature on spatial transcriptomics in lymphoma

demonstrates that tumor survival and development rely on spatial
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gene expression patterns, both expressed by the lymphoma cells

itself and also by the surrounding immune milieu, and findings

from spatial transcriptomics are correlated to patient outcome and

treatment response. Targeting of the TME in lymphoma has led to

an increasing focus on immunotherapeutic strategies which have

transformed the landscape of treatment options, particularly in the

setting of relapsed/refractory Hodgkin lymphoma and B-cell

lymphoma. However responses and duration of remissions are

varied within these tumor groups and progress has been much

less pronounced in T cell lymphoma, likely reflecting the varied and

dynamic TME both between and within tumor groups. Many

hemato-oncologists envisage a future where chemotherapy will be

confined to the annals of history, with precision therapy employed

across the board. To achieve this goal, we need to better understand

both the profile of immune and non-immune cells within the TME

and their spatial location. The latter is essential to visualize the

interplay between cells within the TME and neoplastic cells, to

understand the pathogenic mechanisms which lead to tumor

survival, and thus to identify both potential new drug targets and

new markers of clinical outcome and response to immunotherapies.

Spatial transcriptomics will be an essential tool to achieve this goal.
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FIGURE 4

Spatial transcriptomics will improve our understanding of the spatial molecular and genetic signatures in lymphoma which could improve our existing
stratification of subtypes. Spatial transcriptomic studies will identify key mechanisms which confer resistance to treatment and emergence of relapse in
lymphoma, including predicting barriers to effective immunotherapy and understanding the effect of TME remodeling during treatment and at relapse to
subsequent therapy. These, combined, will bring hemato-oncologists closer to the goal of precision medicine. Created with BioRender.com.
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