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Monitoring of single extracellular
vesicle heterogeneity in cancer
progression and therapy

Yoon-Jin Lee, Shinwon Chae and Dongsic Choi*

Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan,
Chungcheongnam, Republic of Korea
Cancer cells actively release lipid bilayer extracellular vesicles (EVs) that affect

their microenvironment, favoring their progression and response to extracellular

stress. These EVs contain dynamically regulating molecular cargos (proteins and

nucleic acids) selected from their parental cells, representing the active

biological functionality for cancer progression. These EVs are heterogeneous

according to their size and molecular composition and are usually defined based

on their biogenetic mechanisms, such as exosomes and ectosomes. Recent

single EV detection technologies, such as nano-flow cytometry, have revealed

the dynamically regulatedmolecular diversity within bulk EVs, indicating complex

EV heterogeneity beyond classical biogenetic-based EV subtypes. EVs can be

changed by internal oncogenic transformation or external stress such as

chemotherapy. Among the altered combinations of EV subtypes, only a

specific set of EVs represents functional molecular cargo, enabling cancer

progression and immune modulation in the tumor microenvironment through

their altered targeting efficiency and specificity. This review covers the

heterogeneity of EVs discovered by emerging single EV analysis technologies,

which reveal the complex distribution of EVs affected by oncogenic

transformation and chemotherapy. Encouragingly, these unique molecular

signatures in individual EVs indicate the status of their parental cancer cells.

Thus, precise molecular profiling of circulating single EVs would open new areas

for in-depth monitoring of the cancer microenvironment and shed new light on

non-invasive diagnostic approaches using liquid biopsy.
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Introduction

Extracellular vesicles (EVs) are lipid bilayer particles ranging from 30 nm to 1 µm in

diameter (1). These nanoscale vesicles are released from most cell types into the

extracellular space and surrounding biological fluids (1). Consequently, EVs exist in all

body fluids, including the blood, urine, tears, saliva, and cerebrospinal fluid, and are

involved in both local and long-range communication through the regulated exchange of
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cellular materials (2). However, cancer cells and their neighboring

cells in the tumor microenvironment dynamically regulate EV

release in response to extracellular conditions, such as hypoxia,

inflammation, or therapeutic stress (1, 3). These secreted EVs are

involved in almost all aspects of malignant progression, such as

cellular survival and environmental remodeling, including the

generation of vascular networks, thrombosis, and inflammatory

regulation (3). This multi-functionality of EVs depends on their

complex molecular components such as proteins, genetic materials

(mRNA, miRNA, snRNA, and DNA), metabolites, and lipids in

different EV subtypes generated by diverse biogenesis mechanisms

(3). Currently, the umbrella term EV has been widely used to cover

all EV subtypes defined by the International Society for

Extracellular Vesicles (ISEV), classified as exosomes, ectosomes,

microvesicles, shedding vesicles, oncosomes, and other terms

defined by their biogenesis mechanism, source of parental cells,

or functionality (4). Although the morphological features of these

EV subtypes are similar in vesicular shape under submicron size,

they are not uniform in terms of size and molecular composition in

each EV (2, 5).

Regarding biogenesis, EVs are broadly divided into exosomes

and ectosomes (Table 1) (18). Simply put, exosomes originate from

endocytic vesicles in multivesicular bodies (MVBs) with smaller

EVs ranging from 30 nm to 150 nm, but ectosomes, known as

microvesicles, shed larger EVs from the plasma membrane over 100

nm up to 1 µm (18). Both EV subtypes are released together in the

same cell, but some cells preferentially release one type of EV

depending on specific extracellular stimuli (e.g., epidermal growth

factor receptor (EGFR)) or cellular transformation derived from

oncogenes (e.g., RAS and EGFRvIII) (2, 6). Other EV types, such as

arrestin domain-containing protein 1-mediated microvesicles

(ARMMs) and apoptotic vesicles, are also categorized as EVs (13–

15). Recently, EV-like membrane-less particles, such as exomeres,

supermeres, and chromatimeres, were identified (9, 17, 19). They

have similar vesicular characteristics with sedimentation at high g-
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force and share molecular composition, including proteins and

RNAs, but their physiological nature regarding lipid structure has

not been well studied.

In reality, each EV subtype categorized as exosomes or

ectosomes is composed of individual vesicles with different

physiological properties and compositions, although they have

similar biogenesis mechanisms. Thus, the current EV subtype

definition may not represent the distinctive characteristics and

functionality of individual EVs (2, 5). Tetraspanins, including

CD9, CD63, and CD81, have been widely studied as canonical

markers enriched in EVs (14). Initially, it was believed that these

tetraspanins co-exist in an EV released from the cell, in which they

are clustered together with other accessory proteins such as

integrins in the cells, forming a tetraspanin web (20). However,

many studies have suggested that rather than all together in a single

EV, different combinations of tetraspanins (e.g., CD63 only and

both CD63 and CD9) can be found in an EV (7, 9, 21). Importantly,

recent single EV analysis technologies, such as single vesicle

imaging by super-resolution microscopy or detection by nano-

flow cytometry, have revealed a heterogeneous mixture of

individual EVs defined by antigens secreted from the cells (9, 22).

This evidence suggests that cells generate a collection of distinctive

EVs with different surface antigen decorations. Although these EV

subsets seem to partially overlap in their molecular composition,

their unique combination enables distinctive functionality and

target specificity (23). For example, Hoshino et al. reported the

differential tissue-targeting specificity of integrin a6b4-positive EVs
for lung tropism and integrin avb5-positive EVs for liver tropism
(23). Moreover, EV corona and surface decoration by non-integral

membrane proteins (e.g., fibronectin) on EVs could determine the

uptake efficiency of each EV (24, 25).

In particular, cancer cells actively release diverse types of EVs as

well as increased numbers of total EVs (9). This complexity of EVs

derived from cancer cells is largely affected by internal oncogenic

mutations, including EGFR, HER2, AKT, SRC, and RAS (2). In
TABLE 1 Subtypes of EVs and membrane-less particles.

Name Size Markers Isolation
Subcellular
orientation

References

Exosomes
30–150
nm

ALIX, TSG101,
syntenin-1, and
LAMP1

1.075–1.125 g/mL; 100,000 × g sedimentation
and iodixanol density gradient ultracentrifuge

MVB (6–8)

Ectosomes (i.e., shedding
vesicles and microvesicles)

100–
1,000
nm

ARF6, annexin A2,
and BSG

1.090–1.115 g/mL; 10,000 × g sedimentation and
iodixanol density gradient ultracentrifuge

Plasma membrane (6, 7, 9–12)

ARMMs
40–100
nm

ARRDC1 and
TSG101

120,000 × g sedimentation Plasma membrane (13)

Apoptotic vesicles or blebs
50–
5,000 nm

Histones, DNA, and
phosphatidylserine

1.16–1.28 g/mL; iodixanol density gradient
ultracentrifuge

Nucleus and intracellular
organelles in apoptotic cells

(14, 15)

Exomeres ~35 nm
HSP90AB1 and
metabolic enzymes

Asymmetric flow field-flow fractionation Unknown (16)

Supermeres <35 nm TGFBI and GPC1 367,000 × g sedimentation Unknown (17)

Chromatimeres <200 nm DNA Size exclusion chromatography Unknown (9)
ARMMs, arrestin domain-containing protein 1-mediated microvesicles; MVB, multivesicular body.
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addition, cancer cells modulate their EV release in response to

therapeutic stress, such as chemotherapy, for survival and drug

resistance (26). These alterations in EVs affected by cancer

progression and chemotherapy have been considered potent

biomarkers for the diagnosis and prognosis of cancer (27). In

addition, treatment with chemotherapeutic drugs elicits the

release of EVs, inducing metastasis and subtype change (9, 26).

Thus, the examination of circulating EV heterogeneity can provide

direct information on therapeutic responses in cancer patients,

including therapy resistance (27, 28). In this review, we

summarize the classical EV subtypes and other subtypes revealed

by single EV analyses and provide an overview of the current

methods to analyze the subtypes of circulating EVs at the single

vesicular level and their subtype change during cancer progression

and chemotherapy.
Classical EV subtypes: exosomes
and ectosomes

Major classes of EVs are categorized based on their biogenesis

mechanisms, such as exosomes and ectosomes (known as

microvesicles or shedding vesicles) (Figure 1) (18). Smaller EVs,

referred to as exosomes, range from 30 nm to 150 nm and originate

from endosomal MVBs. Historically, exosomes were first observed

by the Stal and Johnstone groups in 1983 using transmission

electron microscopy during reticulocyte maturation to remove

transferrin receptors by exosomes (29, 30). They observed the

fusion of MVBs to the plasma membrane, resulting in the release

of intraluminal vesicles into the extracellular space. Impressively,
Frontiers in Oncology 03
recent advanced live imaging technology was able to visualize MVB

events on the plasma membrane with the release of exosomes (31).

Exosomes are enriched with specific proteins, including ALIX

(programmed cell death 6-interacting protein, PDCD6IP as

official gene symbol), TSG101, and syntenin-1 (SDCBP). These

proteins are related to the endosomal sorting complex required for

transport (ESCRT) machinery for the generation of intraluminal

vesicles, accompanied by the sorting of ubiquitinylated cargo into

intraluminal vesicles in MVB (32). In particular, ALIX, TSG101,

and syntenin-1 are highly enriched non-integral membrane

proteins, which are distinctive characteristics of exosomes from

other EV subtypes enriched with integral membrane proteins,

including tetraspanin CD9, CD63, and CD81. ALIX, known as an

ESCRT-associated protein, recruits ESCRT-III proteins to

endosomes, enabling protein sorting into intraluminal vesicles in

MVBs (33). During this process, syntenin-1 interacts with ALIX

and supports the intraluminal budding of endosomal

membranes (32).

Ectosomes, larger EVs, range from 100 nm to 1,000 nm and are

shed from the plasma membrane through the detachment of their

budding site (18). The first ectosomes were observed in 1946 as

clotting factors in the blood by Chargaff and West (34), and later

Wolf in 1967 described these membrane fragments that were

derived from platelets (35). Ectosome biogenesis mechanisms

have not been as well addressed as exosomes, but their release

seems to be related to the activation of signaling pathways. For

example, mutant EGFRvIII in glioma cells stimulates EGFRvIII-

carrying ectosome, termed an oncosome, release with horizontal

transfer of oncogenic receptor, which can merge with the plasma

membrane in recipient cells lacking EGFRvIII, leading to the
FIGURE 1

EV biogenesis and heterogeneity. Cancer cells release ectosomes, exosomes, and membrane-less particles such as exomeres, supermeres, and
chromatimeres together. However, their complexity is much greater in terms of molecular composition in individual EVs. Oncogenic transformation
influences the change of individual EV phenotypes related to tumor aggressiveness and functionality in the tumor microenvironment. For example,
the differential tissue-targeting functionality of integrin a6b4-positive EVs for lung tropism and integrin avb5-positive EVs for liver tropism was
reported (23). Surface decoration by fibronectin on EVs could determine the uptake efficiency of each EV (24, 25). EV, extracellular vesicle.
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activation of EGFR-regulated signaling pathways such as MAPK/

ERK (36). In addition, activating cells by an increased level of

intracellular Ca2+ induces shedding EV generation (37). Increased

Ca2+ concentration in the cell drives symmetric phospholipid

distribution by scramblase and floppase translocating

phosphatidylserine and phosphatidylethanolamine to the outer

side of the plasma membrane (37). Consequently, the activation

of Ca2+-dependent proteases, including calpain and gelsolin,

induces degradation of the cytoskeleton, enabling budding of the

membrane (37). Specifically, phospholipase D and ERK activate the

GTP-binding protein ARF6 and myosin light chain kinase for

ectosome release in invasive cells (10). In particular, prostate

cancer cells shed large EVs, known as large oncosomes, ranging

from 1 µm to 10 µm, and this large ectosome blebbing is promoted

by oncogenic SRC activation (38). Exclusive marker proteins for

ectosome populations are very limited, but plasma integral

membrane proteins such as integrins and EGFR and cytosolic

proteins including actin and GAPDH are relatively enriched in

ectosomes compared to other EV subpopulations (9). Jeppesen et al.

defined annexin A1 as a specific ectosomal marker protein based on

the isolation and proteomics of EVs by high-resolution density

gradient ultracentrifugation and observation of the budding of

annexin A1-positive plasma membrane regions (8).
EV heterogeneity and subtypes

EVs are sedimented at high centrifugation forces over 100,000 ×

g for exosomes and 10,000 × g for ectosomes (9) and floatation at

specific densities of 1.11–1.19 g/L of sucrose or iodixanol gradients

(6, 11, 12). Based on these unique characteristics of EVs, their

subtypes have been extensively addressed in previous studies based

on size and density (Figure 2) (6, 8, 19). Asymmetric flow field-flow

fractionation, which resolves mixed EVs based on their size,

has revealed distinctive subtypes of EVs, including large exosome

vesicles (Exo-L) (90–120 nm), small exosome vesicles (Exo-S) (60–80

nm), and membrane-less particle exomeres (approximately 35 nm)
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(19). Impressively, larger exosomes show an increased negative

zeta potential, but the exomere has a less negative zeta potential

(19). Large and small exosome vesicles seem to be similar to each

other, but large subtypes are more equipped with ESCRT

machinery involving the classical exosome biogenesis pathway,

whereas small exosomes are enriched with lipid raft-related

flotillin proteins, which are related to ESCRT-independent

exosome biogenesis (16). However, exomeres showed a more

unique proteomic composition related to glycolysis and the

mTORC signaling pathway with the functionality to transfer

their cargo to the recipient cells (16, 19).

Kowal et al. revealed proteomic differences between ectosome

and exosome subtypes sedimented at 10,000 and 100,000 × g,

respectively (6). Although this separation showed a distinctive

size difference between the two populations, proteomic

compositions overlapped with each other (6). Partially,

endosome-related proteins such as EH domain-containing

proteins (EHDs) and syntenin-1 are relatively enriched in

exosome subpopulations, but cytoskeleton proteins, including

actinins, are enriched in ectosome fractions. To precisely isolate

EVs according to their density, Jeppesen et al. applied density

gradient ultracentrifugation to isolate a pure exosome population,

termed small EVs, from other EVs (8). The EV proteomes showed

enriched ESCRT-related proteins such as TSG101, ALIX, and

syntenin-1, but depletion of ribosomal proteins, histones, and

extracellular matrix proteins, which are considered contaminants

or EV-membrane attached proteins (39), as in other proteome

studies of EV isolated by density gradient ultracentrifugation (8).

Consistently, these studies showed that small EVs are mainly

composed of exosome subsets with enrichment of plasma

membrane, endosome, and ESCRT-related proteins but depleted

of other subcellular organelle proteins.

Although these EV size- and density-based sub-fractionations

effectively isolated EVs from non-vesicular contaminants such as

protein aggregates or non-membranous particles, their

subpopulations defined by homogeneous molecular composition

still overlap with each other, implying that the molecular
FIGURE 2

Overview of methodological approaches to isolate EV subtypes. Differential centrifuge and density gradient ultracentrifuge are widely used in
exosome and ectosome enrichment based on their unique density. Flow field-flow fractionation effectively divides the EVs according to size. Size
exclusion chromatography and acoustics could be applied to isolate the total EVs. Immunoaffinity purification and recent EV sorting technology are
able to enrich the specific antigen-positive EVs. Exo-L means large exosome vesicles (approximately 90–120 nm), and Exo-S means small exosome
vesicles (approximately 60 nm) as defined by Zhang et al. (19). EV, extracellular vesicle.
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heterogeneity of EVs is more complex over these fractionations. The

expected diversity of EVs is inferred from the number of identified

molecules in the OMICS analyses. For example, EV proteomic

analyses have usually revealed 1,000–3,000 distinct proteins from

viable and relatively uniformly cultured cancer cells (3, 6, 8). If the

diameter of the exosome is approximately 100 nm, only several

hundred membrane proteins could be displayed (40), and the

cellular synaptic vesicle, near-exosomal size, possibly contains

approximately 200 proteins in a single vesicle (41). This

calculation estimates that cells release several to hundreds of

different subtypes of distinctive EV with non-overlapping

proteomic composition (3, 20).
Current advances for single
EV analyses

While bulk EV isolation and its functionality provide valuable

biological knowledge, increasing evidence suggests that the

underlying heterogeneity within the bulk EV is far more complex

(2). Recently, EV subpopulations have become accessible using

advanced separation approaches, such as asymmetric flow field-

flow fractionation (19), fluorescence-activated vesicle sorting

(FAVS) by flow cytometry (42), and acoustic microfluidics (43). In

addition, the physical properties of a single EV are applied to detect

antigen-carrying EV subsets using surface plasmon resonance (44)

and Raman spectroscopy (45) with high sensitivity. In addition,

relative quantitation to monitor antigen-positive EVs has been

achieved with antibody-based high-throughput methods, such as

improved ELISA and immunocapture assays (46), array-based EV

detection technologies (47), and multiparameter chip-based

microfluidics (48).

Because of their submicron size, especially exosome

subpopulations ≤100 nm diameter, EVs are below the detection

thresholds of most standard optical imaging methods (e.g.,

approximately 250 nm in confocal microscopy) (49). Thus, their

individual characteristics and diversity have long remained elusive

(2). Subsequently, several EV measuring technologies for counting

and sizing were able to characterize single EVs, such as electron

microscopy (EM), atomic force microscopy, nanoparticle tracking

analysis (NTA), dynamic light scattering (DLS), and tunable

resistive pulse sensing (TRPS) (2). Typically, transmission

electron microscopy (TEM) and cryo-electron microscopy (cryo-

EM) are considered the gold standard technologies to directly

observe the EV distribution for the validation of other indirect

measurements and characterization methods (4).

Single EV imaging analysis could provide the anatomical view

of an individual EV. Structured illumination microscopy (SIM)

discriminates the distinctive subpopulation of CD63-positive and

CD81-positive EV from CD63/green fluorescent protein (GFP)-

expressing A431 cells (9). In this study, GFP tagged in the

cytoplasmic domain of CD63 is located on the luminal side of

EV, but anti-CD63 antibody fluorescence is located on the EV

surface (9). Impressively, direct stochastic optical reconstruction

microscopy (dSTORM) provides a more detailed view of EVs by
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super-resolution image with approximately 20-nm resolution

through the time-resolved localization with sequential activation

of fluorophores, which switches a non-fluorescent dark state to

transient activation stochastically (50). Higginbotham et al. applied

the STROM to reveal the colocalization of EGFR and CD9 in an

individual sorted EV by flow cytometry (42). McNamara et al.

visualized hundreds of individual EVs in a field of view by dSTORM

from ONI Nanoimager, providing the uneven localization of

tetraspanin CD81 on an EV labeled by lipophilic dye cell mask

(51). This result implies that EV contains the distinctive membrane

microdomains or lipid raft with the clustered tetraspanin

proteins (51).

However, super-resolution imaging and EM technology are not

available for high-throughput quantitative estimation at the single

vesicular level, and EMmethods are technically inconsistent. NTA-,

DLS-, and TRPS-based methods effectively quantify the

concentration of EVs with size information. However, these are

not appropriate for quantitation of the specific subpopulation of

specific antigen-carrying EVs. NTA could provide the fluorescent

mode to detect specific EV subtypes labeled by fluorescent

chemicals or antibodies, but their long recording time makes it

difficult to record stable fluorescent-positive particle movement due

to photobleaching (52). Impressively, recent advanced technologies

are capable of molecular phenotyping single EVs using super-

resolution microscopy (42), imaging flow cytometry (53), high-

resolution flow cytometry (42, 54, 55), interferometric imaging (56),

and a single EV capture platform on a chip (48). These high-

throughput analyses of single EVs enable the decoding of the

heterogeneity and broad molecular spectrum of EVs, even if

released from a single cell line (57).
Single EV analyses by nano-flow
cytometry

There has been significant progress in nano-flow cytometry,

known as high-resolution flow cytometry (5), enabling the detection

of a single EV with multiple parameters (e.g., size and molecular

composition) and high sensitivity (Table 2) (64). To detect and

resolve the submicron-sized EVs, the instruments have adopted

several improvements such as the high-sensitivity photomultiplier

tube detector, avalanche photodiode detector, fluorescence

triggering, detection of unique angles of light scattering, low-

wavelength laser for side scattering, and software improvements

(42, 54, 58, 65). In particular, low-wavelength lasers, such as the

violet laser (405 nm), showed better sensitivity and resolution for

small (100–500 nm) particles than the widely used blue laser (488

nm) in side scattering (65). This nano-flow cytometry analysis for a

single EV detection represents the non-homogeneous EV subsets

based on surface proteins (Figure 1) (55, 57, 58). This remarkable

difference in surface antigen distribution in each EV could be of

great significance in the context of EV-biomarker application,

where the molecular context of each EV is equipped with valuable

distinctive diagnostic information about the parental tumor or host

cells from which they are derived as well as EV target specificity and
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functionality (23). Higginbotham et al. revealed the selective release

of conformationally active EGFR-positive EVs from human

colorectal cancer cells in the plasma of a mouse animal model

and human patients (42). Moreover, single EV distribution is

dynamically regulated, reflecting its parental cellular status in the

tissue microenvironment, similar to the regulation in single-cell

transcriptomics of cancer and normal tissues (2). As a result,

biological fluids contain differential properties of diverse EV

subtypes from various cells with different physical and

molecular properties.

Nano-flow cytometry revealed disease-related EV subtypes in

the blood, in which the majority of EVs were derived from platelets,

erythrocytes, leukocytes, and vessel endothelial cells (60, 61).

Arraud et al. found 30% of annexin V-positive EVs derived from

platelets and 3% of CD235a-positive EVs derived from erythrocytes

in platelet-free plasma (58). In addition, specific antigen-positive

EV subtypes, including CD41-, CD42a-, and CD61-positive EVs,

are released from platelets (58, 66). Impressively, the configuration

of EV subtypes in plasma is affected by pathological conditions such

as anemia (59) and cancer (66). Cancer cell-derived EVs are a lower

subpopulation than other blood cell-derived EVs but are

significantly regulated by cancer status. For example, CD147-

positive EVs are significantly upregulated in the blood of patients

with colorectal cancer (67), and STEAP1-positive EVs are

significantly increased in the plasma of patients with prostate

cancer (61). Thus, selective analyses of cancer-specific EV

subtypes defined by antigens provide more precise diagnostic

information about cancer than bulk EVs.

Although nano-flow cytometry is a powerful tool to provide

information on single EV distribution, there are limitations to

overcome the noise signal, which is generated by their high
Frontiers in Oncology 06
sensitivity to detect near 100-nm or lower-sized EVs (49). To

discern the EV signal from background noise, fluorescence

labeling of EVs is widely used, such as lipid membrane dyes,

annexin V (phosphatidylserine affinity), antibodies to specific

surface antigens, fluorescent protein-fusion membrane proteins,

and chemical dyes (60). In particular, carboxyfluorescein

succinimidyl ester (CFSE) is easily used to label almost all EVs

(9). This chemical dye is a non-fluorescent compound that easily

diffuses into the luminal side of EVs through the membrane and is

then cleaved by intravesicular esterases, yielding a highly

fluorescent compound. Moreover, after conversion to the

fluorescent form, it is retained in the vesicular interior because it

is coupled with the free amine group, resulting in the stable

retention of the fluorescent signal within EVs. In addition,

fluorescent-conjugated antibodies are used to detect specific

subpopulations among bulk EVs (9, 42, 54). Notably, the

brightness of fluorophores is important in single EV detection

owing to their smaller surface area (40), permitting only a lower

number of antibodies or fluorophores to be incorporated in an EV

than in a cell. Thus, brighter fluorophores should be considered for

better resolution between negative and positive EV subpopulations

(58). A combination of different fluorophore labeling methods

could be applied to detect multiple molecule-positive EV subtypes

(9, 55). For example, our group revealed that DNA-containing EVs,

labeled by PicoGreen chemical dye, are also positive for EGFR

rather than CD63 (9).

Another current challenge of nano-flow cytometry is to detect

the smaller exosomal EVs ranging from 30 nm to 100 nm. Beckman

CytoFLEX could resolve the polystyrene nanoparticles up to 70 nm

by violet laser-based side scatter (violetSSC) (68), and the Apogee

flow cytometer could detect 100-nm silica beads by small angle light
TABLE 2 Identification of EV subtypes by nano-flow cytometry.

Cells or biological
fluids

Nano-flow
cytometry

EV isolation EV labeling Target antigen Reference

Human platelet-free plasma
Beckman Gallios flow
cytometer

Ultracentrifuge Antibody ANXA5, CD41, and CD235a (58)

Human platelet-free plasma BD FACSCanto II Ultracentrifuge Antibody
CD71, CD34, CD71, CD235a, and
ANXA5

(59)

Human plasma Beckman CytoFLEX SEC
Antibody and lipophilic
cationic dye

CD9, CD41, and CD42a (60)

Human plasma from prostate
cancer patients

Beckman CytoFLEX SEC Antibody STEAP1 (61)

Glioma cell U373 with
EGFRvIII

Beckman CytoFLEX SEC Antibody CD9, EGFR, CD44, and BSG (55)

DiFi, A431, and human plasma BD FACSAria IIIu Ultracentrifuge Antibody
CD9, EGFR, activated EGFR, and
EGFR ligand AREG

(42)

HEK293 or ascites of ovarian
cancer patients

Apogee A50 Ultracentrifuge Antibody and CFSE EPCAM (54)

MDA-MB-231, MCF-12A, and
human serum

Apogee A50 Ultracentrifuge Antibody CD44 and CD47 (62)

PAN02 and mouse plasma Apogee A60
ExoQuick,
Ultracentrifuge

Antibody and CFSE CD9 (63)
EV, extracellular vesicle; CFSE, carboxyfluorescein succinimidyl ester; SEC, size exclusion chromatography.
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scattering (54). NanoFCM flow analyzer is able to detect the lower

size silica nanoparticles from 40 nm by highly sensitive light-

scattering detection (67). Each of the commercially available

nano-flow cytometry has demonstrated the sufficient

measurement of EVs above 100 nm but has shown limitations to

the analysis of lower-sized EVs for accurate detection and precise

immunophenotyping (69, 70). Moreover, the multiple smaller EVs

could be detected in a single event accompanied by increased

fluorescent intensity, known as the swarm effect (71), during the

high-speed event acquisition (e.g., over thousands of events per

second in Beckmann CytoFLEX) (9). In particular, this swarming is

increased in high concentrations of EVs (9, 70) or non-EV particles

in blood during the flow (72). To minimize the swarming for a

single EV detection in nano-flow cytometry, precise calibration by

multiple diluted samples should be necessary to find optimal

concentration for the precise measurement of isolated EVs or

direct measurement of EV/particles in complex biological fluids

such as blood (9, 70, 72).
Subtype change in EV landscape
during cancer progression

Classically, the generation of EVs is considered a mechanism for

the removal of unnecessary molecules, as exemplified by the

disposal of transferrin receptors during reticulocyte maturation,

which led to the initial discovery of exosomes (29, 30). Although

this process involves the disposal of unnecessary molecules, it

selects specific cargos with complex cellular intrinsic processes

driven by mechanisms of endocytosis, membrane budding during

MVB maturation, membrane fusion, and exocytosis, representing

distinctive functionality. Initially, Raposo et al. discovered the

functional role of B cell-derived MHC class II-carrying EVs in

activating the T-cell response (73). After this initial discovery of EV

functionality, tremendous functional roles of EVs have been

revealed in diverse pathophysiological conditions.

Intrinsically, EVs could transfer their molecular contents to the

recipient cells by their internalization through phagocytosis,

micropinocytosis, endocytosis, or membrane fusion. Taken

together, EVs may be either re-utilized as intact EV cargo or

degraded by lysosomes, resulting in the loss of their endogenous

properties (25). The destination of EVs depends on both uptake

routes and EV properties; phagocytes may destroy the uptaken EVs,

but macropinocytosis may reutilize the EV components in the

endoplasmic reticulum (ER) escaping from the lysosome (74).

Importantly, ER localization is EV-specific rather than liposome-

specific, which mainly depends on lysosomes (74). Thus, the

interaction of cancer cell-derived EVs with target cells, their

uptake, and intracellular processing are regulated by both their

molecular and physical properties imposed by parental cells and the

state of the recipient cells. For example, EVs derived from glioma

stem cells are poorly taken up by endothelial cells (75), whereas

transformed glioma cells by EGFRvIII favorably internalize their

own EVs (55). In addition, activated EGFR coupled with KRAS

mutation drives increased EV uptake in pancreatic cancer cells

through micropinocytosis (76). This oncogene-mediated EV uptake
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could be a therapeutic target of a drug delivery system for siRNA

delivery in KRAS mutant pancreatic cancer (77). This EV uptake is

facilitated by surface proteins in the recipient cells. For example,

glypican-1, a GPI-anchored proteoglycan, on the surface of

recipient cells promotes the uptake of glioma exosomes (78).

Furthermore, EV surface decoration with non-integral membrane

proteins known as the EV corona affects EV uptake efficiency.

Fibronectin-coated EVs are specifically taken up by mutant RAS-

transformed intestinal epithelial cells via the heparan sulfate

proteoglycan on their surface, where cellular transformation

triggered by mutant RAS generates the ruffle structure on the

plasma membrane (25).

The secreted EVs interact with the parental (autocrine) or other

(paracrine) recipient cells and activate their signaling pathways

triggered by receptor activation via surface ligands on EVs, enabling

collective directional cell migration or proliferation (79). Another

target of EVs is the extracellular matrix (ECM) near the parental

cells. Cancer cell-derived EVs contain proteases, such as

metalloproteinases, which degrade the ECM surrounding the

cancer, favoring cancer cell proliferation and invasion (80).

Moreover, EVs carrying metalloproteinase ADAM10 play a

protective role against bacterial toxins as decoy receptors (81).

Malignant transformation massively affects the molecular

contents of EVs, such as their bioactive lipids, intravesicular

cargos, receptors, ECM proteins, nucleic acids, and metabolites

(3). EV proteomic studies indicate that these proteomic alterations

during the metastatic transition (2), oncogenic KRAS-derived

cellular transformation (82), and proinflammatory cytokine TNF-

a stimulation (83) are related to cancer progression and metastatic

niche formation (23, 36). Recent reports suggest that EVs derived

from cancer cells are heterogeneous with different functionalities

according to their subtype (3, 23, 36). For example, glioma cells

overexpressing oncogenic EGFRvIII, a constitutively active deletion

mutant of the ligand-binding domain, drive the release of

pathogenic EV subsets that carry increased oncogenic EGFR and

invasiveness-related proteases and adhesion proteins (55) (Table 3).

Impressively, nano-flow cytometry revealed increased CD44/BSG

double-positive EVs in EGFRvIII-overexpressing glioma cells

compared with their parental cells, which represents a cellular

phenotype with strong co-localization in spike-like invadopodia

on the plasma membrane (55). It is known that EGFR-activated

signaling pathways via RAS-RAF-ERK stimulate the clustering of

BSG, CD44, and EGFR on the plasma membrane, forming

invadopodia (84). This structure plays a role in cancer invasion

by recruiting MMP14 (MT1-MMP) by BSG (84). In terms of the

pathogenic effects of glioma CD44/BSG double-positive EVs, CD44

could interact with hyaluronic acid-rich extracellular matrix, and

BSG with MMP14 could promote the proteolytic degradation of

ECM components, including laminins and collagens (85),

suggesting that this EV could favor cancer invasion and

metastasis (55). In particular, activation of EGFR seems to

partially suppress exosome biogenesis (6) with downregulation of

exosomal CD81 and CD82 and to activate ectosomal EV release

(55). However, CD9, another canonical EV marker protein, is

associated with EGFR-positive EVs; most CD9-positive EVs are

EGFR-positive in colorectal cancer cell DiFi (42), and
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approximately 74% of EGFR-positive EVs are CD9-positive in

glioma cancer cell U373vIII (55). Moreover, a recent report

suggested that CD9-positive EVs are less positive for CD63 and

are directly shed from the plasma membrane (7), representing

differential tetraspanin protein equipment in a single EV.

Liquid biopsy is a promising biomarker source for early

diagnosis of cancer metastasis or recurrence, disease progression,

and monitoring of treatment response (86). In addition, liquid

biopsy-based diagnostic technology is essential in personalized

medicine because it offers information as a companion

biomarker, enabling tailoring of treatment according to patient-

specific mutations and observed responses to drug treatment (86).

EV subtype change is observed in the biological fluids of patients

with cancer. Malignant ascites from ovarian cancer patients contain

an increased EPCAM-positive subpopulation (54). However, the

CD47-positive subpopulation is decreased in plasma derived from

breast cancer patients (62). In addition, a syngeneic C57BL/6 mouse

tumor model with pancreatic cancer Pan02 showed an increased

CD9-positive EV subpopulation in mouse plasma, which correlated

with tumor growth (63). Thus, real-time analysis of EVs in liquid

biopsy with a minimally invasive approach would replace or

supplement traditional surgical biopsy.
Subtype change in EV landscape by
cancer chemotherapy

Chemotherapies have been widely applied for the effective

treatment of most cancers. While the relationship between EV

release and chemotherapy is elusive, recent studies have revealed

the dynamically regulated EV secretion by chemotherapeutic drugs

such as paclitaxel, cisplatin, and doxorubicin, pushing cancer

survival, invasion, metastasis, and multidrug resistance for tumor

progression (Figure 3A) (Table 4). This therapeutic stress drives the

alteration of the molecular contents of EVs and their release kinetics

(96). These transformed EVs are eventually discharged into the

body’s circulatory system during chemotherapy. Thus, monitoring

these EV cargos or release kinetics could provide information about

the status of tumor progression and responsiveness in patients

against chemotherapy (97).
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Paclitaxel and docetaxel are widely used chemotherapeutic

drugs in a number of cancer types such as breast cancer, lung

cancer, ovarian cancer, cervical cancer, and pancreatic cancer (100).

Their target is tubulin cytoskeleton defects in cell division, affecting

mitotic spindle assembly and chromosome segregation via the

stabilization of microtubule formation (100). Lv et al. revealed

that paclitaxel stimulates the release of EVs with heat shock

proteins (HSP60, HSP70, and HSP90) from liver cancer HepG2

cells, and these EVs activate the cytotoxic activity of natural killer

cells by the increased expression of granzyme B (87). Additionally,

breast cancer MDA-MB-231 cells showed increased EVs

(approximately 1.5-fold) after paclitaxel treatment, in which

survivin-carrying EVs were upregulated, although exosomal

CD63-carrying EVs were downregulated (88). Survivin is a

negative regulatory protein that prevents apoptotic cell death.

Thus, survivin-carrying EVs play a role in the increased survival

of cancer cells and fibroblasts (88). The downregulation of

tetraspanin CD63- or CD9-positive EVs by paclitaxel was also

observed in MDA-MB-231 and HCC1937 breast cancer cells (89),

implying that non-exosomal EV subtypes could be generated by

paclitaxel. This EV subtype change can elicit the distinctive

functionality of EVs. For example, Keklikoglou et al. revealed that

paclitaxel-treated breast cancer cell-derived EVs significantly

stimulated metastasis in cancer mouse models by stimulating

annexin A6-positive EV emission, promoting endothelial cell

activation and monocyte differentiation in the pulmonary pre-

metastatic niche (26). In addition, treatment with anti-myeloma

drugs, such as bortezomib, carfilzomib, or melphalan, stimulates EV

release containing heparanase, enhancing heparan sulfate

degradation and macrophage migration (99). Docetaxel-resistant

cancer cells showed an increased release of EVs containing

multidrug-resistant proteins, such as MDR1 and MDR3 (28, 90),

implying that their chemoresistance is represented by circulating

EVs in the patient’s blood. Also, circulating TRPC5-positive EVs

are increased in the plasma of breast cancer patients undergoing

anthracycline/taxane-based chemotherapy (93). These results

indicate that chemotherapy could stimulate the unique types of

EVs that show functionality related to tumor progression by

modulating the tumor microenvironment, and this information

could be used to monitor cancer response to chemotherapy.
TABLE 3 EV subtypes affected by cancer progression.

Cancer types
(oncogene)

Cells EV subtypes Methods Reference

Glioma cancer (EGFRvIII)
U373 and U373vIII (EGFRvIII overexpressing
isogenic U373)

CD44 (+), BSG (+), CD81 (−),
and CD82 (−)

Nano-flow cytometry (Beckman
CytoFLEX)

(55)

Ovarian cancer
Malignant ascites from ovarian cancer
patients

EPCAM (+)
Nano-flow cytometry (Apogee
A50)

(50)

Breast cancer Plasma from breast cancer patients CD47 (−)
Nano-flow cytometry (Apogee
A50)

(62)

Pancreatic cancer
Syngeneic C57BL/6 mouse tumor model with
Pan02 cells

CD9 (+)
Nano-flow cytometry (Apogee
A60)

(63)

Colorectal cancer
Human plasma from colorectal cancer
patients

BSG (+) NanoFCM flow analyzer (67)
EV, extracellular vesicle.
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Cisplatin is also a widely used drug in various types of solid

organ cancers, including colorectal cancer, lung cancer, ovarian

cancer, and head and neck cancer (101). Cisplatin is a platinum-

based alkylating agent that binds to DNA and inhibits the

replication of cancer cells. Non-small cell lung cancer cell A549

treated with cisplatin showed an increased release of EVs containing

lipoproteins APOA1 and APOE (91). Furthermore, EVs from

apoptotic glioblastoma cells treated with cisplatin or

temozolomide promoted the survival and migration of recipient

nascent glioblastoma cells (92). In particular, these apoptotic EVs

contain spliceosomal proteins, which could be transferred to the

recipient glioma cells, affecting their splicing of mRNA and

promoting chemotherapy resistance and migratory phenotype

(92). Temozolomide is a promising chemotherapeutic drug to

alkylate the DNA and is used in treating malignant glioma (102).

Likewise, temozolomide could elicit the cyclooxygenase-2

expression in glioma cells, resulting in the upregulation of

cyclooxygenase-2-carrying EVs, which have the activity to shift

the M2-like pro-tumor phenotype of macrophage (103). Also,

temozolomide-treated glioma cells release a different repertoire of

small and large EVs, which could stimulate the macrophage to

transit the M2-like phenotype with increased cellular expression of

IL-6 and IL-10 (104).

Doxorubicin is a potent chemotherapeutic drug that intercalates

into DNA, subsequently causing defects in DNA replication by

inhibition of DNA polymerase binding, and is used effectively in a

variety of cancers, including breast cancer, bladder cancer, and

leukemia (105). Mice treated intravenously with doxorubicin

generated an increased number of circulating EVs in their blood,
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in which CD63-positive EVs were upregulated and CD9-positive

EVs were not affected (94). Moreover, human breast cancer cell line

MDA-MB-231 stimulated by doxorubicin emits proinflammatory

glycoprotein PTX3-carrying EVs, which induce cancer metastasis in

a mouse tumor model (95).

Dacomitinib, known by the brand name Vizimpro from Pfizer,

is a Food and Drug Administration (FDA)-approved irreversible

inhibitor of EGFR tyrosine kinase for non-small cell lung cancer.

Montermini et al. revealed that dacomitinib dramatically stimulated

EV release equipped with phosphorylated EGFR, while cellular

phospho-EGFR was inhibited (98). In addition, these EVs contain

genomic DNA, which may originate from viable or apoptotic cancer

cells that respond to dacomitinib (98). These upregulated

vesiculations were affected by caspase activity coupled with

exosome biogenesis pathways, implying that tyrosine kinase

inhibitors induce EV release to link the traditional exosome and

apoptotic EV generation (98). In addition, genomic instability and

DNA damage caused by chemotherapy can generate micronuclei,

which are involved in the release of DNA-containing EVs (106).

Nano-flow cytometry revealed the single EV distribution by EGFR

tyrosine kinase inhibitor dacomitinib and canertinib with increased

genomic DNA-containing EVs containing EGFR rather than CD63,

demonstrating that irreversible blockade of oncogenic EGFR drives

the cellular emission of genomic DNA by EVs (9).

DNA-carrying EVs are commonly observed in cancer cells

treated with diverse chemical drugs (106). These chemotherapy-

induced DNA-containing EV subtypes may be actively released into

the tumor microenvironment, contributing to the occurrence of

drug resistance, immune modulation, and cancer progression (106).
A B

FIGURE 3

Subtype change of EVs by chemotherapy. (A) Chemotherapeutic drugs such as paclitaxel, docetaxel, and dacomitinib markedly alter the release of
EVs and their molecular composition with an alteration of protein as well as DNA cargo related to cancer survival, migration, metastasis, drug
resistance, and immune modulation in the tumor microenvironment. (B) EV sorting by nano-flow cytometry is able to enrich the specific
subpopulation of EVs. Docetaxel-treated colorectal cancer cell WiDr showed increased DNA-containing EVs (approximately 62.1%) in comparison to
controls (approximately 18.09%). DNA in EVs was labeled by PicoGreen as described in previous research (9). EV sorting by CytoFLEX SRT system
(Beckman Coulter) represents the selective sorting of DNA-containing EVs derived from docetaxel-treated WiDr cells. EVs, extracellular vesicles.
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Moreover, a recent study suggested that EVs containing

mitochondrial DNA contribute to the development of metastatic

breast cancer in which the cancer-associated fibroblast-derived EVs

containing mitochondrial DNA promote estrogen receptor-

independent oxidative phosphorylation, resulting in escape from

metabolic quiescence (107). In addition, it is assumed that EVs

containing DNA could be taken up by immune cells, leading to a

robust antitumor immune response. DNA-containing EVs from

anti-tumor topotecan (DNA topoisomerase I inhibitor)-treated

breast cancer cells activate the cytokine release of dendritic cells

by cGAS-STING signaling activation in cytosolic DNA-mediated

innate immune responses, leading to a more robust anti-tumor

immune response (108).

Nano-flow cytometry revealed the nature of DNA-containing EV

subpopulations in total EVs responding to the blockade of oncogenic

EGFR by EGFR kinase inhibitor dacomitinib showing the release of a

wide spectrum of EVs having different sizes andDNA contents (9). This

study revealed that only a specific subpopulation of EVs contains DNA,
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and this composition is affected by chemotherapy, stimulates the

apoptotic vesiculation pathway, and releases heterogeneous small EVs

containing luminal chromatin (9). However, the investigation of specific

DNA-containing EV subtypes is hampered by the limited approaches

for the enrichment of DNA-containing EVs. Recent sorting technology

coupled with high-sensitivity nano-flow cytometry could enable the

enrichment of DNA-containing EV subpopulations. Our study showed

that the colon adenocarcinoma cell WiDr released 24.4% of DNA-

containing EV subtypes in normal culture conditions, but treatment

with docetaxel generated a unique subpopulation of DNA-containing

EVs with increased DNA content and violetSSC-H, correlated with

vesicular size (Figure 3B). This EV sorter could enrich specific DNA-

containing EVs, allowing further analyses of individual EV subtypes

regarding their characteristics and functionality. Thus, a combination of

immunophenotyping, nano-flow cytometry, and selective enrichment

of specific EV subtypes could be applied to decode the heterogeneous

nature of EVs in the cancer microenvironment affected by

chemotherapy in different cancer circumstances.
TABLE 4 Increased EV subtypes affected by cancer chemotherapy.

Drug name Cells or biological fluids
Total EV
amount

EV subtypes Functionality Reference

Paclitaxel Human liver cancer HepG2 Increased
HSP60 (+), HSP70 (+), and
HSP90 (+)

Increased cytolytic activity of
NK cells

(87)

Paclitaxel
Human breast cancer cell MDA-
MB-231

Increased CD63 (−) and survivin (+)
Increased survival of
fibroblast and breast cancer
cells

(88)

Paclitaxel
Mouse breast cancer cell 4T1
(syngeneic mouse model)

Increased CD9 (−) and ANXA6 (+)
Increased metastasis in mouse
tumor model

(26)

Paclitaxel or Eribulin
Human breast cancer cells MDA-
MB-231 and HCC1937

Unchanged CD9 (−) and CD63 (−) (89)

Docetaxel
Human serum from prostate
cancer patients

–
MDR1 (+) and MDR3 (+) in
docetaxel-resistant patients

(90)

Docetaxel
Human prostate cancer cell PC-3
(docetaxel-resistant)

Increased MDR1 (28)

Cisplatin Human lung cancer cell A549 – APOA1 (+) and APOE (+) (91)

Cisplatin or irradiation Human glioma cell GBM157 –
Splicing factors such as RBM11
(+)

Increased survival of cancer
cells

(92)

Anthracycline, taxane, or
anthracycline/taxane

Human plasma from breast cancer
patients

Increased TRPC5 (+) (93)

Doxorubicin Mouse blood Increased CD63 (−) (94)

Doxorubicin
Human breast cancer cells MDA-
MB-231 and MDA-MB-468

Increased PTX3 (+)
Increased metastasis in mouse
tumor model

(95)

Gemcitabine
Human serum from pancreatic
cancer patient

– PLF4 (+) (96)

Geldanamycin Mouse glioma cell T103 Decreased EGFR (−) and EGFRvIII (−) (97)

Dacomitinib or canertinib Human epidermal cancer A431 Increased EGFR (+) and DNA (+) (98)

Dacomitinib Human epidermal cancer A431 Increased DNA (+) (9)

Bortezomib, carfilzomib,
or melphalan

Human myeloma cell CAG Increased Heparanase (+) Increased migration of cells (99)
EV, extracellular vesicle.
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Challenges and conclusion

Although the secretion of EVs derived from cancer cells is

elevated depending on their progression or chemotherapeutic

stress, their relative composition in biological fluids is lower than

that of EVs derived from other major normal cells, including blood

cells, platelets, and endothelial cells (2). Moreover, other non-

vesicular components, including lipoproteins, protein aggregates,

and other non-EV particles, make it difficult to detect cancer-

specific EV subtypes due to their similar size or density. This

substantial challenge can be resolved by the selective analysis of

EV subtypes rather than bulk EVs. Affinity isolation of EVs

provides a promising enrichment strategy to address specific EV

subpopulations using surface vesicular markers such as EpCAM

(109) or EGFR (97). For example, Pietrowska et al. enriched cancer-

specific EVs from the plasma of melanoma patients using anti-

CSPG4 and were able to identify the distinctive proteome of EVs

derived from cancer cells (110). Moreover, these identified

biomarkers in cancer-specific CSPG4-positive EV subtypes can be

directly applied in non-invasive liquid biopsy to monitor cancer

progression or response to therapy (110). As described above,

recent EV sorting technology can sort specific EV subtypes by

nano-flow cytometry with relative enrichment of antigen-positive

EVs (42). In addition, it could enrich nucleic acid-positive EVs with

nucleic acid-binding fluorescent dyes (e.g., DNA for PicoGreen or

RNA for SYTO RNASelect), which is difficult in immunoaffinity-

based EV isolations. This single-EV detection technology represents

a heterogeneous EV nature with different antigenicity, components,

and sizes in the total EV population.

EVs have been increasingly revealed to play roles in the

pathogenesis and chemotherapeutic responsiveness of malignant

cancer progression. Importantly, they have been considered a

capable repertoire in liquid biopsy and diagnostic applications

already approved for use in human cancer (86). As discussed

above, the traditional total EV analysis meets the considerable

intrinsic limitations to understand EV functionality, uptake, and

diagnostic potential. These challenges have been re-addressed by

single EV analyses, such as nano-flow cytometry, chip-based

technology platforms, or single EV imaging (9, 48, 64). These

new technologies are capable of revealing the orchestrated and

dynamically regulated EV landscape within the EV population in

various pathophysiological conditions, especially in cancer. In

addition, chemotherapeutic drugs can induce the dynamic change
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of EV subtypes defined by their molecular cargo, such as proteins or

DNA, as well as the increased release kinetics of EVs. Recent studies

have revealed that chemotherapy stimulates the unique subtypes of

EVs, including DNA-containing EVs derived from viable or

apoptotic cancer cells, which represent functional roles in cancer

metastasis and immune modulation; however, more detailed

knowledge of the effects of chemotherapy on EVs should

be further investigated in relation to EV heterogeneity to link

single EV biogenesis and intercellular communication in the

tumor microenvironment.
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