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The role of angiogenic growth
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Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to

angiogenesis that mainly include vascular endothelial growth factors (VEGFs),

stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs),

fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-b) and
angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is

not only limited to tumor angiogenesis but also participating in tumor

progression by other mechanisms that go beyond their angiogenic role. AGFs

were shown to be upregulated in the gliomamicroenvironment characterized by

extensive angiogenesis and high immunosuppression. AGFs produced by tumor

and stromal cells can exert an immunomodulatory role in the glioma

microenvironment by interacting with immune cells. This review aims to sum

up the interactions among AGFs, immune cells and cancer cells with a particular

emphasis on glioma and tries to provide new perspectives for understanding the

glioma immune microenvironment and in-depth explorations for anti-

glioma therapy.
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1 Introduction

Angiogenic growth factors (AGFs) are a series of secreted cytokines that plays crucial

roles in angiogenesis by interacting with their corresponding receptors. AGFs mainly

include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1),

platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming

growth factor-beta (TGF-beta) and angiopoietins (ANGs). Angiogenesis is one of the

important hallmarks of tumors, in which process AGFs play essential roles (1). However,

accumulating evidence indicates that the function of AGFs is not only limited to tumor

angiogenesis but also involved in tumor progression via multiple mechanisms that go

beyond their angiogenic role (2–6). In the tumor microenvironment (TME), immune cells

reprogram and express immunosuppressive phenotypes that leads to escaping of tumor

cells from host immune surveillance and attack, in which process AGFs can be involved (7,
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8). Anti-angiogenic therapy by targeting AGFs to normalize tumor

vessels has also been found to improve anti-tumor immunity.

Combination of anti-angiogenic drugs and immunotherapy has

become a canonical treatment for hepatocellular carcinoma, non-

small cell lung cancer and renal cell carcinoma, but still, it has not

always been successful (8–10). A better understanding of the

tangled interplay among AGFs, immune cells and cancer cells in

the TME is urgently needed to shed lights on finding new anti-

tumor therapeutic avenues.

Glioma accounts for about 80% of all intracranial malignance

(11). The 5-year survival rate for patients with glioblastoma (GBM)

which is the most aggressive form of glioma is only 6.9% (12).

Angiogenesis in glioma and GBM is particularly obvious among all

tumors (13, 14). Anti-angiogenic therapy by targeting AGFs or their

receptors has become a hot topic in the treatment of glioma during

the past decades (15, 16). This therapy differs from the traditional

anti-tumor therapies. It aims to inhibit tumor growth rather than

directly attack tumor cells. Unfortunately, most clinical trials of

anti-angiogenic treatment to glioma ended with patients showing

serious side effects or no significant benefits (16, 17). Therefore, the

anti-angiogenic treatment of glioma should be considered from a

more comprehensive perspective than just focusing on the vessels.

The microenvironment of glioma contains tumor cells, glial cells,

immune cells, neurons, vasculature and extracellular matrix. The

glioma microenvironment generates a pro-tumor dynamic with

significant angiogenesis and immunosuppression (18). The innate

immune system including natural killer (NK) cells, macrophages,
Frontiers in Oncology 02
microglia and neutrophils and the adaptive immune system

together establish a well-regulated immunity for proper brain

function (19). Besides angiogenesis, glioma exhibits strong

immunosuppressive properties of the microenvironment (20, 21).

The expression of most AGFs, represented by VEGFs, were

significantly upregulated in glioma (22, 23).

Aberrantly expressed AGFs interacts with immune cells by

binding to the related receptors that expressed could be one of the

explanations of immunosuppression exhibited in the glioma

microenvironment (24, 25). A comprehensive summary of the

interactions between AGFs, immune cells and tumor cells in the

glioma microenvironment is necessary, which may help us to better

understand the connections and provide new perspectives for deeper

explorations on anti-glioma treatment. In this article, we review the

relations and interplay among AGFs, immune cells and tumor cells

with a special focus on the glioma microenvironment (Figure 1).
2 VEGF

Vascular endothelial growth factors (VEGFs), alternatively

referred to as vascular permeability factors, are a protein family

related to angiogenesis. VEGFA, VEGFB, VEGFC, VEGFD, VEGFE

(viral VEGF), VEGFF (snake venom VEGF), placental growth

factor (PlGF) and endocrine gland-derived vascular endothelial

growth factor (EG-VEGF) together construct VEGF family (26).

This family of growth factors correspond to a variety of receptors
FIGURE 1

Interactions between AGFs, immune cells and tumor cells in the glioma microenvironment. AGFs including VEGFs, PDGFs, SDF-1, FGFs and TGF-b
secreted by glioma or stromal cells could be upregulated in the glioma microenvironment, which acts on various immune cells including GAMs,
DCs, T cells and NK cells to perform immunomodulatory functions mainly as immunosuppression. The directional arrow indicates effect of
promoting. The suppressive arrow indicates effect of inhibiting. The dashed line indicates speculated associations that have not been confirmed in
the glioma microenvironment but in other conditions.
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including the tyrosine kinase receptors, which are named as

VEGFR1-3 respectively, together with neuropilin and co-receptors

of heparan sulfate proteoglycan families (27). VEGFA/VEGFR2 is

the most potent combination in angiogenesis. VEGFC and VEGFD

bind primarily to VEGFR3 to induce lymph angiogenesis and

developmental angiogenesis. In contrast, VEGFR1 primarily acts

to attenuate angiogenic signaling (28). However, VEGFR1 and

VEGFR3 can play an alternative role in promoting angiogenesis

when VEGFR2 pathway is reduced (29). In physiological

conditions, VEGF is expressed in early embryos, various vascular

tissues, heart, kidney, skeletal muscle, endocrine glands and other

tissues, which play major roles in angiogenesis, vessel permeability

and extracellular matrix degeneration.

In the course of tumorigenesis, VEGF is primarily derived from

tumor cells and can also be secreted by smooth muscle cells,

keratinocytes, neutrophils, platelets, macrophages, endothelial

cells and fibroblasts (30, 31). VEGF expression can be elevated by

activation of oncogenes such as Ras, stimulation of certain cytokines

and growth factors including PDGF, epidermal growth factor

(EGF), tumor necrosis factor-a, interleukin-1, interleukin-6 and

HIF-1 (32). One of the typical pathological features of GBM is

abundant angiogenesis which is associated with VEGF closely. A

recent study reported that the expression level of VEGF is an

independent risk factor for glioma prognosis (33). Studies have

found that GBM cells express and secrete VEGFA protein, which

was regulated by protein disulfide isomerase A4 in GBM cells (34,

35). Another study of GBM has shown that VEGFA was

dramatically overexpressed while no significant change of VEGFB

expression was detected in GBM patients (36). However, anti-

VEGF therapy alone has not shown significant advantages in

glioma treatment in patients. More and more emphasis on the

function of VEGF of its immune effect has been shown. VEGFA was

considered as a core negative gene affecting immune activity in the

GBM microenvironment (37). VEGFRs are expressed both on the

surface of immune cells and vascular endothelial cells. In GBM

tissues, VEGFR1 is mainly expressed on tumor cells and tumor-

associated macrophages. VEGFR2 is expressed mostly on tumor

stem cells, regulatory T cells (Tregs) and vessel endothelial cells (38,

39). Due to the ability to interact with VEGF receptors expressed on

immune cells, VEGF is able to exert great influences in the glioma

immune microenvironment (40).

The primarily discovered immunosuppressive function of

VEGF is to inhibit dendritic cell (DC) maturation, which causes

less tumor antigen presentation and results in a potential immune

avoidance of the tumor (41). VEGFR1 and VEGFR2 are expressed

on DCs. VEGFR1 can regulate maturation of DC while VEGFR2

can control the function of mature DC (42, 43). It has been

confirmed that VEGFR1 is a main receptor for VEGF-related

suppression of DC maturation. When VEGF and PlGF binds to

VEGFR1, the downstream signal transmission leads to blockade of

the nuclear factor kappa-B (NF-kB) activation in hematopoietic

progenitor cells of bone marrow which in turn affects the early stage

of bone marrow/DC differentiation (42, 43). Researchers injected

GL261 cells overexpressing Vector or VEGFC into the striatum of

WT mice and confirmed that tumor-associated meningeal

lymphangiogenesis are enhanced by VEGFC, which facilitates
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transportation of DCs from brain tumors to deep cervical lymph

nodes (dCLNs) through CCL21/CCR7 signaling pathway. VEGFC

overexpression in tumors induces a stronger immune response

followed by the application of anti-PD-1 or anti-CTLA-4

treatment, in which the tumors displayed decreased tumor

volumes and tumor weight and showed longer survival compared

to the Vector group in the mice (44). In addition, it has been

demonstrated that the association of anti-angiogenic therapeutic

regimen with DC vaccination suppressed glioma progression in rats

via stimulating immune response, suppressing glioma stem-cell-like

cell development and inhibiting angiogenesis-related protein

expressions such as ICAM-1, VCAM and VEGFs (45).

Tumor-associated macrophages (TAMs) perform a

considerable function in the immune microenvironment of

cancer. In glioma, they are named as glioma-associated microglia

and/or macrophages (GAMs). GAMs usually contain macrophages

recruited from circulating monocytes and microglia which arises

from myeloid progenitors and resides in the brain for a long time

(46). GAMs exhibited significant diversity as well as plasticity and

showed distinctive phenotypes, which are ascribed to inflammatory

(M1) or alternative (M2) polarized secretory forms (47). M1-type

macrophages can increase the number of activated NK cells, while

M2-type macrophages not only can inhibit CD8+ T lymphocyte

proliferation but also upregulate the inhibitory receptor expression

of CTLA-4 and PD-1 (48). In a similar way, M2-type GAMs, the

major type of GAM, resulted in tumor progression by producing

anti-inflammatory cytokines and growth factors, which inhibit the

host immune reaction (49). VEGFA/VEGFR1 is one of the most

important ligand-receptor pairs associated with recruitment of

monocytes/macrophages to form GAMs in a specific TME

regions around glioma. Macrophages in gliomas were

differentiated from VEGF producing monocytes. The number of

macrophages was positively correlated with VEGF expression (50).

Meanwhile, macrophages upregulate VEGFR1 expression and

promote formation of GAMs (51). Under ischemia, hypoxia or in

the absence of nutrients, VEGF expression are stimulated in

macrophages in tumors (52). Through activation of PI3K/Akt/

Nrf2 pathway in GBM cells, VEGF produced by M2 GAMs

promotes GBM cell stemness, proliferation, epithelial-

mesenchymal transition (EMT), and temozolomide resistance (51,

53). VEGF downregulation caused by mitochondrial damage in

tumor cells resulted in an increased rate of M1/M2 macrophages

both in vivo and in vitro, which enhances the TAM effects to

s t rengthen the immuni ty to aga ins t tumors in the

microenvironment (54).

Tregs which express VEGFR2 on their surfaces are highly

suppressive, which play a vital role in immune tolerance to tumors

(38). Both Treg recruitment and cytotoxic T lymphocyte (CTL)

depletion can happen at the same time under the joint action of

VEGF and VEGFR1/2 (55, 56). A study revealed that VEGFA

blockade can enhance T-cell transfer therapy by increasing the

amount of pmel-1 T cell infiltration in a melanoma mouse model

(57). Bevacizumab, an anti-VEGF humanized murine monoclonal

antibody, is effective in inhibiting GAMs and Tregs and increasing

CTL infiltration, thereby restores the supportive immune

microenvironment in glioblastoma (58). The relationship between
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VEGF and T cells in glioma is also reflected in the blood vessel

normalization of VEGF blockade, which enhances the effectiveness of

CAR-T therapy in glioblastoma models in mice (59). Moreover,

VEGFRs peptide vaccination can activate CTLs which ultimately kill

tumor cells, endothelial cells and Tregs expressing VEGFR1/2 in

primary glioblastomas patients in clinical trial (60).

In summary, VEGFs in glioma are mostly acting as

immunosuppressive factors in the microenvironment, which

help tumor cells to avoid immune surveillance and immune cell

killing. VEGFs possess regulatory effects in the glioma immune

microenvironment involving inhibition of DC maturation,

amassment of GAMs and controll ing infiltration of T

lymphocytes. It is worth noting that not all types of VEGFs

cause immunosuppression in the glioma microenvironment.

VEGFC, for example, can enhance radiotherapy efficacy and

anti-tumor immunity in gliomas when combined with VEGFR2.

This effect was ascribed to the CCL21-dependent CD8+ T cell

activation and DC trafficking (61). Tumor-associated dendritic

cells (TA-DCs) suppress anti-tumor immune responses, but when

treated with inflammatory molecules, TA-DCs gain the ability to

reactivate T cells (62).
3 SDF-1

Stromal-derived factor-1 (SDF-1), also referred to C-X-C motif

ligand 12 (CXCL12), is a primitive and conserved chemokine (63).

SDF-1 is an acidic protein that can be expressed under both

physiological and pathological conditions by diverse cells such as

bone marrow cells, epithelial cells, endothelial cells and tumor cells.

It is currently believed that there are three SDF-1 isoforms named as

SDF-1a/b/g respectively, among which SDF-1a showed the

strongest effects on vessel sprouting and permeability (64). The

major receptor of SDF-1 is C-X-C Motif Chemokine Receptor 4

(CXCR4), belonging to the family of G protein-coupled receptor

(GPCR) which traverses the plasma membrane seven times. CXCR4

is widely distributed in smooth muscle cell precursors, endothelium

precursor cells, endothelial cells, immature and mature

hematopoietic cells, and also astrocytes, microglia and neurons in

the central nervous system (CNS) of adults (65, 66). SDF-1 directly

participates in angiogenesis by recruiting endothelial progenitor

cells through coupling to CXCR4 on endothelial cells (67). SDF-1

may also promote angiogenesis indirectly, by stimulating

endothelial cells to secrete proangiogenic cytokines such as

CXCL1, CXCL8 and VEGF (68–70).

In glioma, studies of SDF-1 functions in promoting angiogenesis

are relatively comprehensive, whereas here we mainly discuss the role

of SDF-1 in the glioma immune microenvironment and its direct

effects on glioma progression. SDF-1 and CXCR4 were the most

frequently expressed mRNA identified in 31 human astrocytic

neoplasms (71). Enhanced SDF-1 and CXCR4 expression was

observed not only in low-grade glioma such as oligoastrocytomas

and astrogliomas, but also in areas of core necrosis and marginal

infiltration of glioblastoma (71–75). CXCR4 is widely expressed on

the surface of a variety of leukocytes, such as monocytes,

macrophages, T cells, B cells, eosinophils and neutrophils. Thus,
Frontiers in Oncology 04
SDF-1 can participate in immune regulation such as leukocyte

migration, leukocyte homing and lymphocyte recycling (65).

In the glioma microenvironment, SDF-1 is mainly derived from

glioma cells and microglia and binds to CXCR4+ cells including

microglia, macrophages, monocytes, endothelial cells and glioma

cells themselves to initiate G-protein subunit dissociation, and the

subsequent stimulation of mitogen-activated protein kinase

(MAPK), phosphoinositide 3-kinase (PI3K) and phospholipase C

(PLC) (63, 76–80). Independent of G proteins, it has been

demonstrated that Janus kinase (JAK)2 and JAK3 pathways are

activated by SDF-1-CXCR4, which allows the signal transducer and

activator of transcription (STAT) molecule recruitment and

activation to initiate transcription of multiple cancer-associated

genes (80–83). A large number of aberrantly activated STATs,

especially STAT3 and STAT5, were found to be actively involved

in tumorigenesis, immune surveillance escaping and self-

immunotolerance of tumor cells in glioma (83, 84).

Glioma cell released SDF-1 causes GAMs that expresses CXCR4

to polarize towards a M2-like phenotype which is anti-

inflammatory and pro-tumorigenic (85). Specifically, a study on

zebrafish showed that SDF-1b/CXCR-4b signaling is required for

macrophage infiltration and microglia differentiation in the brain

(86) . As an important par t o f the g l ioma immune

microenvironment, M2 type of GAMs are functioning in

inhibiting T cells, promoting glioma cell EMT and invasion (85,

87, 88). When SDF-1 binds to macrophages or CD8+ T cells that

express CXCR4, tumor necrosis factors (TNFs) and tumor necrosis

factor receptors (TNF-Rs) will be secreted respectively to exert

immunosuppressive function by delivering pro-apoptotic signals to

T cells (89). In a syngeneic murine glioma model, both the number

of Tregs and the expression of CXCR4 showed time-dependent

upregulation, which may be one of the reasons for immune escape

of glioma cells (90). The above processes result in local

immunosuppression in the glioma microenvironment which leads

to glioma progression ultimately. In glioma mice, combined therapy

of anti-CXCR4 and anti-PD-1 reduced immunosuppressive

leukocytes counts, advanced the CD4+/CD8+ T cell ratio and

raised the amount of pro-inflammatory cytokines (91).

SDF-1 can directly promote glioma aggression. It is identified

that SDF-1a activates focal adhesion kinase (FAK) and proline-rich

tyrosine kinase 2 (Pyk2) signaling pathways to promote

invadopodia formation which enhances glioma cell invasiveness

by a study including 20 human glioblastoma specimens (76). In the

optic pathway glioma, SDF-1 is expressed by numerous brain-

derived cells including endothelial cells, entrapped axons and

infiltrating microglia, which enhances optic glioma cell survival

via CXCR4 receptor presented on glioma cells, whereas blocking

CXCR4 inhibited glioma development in vivo (92, 93). Notably, the

aggressiveness of the hepatocellular carcinoma is enhanced under

the effect of ionizing radiation through increasing SDF-1 expression

by epigenetic regulation (94). X-ray irradiation as a component of

the normative therapeutic regimens for GBM (95) was frequently

shown to enhance SDF-1 expression. Enlightening by this

phenomenon, it would be of significance to clarify whether

radiotherapy (RT) induces epigenetic regulation of the SDF-1

promoter to increase the expression, thereby increases
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glioblastoma invasiveness. Thus, attentions regarding to the

potential disadvantages of RT need to be brought to clinicians

and researchers, and individualized treatment by SDF-1 inhibition

could be a potential solution.

CXCR4 and CXCR7 as receptors for SDF-1 are broadly

involved in tumorigenesis (96). Dysregulated SDF-1-CXCR4/

CXCR7 signaling has been observed in a diversity of tumor types

involving gliomas (97). SDF-1-CXCR4/CXCR7 signaling shows

both pro- and anti-inflammatory effects in tumors. On one hand,

SDF-1 can mediate plasmacytoid DC trafficking to the tumor region

and Tregs homing to the bone marrow microenvironment (98). On

the other, it can promote the entry of immune cells with inhibitory

functions like immature DC into the TME while rejecting immune

effector cells (99). Current studies showed that Tregs with CXCR4

overexpression can be seen in several types of cancers which could

explain why Tregs are recruited by SDF-1 at the site of

tumorigenesis. However, this has not been confirmed in glioma.

Upregulation of CXCR4 expression has also been seen in

glioblastoma-associated T cells, but whether glioblastoma employ

a similar mechanism to affect T cell infiltration remains

unknown (100).
4 PDGF

The platelet-derived growth factor (PDGF) family contains four

PDGFs (PDGFA, PDGFB, PDGFC and PDGFD) which forms five

different disulphide-linked dimers (PDGF-AA, PDGF-BB, PDGF-

CC, PDGF-DD and PDGF-AB) and two tyrosine kinases receptors

(PDGF receptor a and b) (101). PDGF triggers the receptor kinase

activity by driving the dimer formation from monomeric PDGFRs.

PDGFRaa can be stimulated by all types of active ligand molecules

except for PDGF-DD. PDGFRab can be stimulated by PDGF-AB,

PDGF-BB and PDGF-CC whilst PDGFRbb can be stimulated by

PDGF-BB or PDGF-DD (102). The activated PDGFRs initiates

PI3K/AKT/mTOR, RAS/MAPK/ERK and JAK/STAT3 signaling

pathways, which guide cells to survive, proliferate or migrate.

Signaling is eventually terminated by internalization and

degradation of the active PDGFR dimers (103). PDGFs/PDGFRs

are expressed in various cell types under physiological conditions.

In normal conditions, PDGFs are produced by megakaryocytes and

preserved in platelets, and are released from disintegrated platelets

when blood clots. PDGFs can also be secreted by diverse cells such

as osteoblasts, fibroblasts, vascular smooth muscle cells, endothelial

cells, glial cells and neurons (104). Different PDGF isoforms exert

diverse functions. These functions include but are not limited to

promoting organ development, wound healing and inducing

macrophage recruitment (105). In tumors, PDGFs were shown to

modulate tumor microenvironment, tumor growth and metastasis

by targeting stromal cells, vascular endothelial cells and malignant

cells (106). Human glioma expresses all PDGFs and PDGFRs.

PDGFRa is found to be expressed mostly in glioma cells, whereas

PDGFRb is expressed mainly by the stromal cells (107).

PDGFs/PDGFRs are closely relevant to the physiopathological

processes of glioma cells and tumor microenvironment. The

interaction between PDGFs and GAMs promotes glioma cell
Frontiers in Oncology 05
migration as well as creating an immunosuppressive milieu of the

TME. PDGFs were shown to increase monocyte and macrophage

infiltration and promote inflammation in gliomas. In a mouse

glioma model, high-grade glioma was developed in connection

with intratumoral macrophages infiltration, in which mice

PDGFB was expressed under the control of glioneuronal-specific

nestin promoter (108). In another study, by immunohistochemical

stainings on human pediatric high-grade gliomas (HGG) tissues,

PDGFB/PDGFRb was found to be strongly associated with IBA 1+,

which suggested a possible role of the PDGF signaling in the

infiltration of TAM (IBA 1+) (109). PDGFD was shown to

promote neuroinflammation and enhances macrophage

infiltration by an in vivo study of the mouse after intracerebral

hemorrhage (110). Matrix metalloproteinases (MMPs) are

important enzymes involved in monocytes/macrophages

infiltration. PDGFC and PDGFD were showed to stimulate

monocyte migration by expressing MMPs (MMP-2 and MMP-9)

in an in vitro study (111). PDGFs released by microglia can also

affect glioma cell migration. A study on glioma mouse model

showed that M2-polarized microglia rather than M2-polarized

bone marrow-derived macrophage is the reason for the elevated

expression of PDGFRb on glioma cells and their increased ability of

migration (107). Furthermore, another study showed that PDGFB

as well as SDF-1a released by microglia are key factors that may

induce the formation of invadopodia and stimulate cell migration

by activating Pyk2 and FAK kinases in human glioblastoma (76).

NK cells are known to kill tumor cells through several pathways,

among which the most important way is to identify surface marker

molecules on target cells and induce apoptosis through secretion of

cytotoxins and cytokines. Recently an important study showed that

PDGFD can inhibit tumor growth by inducing immunoreceptor

tyrosine-based activation motif (ITAM) signaling via NKp44, a NK

cell receptor, which leads to the generation of anti-tumoral factors

from NK cells (112). Further study reported that PDGFD

contributes to IL-15-mediated NK cell survival other than its

effector function via PDGFRbindependently from NKp44 (113).

A recent study has confirmed that the transcriptional profile of NK

cells stimulated by PDGFD can predict a better prognosis of

patients with low-grade glioma, suggesting that NK cells may be

more conducive to against tumors under the action of PDGF (114).

These studies indicate that PDGFD not only promotes tumor

growth and stromal response but also activates innate immune

systems in response to tumors. Therapeutics that selectively

targeting PDGFD pathway in NK cells may provide a new aspect

in the immunotherapies (113).

In addition, PDGF-AB is found to inhibit dendritic cell

maturation by upregulating C-type lectin-like receptor 2

(CLEC2), which can further induce the formation of Tregs.

PDGFB is shown to be associated with CD4+ T cell inhibition by

inducing jumonji domain-containing protein 6 in patients with

chronic hepatitis B infection (115).

At present, PDGF/PDGFR inhibitors have not achieved

satisfactory results in the treatment of glioma (116, 117).

Although forementioned evidence suggested that PDGFs play

important roles in inflammatory cell activation and migration and

some signaling pathways in certain cells have been explored, the
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specific mechanisms in the context of glioma remains largely

unclear. Studies on how PDGFs/PDGFRs interacts with NK cells

and regulatory T cells in glioma microenvironment may be worth

to know.
5 TGF-b

Transforming growth factor-beta (TGF-b) indicates a large

superfamily which contains three TGF-b isoforms (TGF-b1, -b2
and -b3), as well as Activins, Nodal, bone morphogenetic proteins

(BMPs), the growth differentiation factors (GDFs) and the

müllerian inhibiting substance (MIS) (118). As a multifunctional

polypeptide cytokine, TGF-b plays important roles in angiogenesis,

cell proliferation, wound healing and immune regulation by binding

to a hetero-tetramer of TGF-b1 and TGF-b2 receptor serine/

threonine kinases (119, 120). TGF-b is classified as AGFs because

of its pro-angiogenic effect through stimulating endothelial cell and

cancer-associated fibroblast proliferation, migration and sprouting

both directly or indirectly (121, 122).

Hereby we mainly review the function of TGF-b in immunity

specially in the glioma microenvironment. TGF-b effects as tumor

inhibitors at the beginning but promotes tumor progression in the

late stages of tumorigenesis (123). The increased TGF-b expression

is associated with higher malignant degree and poorer prognosis of

glioma patients (124, 125). TGF-b is able to affect the activity of

immunocytes to regulate immune responses in the TME (126). In

malignant gliomas, especially in GBM, TGF-b can be released by

tumor cells, Tregs, M2-type GAM and myeloid-derived suppressor

cells (MDSC) (127–129). TGF-b has been reported to inhibit the

anti-tumor immunoreaction and modulate the properties of both

GBM cells and the stromal cells in TME (129, 130). In glioma

patients with different WHO grades, TGF-b1 and TGF-b2 were

found to be the major TGF-b isoforms secreted by glioma cells

which are able to downregulate cellular adhesion molecule (CAM)

expression on GBM endothelial cells to prevent T cell infiltration

(131). TGF-b2 has been observed to mitigate the recognition of

glioma cells by CD4+ T lymphocytes through reducing the

expression of HLA-DR antigen on human glioma cells (132). One

study on GBM patients reported that TGF-b helps GBM cells to

escape from the recognition of immune effector cells by

downregulating the NKG2D which is one of the receptors

expressed on NK cells and CD8+ T cells (133). In another study,

TGF-b1 can inhibit the NK cell recognition and killing of

glioblastoma stem cells through TGF-bR1/2 and the Smad2/3

phosphorylation in NK cells (127). In addition, in the presence of

TGF-b1 in vitro, GAMs can be recruited and polarized to the M2-

phonotype by Smad and PI3K/AKT signaling pathway (134, 135).

As a multifunctional cytokine, TGF-b supports tumor progression

in general and contributes to generating an immunosuppressive

microenvironment in glioma. Overexpression of TGF-b and its

effects on anti-tumor immune responses by interacting with T cells

and NK cells have been recognized in GBM (130). Notably, higher

cytoplasmic TGF-b1 levels were found to be related to longer survival

of patients with astrocytoma (136). This phenomenon may need to be

considered when employing TGF-b related therapy on glioma patients.
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Fibroblast growth factors (FGFs) were originally discovered and

named for its function of promoting fibroblast growth. It is a family

consists of twenty-two members (FGFs1–23), of which the mouse

FGF15 is an ortholog of human FGF19 and ten of these factors were

identified in the brain (137, 138). Similar to other growth factors,

FGFs exert their effects through activation of four specific receptors

named fibroblast growth factor receptor (FGFR) 1-4, which are

receptor tyrosine kinases (RTKs) (139). FGFs are essential for

embryonic development, cellular proliferation, angiogenesis, and

tissue repair (140, 141). Thus, FGF family is also considered as

AGFs. Overexpression of FGFs/FGFRs or continuous activation of

FGFRs caused by chromosomal translocations has been found in a

variety of tumors leading to up-regulation of downstream signaling

involving NF-kB, STAT, RAS-MAPK, PI3K-AKT and

phospholipase Cg (PLCg) pathways (142). Sustained activation of

the above signaling pathways eventually leads to uncontrollable cell

division, angiogenesis and EMT (143).

FGFs are differentially expressed in different types of tumors

and play important roles through paracrine or endocrine signaling.

In glioma tissues, higher levels of FGF1 and FGF2 were detected

compared to normal brain tissues (144). It was reported that

mutations of the FGFR1 kinase domain were found in human

GBM tissue and the expression of FGFR1, FGFR3 and FGFR4 was

increased in glioma (145–148). In contrast, FGFR2 expression is

low or undetectable in high-grade astrocytomas whereas it is

abundantly expressed in normal brain tissues (149). A recent

study revealed that FGFR1 on macrophages are activated by

glioma cell-derived FGF20, which inhibits b-catenin degradation

through phosphorylating glycogen synthase kinase 3b (GSK3b) and
subsequently suppresses macrophage polarization to the M1

phonotypes in vitro (150). In addition, studies show that FGF2

originated from TAMs in MC38 tumors plays a significant role for

the transition of TAMs to a pro-tumorigenic M2 phenotype (151).

FGF signaling pathway including FGFR1, FGFR4 and FGFR23 was

shown to be involved in recruiting immunosuppressive cells,

regulating M2 polarization of GAMs and T cell exhaustion in

gliomas (152). These findings may serve as a basis for targeting

FGF signaling to regulate immune response of gliomas.

Nevertheless, the effects of other FGFs on the immune

microenvironment of gliomas are currently unclear.
7 Angiopoietins

Angiopoietins (ANGs) are a group of angiogenic growth factors

belonging to the angiopoietin family, which consists of ANG1-4, the

vascular endothelial-protein tyrosine phosphatase (VE-PTP) and

the associated receptor tyrosine kinase Tie1 and Tie2 which are

mainly expressed on the surface of endothelial cells and

hematopoietic cells (153–155). ANG1 and ANG2 are the most

studied factors functioning in regulating vascular integrity in an

opposite way (156). The ratio of ANG2/1 was increased in

mesenchymal cells from GBM specimens compared to normal

human cerebrovascular pericytes (157). Upregulation of ANG2
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expression was observed in GBM mouse model (158). The

abnormal expression of ANG2 is considered to be the other

major cause besides VEGF for the massive heterogeneous

angiogenesis happened in gliomas (159). In addition, ANG2 has

been shown to promote cell proliferation, invasiveness and

malignant transformation of gliomas both in vitro and in mouse

models (160, 161). In the immune aspects, ANG2 is considered as

immunosuppressive in tumors by recruiting MDSC, regulatory T

cells and monocytes (162).

Based on the study by analyzing the TCGA cohort, ANG2 was

shown to be involved in immune regulation in TME by interacting

with neutrophils, macrophages, NK cells and mast cells (163). In

some kinds of solid tumors, angiopoietins were reported to be

associated with immune cells including TAMs, NK cells and

neutrophils, but whether it effects in a similar way in the glioma

microenvironment requires further confirmation (164, 165).

Available evidences showed that Tie2 was expressed in

immunocytes including DCs, TAMs, T lymphocytes, neutrophils

and mast cells, combining with the findings that ANG2 was

expressed aberrantly in gliomas, provide us a feasible theoretical

basis for further studying the ANG and immune cell interactions in

the glioma microenvironment (62, 166–169).
8 Concluding remarks
and perspectives

Angiogenesis is one of the hallmarks of cancer (1). Gliomas,

particularly high-grade gliomas including GBM, exhibits enhanced

angiogenesis and immunosuppression (170, 171). Standard

treatment fails to improve glioma patient survival in an efficient

way, when combining with anti-angiogenic therapy, the clinical

results were still unsatisfactory (172, 173). After a period of usage,

resistance was shown in anti-angiogenic therapy which develops

compensatory pathways to maintain glioma angiogenesis and

growth (16, 174).

In recent years, a number of anti-vascular treatment regimens

targeting AGFs or AGF receptors have been proposed in glioma.

The therapeutic agents targeting VRGF are the mostly studied.

Bevacizumab (BEV), the only VEGF-targeting drug approved by

the US Food and Drug Administration (FDA) for GBM patients,

has not been shown to improve overall survival (OS) in Phase III

clinical trial unlike the results from the colorectal cancer trials

which acquired significant effects in OS improvement (16, 175). As

well, BEV also showed no significant effects in another Phase II

clinical trial for patients with WHO grade 2 and grade 3 gliomas

(176). Incidentally, the AGF receptors such as VEGFR, PDGFR,

FGFR and TIE are all belong to the receptor tyrosine kinases

(RTKs). Imatinib, which is the first kinase inhibitor received FDA

approval in 2001 has been widely used in the treatment of leukemia

and gastrointestinal tumors (177–179). Whereas, the efficacy of

imatinib in the clinical treatment of glioma needs further validation

(180–182). In addition, AMD3000 as a CXCR4 (SDF-1 receptor)

antagonist, has been shown to have therapeutic potential in glioma

in vivo and in vitro. It can ultimately improve the glioma immune
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microenvironment by reducing CXCR4+ monocyte myeloid-

derived suppressor cell infiltration and inducing immunogenic

cell death (183). Such therapies are often proposed to target

tumor angiogenesis initially. Worth to note that due to the

existence of blood-brain barrier, appropriate drug carriers could

be considered to achieve better therapeutic effects when applying

anti-AGFs and related therapy (184). Significantly, anti-AGFs or

their corresponding receptors with combined therapeutic methods,

for example immunotherapy, may be helpful for glioma treatment.

AGFs were significantly upregulated in gliomas (22). In the

glioma microenvironment, there is evidence showing upregulations

of VEGFs, SDF-1, PDGFs, TGF-b, FGFs and ANGs that we have

reviewed, which lead to pathological effects such as tumor growth

and dysfunction of blood vessels. Besides angiogenesis, the function

of AGFs in tumor aggression is also reflected in immune regulation

(115). Studies have shown that many of these AGFs can be the

important causes of immunosuppression in the glioma

microenvironment. Combination of anti-angiogenic drugs and

immunotherapy has become one of the standard therapeutic

regimens for multiple cancers (8–10). At present, the role of

AGFs and their corresponding receptors in glioma immune

microenvironment have not been comprehensively studied.

Elucidating the interplay between AGFs and immunocytes in the

glioma microenvironment can be a crucial step for improving the

anti-glioma therapy. Here we summarize the AGF receptors

expressed on immune cells and patient glioma cells, which could

be of certain significance for the research of AGFs in the immune

microenvironment of gliomas (Table 1).

With the deepening in neuroimmunology research, the effect of

AGFs on immune cells in the glioma microenvironment attracted

attentions (221). It is worth noting that TAM content varies in

different types of gliomas, in which higher levels of TAM was

detected in high-grade gliomas (versus low-grade), recurrent GBM

(versus primary), and IDH-WT GBM (versus IDH-mutant) (222).

Therefore, it is most likely that there is a certain correlation between

the prognosis of glioma with TAM whose recruitment and function

can be influenced by AGFs to some extent. We noticed that the AGF

receptors expressed on microglia, as a type of resident and unique

macrophages comprising 10% of brain cells in the CNS (223), are

mostly the same as those expressed on macrophages. Nevertheless,

we observed that there are more types of FGFRs on microglia than

macrophages which may deserve further explorations. Up to now,

researchers have refined the different origins of macrophages in the

CNS to be monocyte-derived macrophage-derived TAMs (TAM-

MDM) and microglia derived TAMs (TAM-MG). It has been found

that the two types of cells tend to show different characteristics in

distribution and function, which would be meaningful for the GAM

study (222). In addition, it has been confirmed that mature

myeloid-derived mast cells can enter the CNS from the periphery,

which can be used as a prognostic factor for glioma patients. The

mechanisms of how mast cells affect glioma immune

microenvironment is still unclear (224–226). Worth to note,

besides common immune cells, endothelial cells have also been

confirmed to directly participate in immunosuppression in the

microenvironment of glioma (227, 228).
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In exploration of anti-angiogenic treatment, the effects on

immune regulation should be considered. Besides the AGFs

discussed in this review, it is worth mentioning that angiogenesis-

associated factors such as sonic hedgehog (Shh), matrix

metalloproteinases (MMPs) and microRNAs (miRNAs) may also

play a part in the glioma immune microenvironment. Studies on the

regulation of AGFs in the glioma immune microenvironment will

help further understanding the disease and may reveal potential

clinical treatment for gliomas.
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