
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Angela Mastronuzzi,
Bambino Gesù Children’s Hospital (IRCCS),
Italy

REVIEWED BY

Giada Del Baldo,
Bambino Gesù Children’s Hospital (IRCCS),
Italy
Prit Benny Malgulwar,
University of Texas MD Anderson Cancer
Center, United States

*CORRESPONDENCE

Ana S. Guerreiro Stucklin

Ana.Stuecklin@kispi.uzh.ch

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 07 July 2023

ACCEPTED 14 August 2023
PUBLISHED 13 September 2023

CITATION

Weiser A, Sanchez Bergman A,
Machaalani C, Bennett J, Roth P,
Reimann RR, Nazarian J and
Guerreiro Stucklin AS (2023) Bridging
the age gap: a review of molecularly
informed treatments for glioma in
adolescents and young adults.
Front. Oncol. 13:1254645.
doi: 10.3389/fonc.2023.1254645

COPYRIGHT

© 2023 Weiser, Sanchez Bergman,
Machaalani, Bennett, Roth, Reimann,
Nazarian and Guerreiro Stucklin. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 13 September 2023

DOI 10.3389/fonc.2023.1254645
Bridging the age gap: a review
of molecularly informed
treatments for glioma in
adolescents and young adults

Annette Weiser1,2†, Astrid Sanchez Bergman1†,
Charbel Machaalani1, Julie Bennett3,4, Patrick Roth5,
Regina R. Reimann6, Javad Nazarian7,8

and Ana S. Guerreiro Stucklin1,2*

1Translational Brain Tumor Research Group, Children’s Research Center, University Children’s
Hospital Zurich, Zurich, Switzerland, 2Division of Oncology, University Children’s Hospital Zurich,
Zurich, Switzerland, 3Division of Haematology/Oncology, The Hospital for Sick Children, Toronto,
ON, Canada, 4Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre,
Toronto, ON, Canada, 5Department of Neurology, University Hospital Zurich and University of Zurich,
Zurich, Switzerland, 6Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland,
7Department of Pediatrics, Diffuse Midline Glioma (DMG) / Diffuse Intrinsic Pontine Glioma (DIPG)
Center, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland,
8Research Center for Genetic Medicine, Children's National Hospital, Washington, DC, United States
Gliomas are the most common primary central nervous system (CNS) tumors

and a major cause of cancer-related mortality in children (age <15 years),

adolescents and young adults (AYA, ages 15–39 years), and adults (age >39

years). Molecular pathology has helped enhance the characterization of these

tumors, revealing a heterogeneous and ever more complex group of

malignancies. Recent molecular analyses have led to an increased appreciation

of common genomic alterations prevalent across all ages. The 2021 World

Health Organization (WHO) CNS tumor classification, 5th edition (WHO CNS5)

brings forward a nomenclature distinguishing “pediatric-type” and “adult-type”

gliomas. The spectrum of gliomas in AYA comprises both “pediatric-like” and

“adult-like” tumor entities but remains ill-defined. With fragmentation of clinical

management between pediatric and adult centers, AYAs face challenges related

to gaps in medical care, lower rates of enrollment in clinical trials and additional

psychosocial and economic challenges. This calls for a rethinking of diagnostic

and therapeutic approaches, to improve access to appropriate testing and

potentially beneficial treatments to patients of all ages.
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Introduction

Gliomas are the most common primary central nervous system

(CNS) tumors across all ages (1, 2). The overall incidence rate of

gliomas is estimated at 5.81 per 100,000 and is approximately three

times higher in older adults compared to young children. In the

adolescent and young adult (AYA, ages 15-39 years) group, gliomas

constitute 29–35% of all CNS tumors with an incidence of 3.41 per

100,000 (3–5). Gliomas remain a global challenge and improving

treatment strategies to reduce mortality and morbidity is a top

priority in neuro-oncology. AYA patients are especially vulnerable,

and gliomas represent a major cause of cancer-related mortality in

this age group. Gains in overall survival rates of AYA patients after

cancer diagnosis have been marginal over the last decades,

especially for AYAs with CNS tumors compared with other

tumor types (6), with some reports suggesting that mortality

might in fact be rising for AYAs with gliomas (5, 7).

Clinical management, therapy response and outcome differ

significantly between childhood and adult glioma patients.

Prognosis of children diagnosed with high-grade gliomas (HGGs)

is generally poor, with often limited long-term survival - months to

a few years after diagnosis (8). However, prognosis for pediatric

patients with low-grade gliomas (LGGs) is excellent in terms of

overall survival (9), albeit being associated with high tumor- and

treatment-associated morbidity (8, 10). In adults with LGG, the

higher rate of malignant transformation [exceedingly rare in

children (11)] leads to a poorer prognosis.

Recent advances in molecular profiling have uncovered key

oncogenic drivers and distinct glioma entities. Identification of

these drivers can improve diagnostic accuracy and facilitate

implementation of molecularly tailored treatments. Targeting

oncogenic drivers is already a cornerstone of treatment for a

subset of glioma patients, most notably those with Neurofibromatosis

1 (NF1) mutations, BRAF fusions and BRAFV600E mutated LGG and

HGG (12–15).
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The fifth edition of theWorld Health Organization (WHO) CNS

tumor classification (WHO CNS5), published in 2021, introduced

several molecular markers to the nomenclature to improve the

diagnostic accuracy of CNS tumors (16, 17). Concerning glioma

classification, one of the main additions was the distinction between

“pediatric-” and “adult-type” gliomas, highlighting the clinical and

biological differences across age groups. Gliomas in AYA possess

"pediatric-type" and "adult-type" features, but the degree of overlap

and the prognostic implications of genetic alterations in AYAs

remain poorly characterized (18).

Despite the significant incidence of gliomas in AYAs, they

remain an understudied population with specific needs - often

unmet due to gaps in clinical care and lack of research focus on this

population. Even though the biological features of gliomas in

pediatric and adult patients have been described, gliomas in AYA

patients have not been characterized extensively yet. Further,

barriers to treatment access, lower rates of enrollment in clinical

trials, financial insecurities, and paucity of AYA-focused healthcare

services also negatively affect the quality of care in AYAs (19, 20).

Here we review the main molecular alterations and their

implications for diagnosis, prognosis, and treatment of gliomas

across age groups (Figure 1). Highlighting current gaps in

knowledge on the AYA population, we discuss targeted

approaches currently under clinical investigation for patients with

glioma, and potential strategies to improve access to diagnostic

testing and biologically-informed treatments for AYAs.
Molecular features of pediatric and
adult gliomas

Tumor profiling has revealed a complex glioma molecular

landscape (Figure 2). The spectrum of genetic alterations and tumor

subtypes is heterogeneous across the age continuum, with some

typically diagnosed in children and others in adults (18, 21–25).
FIGURE 1

Schematic representation of glioma-associated molecular alterations across different ages. (Created with BioRender.com).
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Reflecting this disparity, WHO CNS5 groups gliomas into six main

entities, including adult-type diffuse gliomas, pediatric-type diffuse

LGG, and pediatric-type diffuse HGG. Despite this updated

terminology, the patient’s age at diagnosis is not a diagnostic

criterion. As such, older patients may be diagnosed with pediatric-

type tumors and similarly, children may be diagnosed with adult-type

tumors. While further research is needed to establish age-specific

prognostic implications, we summarize how the WHO CNS5

classification highlights the biological distinctions between pediatric

and adult gliomas, and potential implications for AYAs (find some

details onprevalence of different types of glioma inAYAs, survival data

and prognostic factors listed in Supplemental Table S1).
Pediatric-type gliomas

Pediatric LGGs (PLGG) comprise a variety of histopathologic and

molecular entities. Most genetic alterations underlying PLGG

development are typically confined within the Ras/mitogen-activated

protein kinase (MAPK) pathway, most commonly at the level of the

BRAF oncogene (25, 26). Several molecular markers were incorporated

into the WHO CNS5 classification alongside previously established

histological features and immunohistochemistry information.

The glioma family of “pediatric-type diffuse low-grade glioma”

includes: “diffuse astrocytoma, MYB- or MYBL1-altered”,

“angiocentric glioma” (MYB::QKI fusions), “polymorphous low-

grade neuroepithelial tumor of the young’’ (PLNTY, typically

harboring FGFR fusions or BRAF alterations) (27), and “diffuse

low-grade glioma MAPK pathway-altered” (BRAF alterations,

including BRAF::KIAA1549 and BRAFV600E; and FGFR1

alterations, including point mutations, FGFR1 fusions and

tyrosine kinase domain duplications) (16). This classification

expedites diagnosis, highlighting the most common and

informative molecular alterations, which should be screened for

in the diagnostic workup of low-grade gliomas.

Meanwhile, HGGs are significantly less common in children

compared to the adult population, where they represent the largest

proportion of primary CNS tumors. HGGs are devastating diseases,

associated with poor prognosis and a five-year survival below 20%,

accounting for a disproportionate number of cancer-related deaths in

children (28). PediatricHGGs (PHGG) arising inmidline structures of

the CNS are usually driven by the somatic mutation in histones H3.1

and H3.3 encoding genes resulting in aberrant oncohistone H3K27M

protein. Almost 80% of all midline PHGGs harbor H3K27M

mutations while the rest exhibit overexpression of EZHIP which

mimics mutant histone protein resulting in PRC2 sequestration and

thus global hypomethylation (29–31). A subpopulation of PHGGs are

also associated with frequent EGFR alterations (32, 33) which can be

potential treatment targets. Tumors carrying theH3.1K27Mmutation

usually grow in the pons, as is the case in diffuse intrinsic pontine

gliomas (DIPG); whereas H3.3K27Mmutations are often identified in

tumors growing in the brainstem and also other midline structures,

such as the thalamus, representing diffuse midline gliomas (DMG)

more generally. Interestingly, tumors with the H3.3K27M mutation

are most commonly associated with brainstem location in children,

whereas inAYApatients these tumorsare often thalamic (18).Another
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common histone mutation is the H3.3G34R/V, which has been

observed mostly in PHGGs of the cerebral hemispheres (23, 34), also

prevalent in the AYA population (18). These primary molecularly

defined entities are reflected in theWHOCNS5 “pediatric-type diffuse

high-grade glioma” family,which includes “diffusemidline glioma,H3

K27-altered”, “diffuse hemispheric glioma, H3 G34-mutant,” and

“diffuse pediatric-type high-grade gliomas, H3-, and IDH-

wildtype” (16).

A rare subset of pediatric gliomas - infant-type hemispheric

gliomas (IHG) - are driven by oncogenic fusions involving the

receptor tyrosine kinase (RTK)-encoding genes ALK, ROS1, MET,

and the NTRK-family (16, 35, 36). These fusions are common in

gliomas diagnosed in very young children but have also been detected

in adolescents and adults (37, 38). Though rare, these are highly

targetable alterations and, in the absence of other more common

alterations, should also be screened for in older patients (Figure 2).
Adult-type gliomas

In contrast to pediatric-type diffuse gliomas, which are separated

intoLGGandHGG, this distinction is notmade for adult-type gliomas

(16). In adult-type diffuse gliomas - the most common malignant

primary CNS tumor in adults - one main molecular feature with

prognostic implications is the isocitrate dehydrogenase (IDH)1 or

IDH2 mutation status (Figure 2). Adult-type diffuse gliomas are thus

subdivided into “astrocytoma, IDH-mutant”, “oligodendroglioma,

IDH-mutant, and 1p/19q-co-deleted”, and “glioblastoma, IDH-

wildtype”. One important change, compared to the previous WHO

CNS4 classification, is that glioblastoma is amore restricted diagnosis,

encompassing diffuse and astrocytic IDH-wildtype tumors, typically

harboring TERT promoter mutation and/or EGFR gene amplification

and/or+7/−10 chromosomecopynumber changes. Further important

molecular features implemented in the WHO CNS5 classification of

gliomas include co-deletion of 1p/19q (oligodendroglioma, WHO

grade 2-3), homozygous CDKN2A/B deletion (astrocytoma, IDH-

mutant, WHO grade 4), as well as the presence of alterations in

MYB,MYBL1,MN1, YAP1,MYCN, FOXR2, BCOR, SMARCB1, FET-

CREB, andDICER1 (39). Inaddition to themolecular classification, the

presence/extent of necrosis and microvascular proliferation are still

used for WHO grading (WHO grade 1-4).

Other gliomas
Alongside “pediatric-” and “adult-type gliomas”, the WHO CNS5

includes further glioma tumor families: “circumscribed astrocytic

gliomas” (including pilocytic astrocytoma, high-grade astrocytoma

with piloid features, pleomorphic xanthoastrocytoma, subependymal

giant cell astrocytoma, and astroblastoma, MN1-altered), as well as a

heterogenous group of “glioneuronal and neuronal tumors”.
Cancer predisposition syndromes and
germline testing in AYA

Cancer predisposition is another important factor to consider

when evaluating AYA patients with glioma. In the pediatric
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population, there is a higher incidence of germline events associated

with cancer predisposition. These are detected in approximately

10% of children and adolescents with cancer overall (40, 41), often

with profound implications for patients and families. Though

population-based data on prevalence of pathogenic germline

mutations in AYAs with glioma are lacking, screening and genetic

counselling should be considered, especially when family history or

the presence of a somatic mutation potentially associated with

cancer disposition raise suspicion for an inheritable alteration. A

broad spectrum of cancer predisposition syndromes can be

associated with gliomas, especially HGGs, including Li-Fraumeni

syndrome (TP53 mutation) and the germline DNA replication

deficiency syndromes constitutional mismatch repair deficiency

(cMMRD) syndrome and Lynch syndrome. Accurate diagnosis of

constitutional mismatch repair deficiency (CMMRD)- and Lynch-

associated hypermutant HGGs is critical, not only due to

implications for family and tumor surveillance, but for treatment

(see immunotherapy section below). For LGGs the most important

cancer predisposition syndrome is NF1 leading to mainly optic

pathway gliomas in 15-20% of the affected children (42).
Biologically informed therapies

Beyond the implications for accurate tumor classification, the

detection of molecular markers can facilitate access to targeted

therapies. As such, appropriate molecular profiling as part of

routine diagnostic testing in AYAs is the first key step, to

improve the implementation of the biologically informed

therapies. Several strategies targeting molecular vulnerabilities are

undergoing development and optimization for glioma therapy,

though typically not with a focus on AYA population. As such, in

this section we review new therapeutic approaches which may be of

benefit to AYA patients, despite current extensive gaps in

knowledge in this population.
BRAF/MEK inhibitors

BRAFV600E mutation and BRAF fusions are key drivers of

pediatric LGGs (25, 43–46) and the BRAFV600E mutation is

detected in a subset of pediatric and adult HGGs. With recent

implementation in clinical use, BRAF and MEK inhibitors are

increasingly used in treatment of pediatric and adult patients with

glioma (13, 47). Vemurafenib and dabrafenib are BRAF inhibitors

proven to be safe and successful in the treatment of BRAFV600E-

mutated LGG in children and adults, as monotherapy, or in

combination with MEK inhibitors (14, 48–50). Patients with

BRAFV600E-mutated HGGs also show response to treatment

with BRAF inhibitors but it is insufficient as monotherapy for

cure in these patients. A randomized trial assessing the overall

response rate (ORR) and tolerability of treatment with dabrafenib

and trametinib versus carboplatin and vincristine in a pediatric

population with BRAFV600E-mutant LGGs revealed a higher ORR,

longer progression-free survival (PFS), and fewer adverse events

(51). Combining MEK and BRAF inhibition also showed
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meaningful responses in adult BRAFV600E-mutant LGG and

HGG (14).

The MEK inhibitor selumetinib has shown significant anti-

tumor activity in progressive NF1-mutated and BRAF-altered

PLGGs (52–54). Another MEK inhibitor, trametinib, has also

been studied and proven active in patients with progressive

PLGG (15, 55). Questions remain regarding optimal duration of

treatment, outcomes compared with conventional chemotherapy

and potential combination with other established treatment

regimens. Ongoing studies are expected to answer some of these

questions, including trials comparing the upfront use of selumetinib

vs carboplatin/vincristine (NCT03871257), as well as a comparison

of selumetinib monotherapy vs selumetinib in combination with

vinblastine in patients with progressive LGGs (NCT04576117).

Though designed with the pediatric population in mind, both

trials allow the inclusion of young adult patients.

The pan-RAF inhibitor tovorafenib (DAY101) is being

investigated in an open-label, multi-center, international phase II

study (FIREFLY-1) in patients between the ages of 6 months and 25

years with BRAF-altered recurrent or progressive LGGs. The

promising results from the registrational arm show an ORR of

64% with a clinical benefit rate (CBR) of 91% (56). Another ongoing

trial LOGGIC/FIREFLY-2 is comparing tovorafenib monotherapy

to standard of care chemotherapy in patients with PLGG harboring

a RAF alteration requiring front-line systemic therapy

(NCT05566795). As for FIREFLY-1, this trial also allows for

inclusion of young adult patients, up to 25 years of age.
FGFR inhibitors

Genetic alterations in FGFR such as point mutations or

chromosomal rearrangements can occur in PLGG, whereas in

adults they are more commonly detected in high-grade tumors.

Emerging reports suggest that they are frequently encountered in

AYA, in up to 16% of IDH-WT AYA gliomas (57). Data from this

large cohort of FGFR-altered gliomas, encompassing patients aged 6

months - 87 years, fusions were more common in pediatric patients,

while point mutations were more common in AYA patients. Most

(87%) pediatric tumors had low-grade histology, whereas in AYA

this percentage was lower (67%) and in older adult patients FGFR-

altered tumors were typically high-grade. While the clinical and

prognostic implications of these findings are still under

investigation, this study highlights the importance of cross-age

studies to uncover the landscape of molecular alterations in AYAs.

Several FGFR inhibitors have been tested in pediatric and adult

patients with glioma, including erdafitinib (58) and the FGFR1–3

inhibitor infigratinib (59), which was investigated in a multicenter

phase II study in patients with recurrent gliomas and FGFR

alterations. Despite a low ORR of 3.8%, 4 patients had prolonged

disease control (59). A pediatric study testing the oral FGFR

inhibitor Debio1347 on a small cohort of 3 PLGG patients and 2

PHGG patients detected some responses (60), whereas none were

observed in adult patients with HGG. Despite relatively low

response rates, these early findings suggest that some patients

might have durable responses to FGFR inhibition. It is likely that
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specific FGFR alterations and/or the presence of other concomitant

alterations dictate response to FGFR inhibitors. Further studies are

needed to explore these and other open questions but, given the

high prevalence in AYA and positive responses in some pediatric

patients, FGFR alterations should be screened for and targeted

approaches considered in this patient population.
HDAC inhibitors

Histone deacetylase (HDAC) inhibitors are increasingly used to

treat H3K27M-altered DMGs and DIPGs. At a molecular level,

mutated H3K27M induces an inhibition of the H3K27me3

methyltransferase complex, Polycomb repressive complex 2

(PRC2), leading to increased histone acetylation and decreased

histone methylation. This global alteration of epigenetic marks

results in increased expression on oncogenic programs. HDAC

inhibitors have been developed with the goal to enzymatically

remove histone acetyl groups from the genome under

tumorigenic circumstances. One of the HDAC inhibitors under

clinical evaluation for DIPGs/DMGs is panobinostat, which has also

been used to treat many other cancer types. Treatment with

panobinostat lead to an increase in histone acetylation,

demonstrating biological activity. The therapy is generally well

tolerated, despite up to 30% pediatric patients showing

thrombocytopenia and anemia (61, 62). Seven children and

adolescents (5-21 years) with newly diagnosed DIPG received repeat

doses of convectionenhanceddelivery (CED)withMTX-110 (aqueous

panobinostat) in the PNOC015 trial which was tolerated well. Most

toxicities patients experienced were of neurological etiology.

Compared with historical controls, the OS with a median of 26.1

monthswas encouraging but due to the limitednumber of participants

must be interpreted with caution (63). New HDAC inhibitors are

under clinical investigation to overcome the drawbacks from

panobinostat, among them, quisinostat and romidepsin. Recent

studies have demonstrated the efficacy of quisinostat and romidepsin

in preclinicalDMGmodels, with goodBBBpenetration and inhibition

of tumor growth (62).
Imipridones

Imipridones are small inhibitor molecules that have shown anti-

tumor effects with promising results for several cancer treatments

(64). ONC201 is a type of imipridone for which the anti-tumor

effects are still being investigated and which has shown efficacy in

hematological malignancies (65), as well as in H3K27M DMGs in

combination with radiation (66). ONC201 was first discovered

during its involvement in activating the TNF-Related Apoptosis

Inducing Ligand (TRAIL)-pathway and the integrated stress

response (ISR)-pathway, which are important modulators in

balancing both cell survival and cell death (66, 67). ONC201

works as an antagonist for the dopamine receptors DRD2 and

DRD3, both belonging to the G-protein coupled receptor family.

ONC201 crosses the BBB and blocks DRD2, resulting in the

activation of the ISR-pathway, TRAIL-induced apoptosis and
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inhibition of the AKT/ERK pathway (67). Another trial with

ONC201 is ongoing for adult patients with recurrent, mainly

thalamic (location in the pons or spinal cord excluded) H3K27M

glioma (NCT03295396). The results of this trial will contribute to

our knowledge on treating these tumors in AYA patients as

H3K27M mutated gliomas are mainly located thalamic in AYAs.

A new derivate of the ONC201 imipridone, ONC206, has been

shown in preclinical studies (68) to be more potent than ONC201

and is currently under clinical investigation in children and young

adults (up to 21 years of age) with DMG or other recurrent high-

grade CNS tumors (NCT04732065). Both drugs bind to and activate

the mitochondrial serine protease ClpP (caseinolytic protease

proteolytic subunit), leading to mitochondrial damage, release of

reactive oxygen species, activation of ISR-pathway, and apoptosis

(68–70).

H3K27M DMGs are universally associated with dismal

prognosis and, though affecting mostly pediatric patients, they are

also prevalent in the AYA and adult population. Given the lack of

curative and treatment options, there is a strong rationale for the

design of age-inclusive clinical trials for DMGs.
PI3K/mTOR inhibitors

Overactivation of the PI3K/mTOR pathway - through the

presence of activating mutations (e.g. in PIK3CA), loss of the

negative regulator PTEN, and/or activation of upstream receptor

tyrosine kinase receptor signaling - underlies tumor growth and is a

key oncogenic driver in most human cancers, including gliomas. As

such, targeting the PI3K/mTOR pathway, either using amonotherapy

or combinatorial approach, is a strategy that has been amply explored.

The mTOR inhibitor everolimus is used to treat several CNS tumor

entities. A well-known indication for therapy with everolimus is the

presence of relevant, unresectable subependymal giant cell

astrocytomas (SEGAs) in patients with tuberous sclerosis complex

(TSC) (71, 72). Patients with TSC and associated SEGA treated with

everolimus typically show a significant reduction in tumor size and a

significant reduction of seizure frequency (73). Also, children with

recurrent/progressiveNF1-associatedLGGsshowedgoodresponses to

everolimus (74). Due to the known common activation of the PI3K-

pathway inDIPG, everolimuswas includedas oneof thedrugs tested in

the biomarker-driven platform trial BIOMEDE (NCT02233049) for

children and young adults (up to 25 years of age) (75). Everolimus

showed a trend towards better efficacy (not statistically significant)

when compared to erlotinib and dasatinib, with a good toxicity profile.

Paxalisib is a PI3K-inhibitor under clinical investigation, which

has shown encouraging responses in adult patients with recurrent

HGGs (76, 77). Paxalisib is also being evaluated for safety and

efficacy in HGGs, including DIPG/DMG in combination with

ONC201 (NCT05009992) (78, 79).
NTRK/ALK inhibitors

Several inhibitors have been developed targeting neurotrophic

tropomyosin kinase receptors (NTRK) and/or anaplastic
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lymphoma kinase (ALK)-fusion proteins (80). Second-generation

ALK inhibitors, such as alectinib and brigatinib have been designed

with an enhanced BBB penetration to treat ALK-driven non-small

cell lung cancer (NSCLC) with CNS metastasis (81). Lorlatinib, a

third-generation ALK inhibitor with enhanced BBB penetration,

has shown efficacy in several pediatric and adult malignancies,

including in a child with ALK-fused infant-type hemispheric glioma

(IHG) (82).

The first-generation TRK inhibitor larotrectinib has been

approved for treatment in adult and pediatric patients with

NTRK-fused CNS tumors (83). Entrectinib has also shown

activity against NTRK-, ROS1-, and ALK-fused malignancies,

especially in adults with NSCLC with CNS metastases. Entrectinib

was approved in 2019 by the FDA to treat children >12 years old

and shown to have positive anti-tumor activity both in adult and

pediatric patients with NTRK- and ALK-driven CNS tumors

(84, 85).
IDH inhibitors

Tumor-driving isocitrate dehydrogenase (IDH) mutations have

been identified in different types of cancer, leading to the

development and implementation of several IDH inhibitors in

clinical practice. As adult-type gliomas commonly harbor IDH1

(and less commonly, IDH2) mutations, testing the efficacy of IDH

inhibitors in these tumors has become a research focus in

recent years.

Ivosidenib (AG-120), an IDH1 inhibitor, was tested in IDH-

mutant solid cancers and is being evaluated for efficacy in IDH1-

mutant LGGs in adults. The BBB-penetrant IDH1 inhibitor DS-

1001b was evaluated in a phase I clinical trial in adult patients with

IDH1-mutant recurrent/progressive glioma with promising results

(86). Vorasidenib, an inhibitor of mutant IDH1 and IDH2, was

investigated in adult patients with IDH-mutant WHO grade 2

gliomas in a randomized phase III trial. Treatment with

vorasidenib prolonged PFS compared to placebo-treated patients.

Furthermore, the time to next therapeutic intervention was

significantly longer in patients receiving vorasidenib compared to

the placebo group (87).

IDH mutations are rare in the pediatric population but detected

in up to 35% of glioma adolescent patients aged 14 years or older

(88). This calls for a lower age of inclusion and/or AYA-focused

trials (such as NCT03749187) evaluating the role of IDH inhibition

in gliomas also in adolescent patients.
EGFR inhibitors

Epidermal growth factor receptor (EGFR) gain of function, due

to amplification or the presence of its active mutant EGFRvIII, is

common in adult patients with HGGs, exceedingly rare in pediatric

and rare in adult patients under 35 years of age (89). As such, most

clinical trials developed over the last decades focused on the adult/

older adult patient population. Multiple biological agents targeting

EGFR, including tyrosine kinase inhibitors (e.g. gefitinib, erlotinib),
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monoclonal antibodies (e.g. cetuximab), antibody-drug conjugates

(e.g. depatuxizumab mafodotin), as well as immunotherapeutic

approaches, such as anti-tumor vaccines and EGFRvIII-specific

chimeric antigen receptor (CAR) T cells, have been tested in

adult glioma patients, with generally underwhelming results (90–

93). The reasons for treatment failure are multifactorial and include

mechanisms leading to target independence (through alteration of

the structure or loss of target expression), activation of alternative

signaling pathways, and limited agent distribution due to BBB’s

properties (94–96).

Combination treatment of osimertinib and bevacizumab was

explored in patients with tumors harboring EGFR amplification and

EGFR variant III mutations but as the study cohort was small (15

patients), further evaluation is needed (97). Tesevatinib is a second-

generation tyrosine kinase inhibitor that crosses the BBB and

targets EGFR, human epidermal growth factor 2 (HER2)/neu, and

Src, currently in phase II clinical trials (NCT02844439) (98).
Immunotherapies

Another growing field with new treatment options for (high-

grade) glioma is immunotherapy. Based on success in

hematological malignancies and other solid tumors, expectations

to identify immunotherapies which are effective for gliomas were

built up in the past few years (34, 99, 100). Immunotherapeutic

approaches include checkpoint inhibitors, cellular immunotherapy,

anti-tumor vaccines and oncolytic viruses.

Drugs targeting the immunoregulatory checkpoint proteins

programmed cell death protein 1 (PD1) and its ligands PD-L1

and PD-L2 and cytotoxic T-lymphocyte-associated-protein 4

(CTLA-4), which inhibit T-cell-mediated response of the patients’

immune system have been tested in clinical trials. Several of these

clinical trials evaluating checkpoint inhibitors so far did not show

significantly prolonged OS or PFS in pediatric and adult HGG and

glioblastoma patients (101–105).

In a phase II clinical trial (Ipi-Glio trial) comparing the efficacy

of ipilimumab and temozolomide versus temozolomide alone in

adults with newly diagnosed glioblastoma, no difference in PFS or

OS was observed (106).

The exception to this is patients with cMMRDorLynch syndrome

associated HGGs (107). These patients are unlikely to respond to

temozolomide, which requires an intact MMR system for activity.

After early reports suggested a benefit for patients with cMMRD-

associated hypermutant HGGs treated with immune checkpoint

inhibitors (108), further studies confirmed objective responses and a

three-year survival of 41.4% (107). AYA patients are more likely to be

diagnosed with Lynch syndrome (monoallelic germline pathogenic

variants in mismatch repair genes), given that patients with cMMRD

(biallelic germline pathogenic variants in MMR genes) are typically

diagnosed with tumors at young age. Though Lynch syndrome-

associated hypermutant tumors have a lower mutational burden

compared to cMMRD-associated tumors, especially those with

concomitant polymerase proofreading deficiency (genomic predictor

of response to PD-1 inhibition), there are objective responses to

immune checkpoint inhibitors in these patients.
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CAR T cells have revolutionized treatment of refractory

hematologic malignancies, but are not yet established for solid

and CNS tumors (109, 110). Several targetable antigens have been

identified in adult and pediatric HGG, including Ephrin-A2

(EphA2)-receptor, human epidermal growth factor receptor 2

(HER-2), B7-H3 (CD276), interleukin-13 receptor subunit a-2
(IL13Ra2), and glycolipid tumor antigen 2 (GD2) (111, 112). For

both adult and pediatric HGG patients several clinical trials with

different treatment strategies have been carried out and are still

ongoing. Out of 16 evaluable patients (adults and children/

adolescents), eight showed a clinical benefit (partial response or

stable disease) to treatment with intravenous HER-2- (and pp65)-

targeted CAR T cells and treatment was considered to be safe (113).

Clinical trials testing HER-2-directed CAR T therapy in children

with CNS tumors, EGFR-directed CARs for children and AYAs

with CNS tumors and B7-H3-specific CAR Ts in patients with

DIPG/DMG or refractory pediatric CNS tumors are ongoing

(NCT03500991, NCT03638167 and NCT04185038). For

H3K27M-altered DIPG/DMG, GD2-CAR T cells (114) and B7-

H3 CAR T cells are currently under clinical investigation with

promising preliminary results (115).

Vaccination has been a focus of immunotherapy research for

three decades. In a randomized trial, rindopepimut, a peptide

vaccine targeting EGFRvIII-positive glioblastoma in adults did not

prolong survival (92). More recent developments include vaccines

targeting histone H3 mutations. In a trial with patients aged 3-21

years, patients with H3.3K27M-specific CD8+ immunological

responses had longer OS compared to non-responders.

Oncolyt ic viruses are (re-)emerging as important

immunotherapeutic options, especially for pediatric and young

adult patients with DIPG/DMG. Of 9/12 children with DIPG
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treated with the oncolytic adenovirus DNX-2401 a reduction in

tumor size was documented, making this treatment another

interesting development for these very high-risk tumor entities

(116). On the other hand, 49 patients with recurrent glioblastoma

treated with intratumoral delivery of the oncolytic DNX-2401 virus

followed by intravenous pembrolizumab did not develop any dose-

limiting toxicities but treatment also did not result in a statistically

relevant increase of the overall response rate (117).
Discussion

The WHO CNS5 introduced the distinction between pediatric-

type and adult-type gliomas, highlighting the biological differences

between tumors in these age groups. This sets the stage for further

research and therapy developments, tailored to the specific needs of

the pediatric and adult populations. While this will certainly be

beneficial and support a focus on age-relevant research questions

for those patient groups, there is a concern that AYAs will remain

poorly defined, “unseen” and medically underserved.

Understanding the longitudinal overlap and glioma evolution

from childhood to adulthood is an important research gap. The

prevalence and prognostic impact of molecular alterations in AYA

gliomas is largely unknown. While medicine in general, and

oncology in particular, evolve towards biologically-informed

treatment, this lack of knowledge on AYA gliomas has critical

consequences. Gliomas represent a significant cause of cancer-

related morbidity and mortality in AYAs and survival gains for

these patients have been minimal to non-existent, with some studies

suggesting that mortality might in fact be rising (5, 7).
A B C

FIGURE 2

Main molecular drivers of glioma. (A) Genetic alterations activating the Ras/MAPK pathway, including loss of function mutations in NF1 and gain of
function mutations or fusions in BRAF and Receptor Tyrosine Kinases (RTKs); (B) DNA hypomethylation as a result of Polycomb repressive complex 2
(PRC2) inhibition by H3K27M or EZHIP overexpression (mutually exclusive); (C) IDH mutations leading to an accumulation of D-2 hydroxyglutarate
and decrease in TET-mediated DNA demethylation. (Created with BioRender.com).
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Treatment optimization, including implementation of targeted

therapies, starts with the adoption of appropriate molecular testing

as part of the diagnostic work-up, for biomarker identification.

Given the pediatric versus adult focus of WHO CNS5, recent

consensus statements and recommendations from experts in the

field are key in ensuring appropriate and timely diagnostic testing

for AYA patients (118, 119).

Even though the molecular features vary between pediatric,

adult, and - most likely - AYA gliomas, these tumors also share

common tumorigenic pathways, including overexpression of

oncogenes, activation of RTKs, epigenetic dysregulations, and

increased metabolic pathways, which should be explored for

introducing new therapies in age-inclusive clinical trials. As

discussed above, several pediatric studies and study consortia are

starting to increase the upper limit of age of inclusion, to allow

enrollment of young adults with “pediatric-type” diseases, a much-

needed step to increase access to innovative therapies for AYAs.

Currently, clinical management of AYA patients is highly

fragmented between pediatric and adult centers, which can

further limit access to therapy due to lack/disconnected

information exchange between health care practitioners. To

bridge this gap and offer this vulnerable group of patients better

treatment options, exchange of expertise and close collaboration

between pediatric and adult neuro-oncologists - and broader

multidisciplinary clinical teams - is indispensable. Several centers

are implementing regular joint case discussions within dedicated

tumor boards, to improve the quality of care for AYA patients and

increase inclusion of AYA patients in clinical trials.

Furthermore, it is important to also consider the socioeconomic

and mental health burden that AYA patients experience. Due to

prognostic uncertainty and treatment limitations, AYA patients

report being under long-term stress due to lack of control over their

future, feeling burdened, and social isolation (120). Support from

specialized social workers, physical therapists and psychologists,

ideally in AYA-focused treatment facilities, would contribute to

advise, guide, and support AYAs during and after tumor therapy.

Specialized departments also offer the possibility to connect with

other patients in similar age groups, and tailored activities, such as

physical activities/sports for AYA patients.
Conclusion

There is still much to learn about gliomas in AYAs and much to

do to improve clinical care and treatment. The growing awareness

and identification of specific gaps in knowledge is a step in the right

direction and hopefully broader changes will follow. Ensuring
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access to appropriate molecular testing to detect key biomarkers,

designing age-inclusive clinical trials for gliomas and creating

multidisciplinary teams, bridging the pediatric/adult divide, are

some of the many actions needed and being implemented in

several centers across the world. Further, research focusing on

AYAs should be encouraged and supported, to bring new insights

into tumor biology in this population.
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