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Let-7i regulates tumors primarily by binding to the 3′ untranslated region (3′UTR)
of mRNA, which indirectly regulates post-transcriptional gene expression. Let-7i

also has an epigenetic function via modulating DNA methylation to directly

regulate gene expression. Let-7i performs a dual role by inducing both the

promotion and inhibition of various malignancies, depending on its target. The

mechanism of Let-7i action involves cancer cell proliferation, migration, invasion,

apoptosis, epithelial-mesenchymal transition, EV transmission, angiogenesis,

autophagy, and drug resistance sensitization. Let-7i is closely related to cancer,

and hence, is a potential biomarker for the diagnosis and prognosis of various

cancers. Therapeutically, it can be used to promote an anti-cancer immune

response by modifying exosomes, thus exerting a tumor-suppressive effect.
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1 Introduction

MicroRNA (miRNA) refers to short non-coding RNA with a length of 19–25

nucleotides that functions as a conservative post-transcriptional regulator of gene

expression. It recruits Argonaute proteins to form the RNA-induced silencing complex

(RISC), which regulates RNA via base-complementary pairing. The combination of

miRNA and RISC can inhibit mRNA translation without destroying the stability of

mRNA as well as silence unwanted genetic material and transcripts (1, 2). When the

miRNA and mRNA involved are entirely complementary, the complex can also mediate

mRNA degradation to inhibit transcription (3), thereby regulating the production of the

resulting protein. In addition, it has been found that mature miRNAs have the ability to

enter the nucleus, directly combine with the original components of gene promoter regions,

and contribute to the regulation of non-classical gene transcription (4). MiRNA is involved

in almost all biological processes, including cell growth, proliferation, differentiation,

metabolism, and the development of organisms (5). Each miRNA binds to hundreds of

different mRNAs, and miRNA controls more than half of human protein-coding genes (6).

Therefore, the dysregulation of miRNA expression is closely related to the occurrence of

various diseases, including cancer (7).

MiRNA biogenesis requires a series of sequential processing events. First, miRNA is

transcribed as long primary transcripts (pri-miRNA). This pri-miRNA is subsequently
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trimmed to 70-nucleotide (nt) pre-miRNAs in the nucleus. Then,

the trimmed pre-miRNA is exported to the cytoplasm and

synergized by Dicer and Drosha, which are both members of the

RNase III superfamily of bidentate nucleases. This cleavage event

yields mature miRNA molecules that are approximately 22 nt in

length (8–11).

Let-7 was first found in the nematode and identified as a key

developmental regulator (12). It is one of the two first known

microRNAs (the other one being Lin-4) and the first known human

miRNA. The Let-7 family is often present in multiple copies in a

genome (13). To distinguish between its multiple subtypes, a letter

is placed after Let-7 to represent its various sequences, while

numbers at the end of the name indicate that the same sequence

exists in multiple genomic locations (13, 14). There are 10 mature

Let-7 family sequences in humans that arise from 13 precursor

sequences and function in similar ways (13).

Let-7 expression is reportedly downregulated in several human

cancers, including esophageal, lung, and breast cancers. As a tumor

suppressor, Let-7 miRNA targets various oncogenic molecules

(including RAS, HMGA 2, and cell cycle and apoptosis

regulators) and exerts its anti-tumor effect by preventing

proliferation, promoting apoptosis, inhibiting angiogenesis, and

reducing immune surveillance (15–17).

Small differences in the sequence of Let-7 can alter the affinity

for its target sequences, thereby resulting in differences in its

function or employed mechanism (18). The expression of

different family members also varies significantly between tumors.

Most Let-7i family members exert an anti-tumor effect to function

as tumor suppressors (19), but interestingly, recent studies have

found that Let-7i may also act as an oncogene to promote the

occurrence and development of cancer (20, 21). Let-7i has been

shown to have tumor-suppressive as well as tumor-promoting

properties simultaneously. To clarify the specific mechanisms

differentiating between the tumor-suppressing and tumor-

promoting roles of Let-7i, the current Review summarizes

previous studies to provide guidance for further targeted precision

therapies in a clinical setting.
2 Tumor suppressor function

Let-7i has been widely recognized and studied as a tumor

suppressor. Its mechanism of inhibiting tumor development involves

not only the modulation of cell proliferation, metastasis, and changes in

the tumor cells themselves (such as autophagy, apoptosis, and stem cell

properties) but also changes in the tumor microenvironment, such as

alterations to immunity and angiogenesis.
2.1 Regulation of malignant phenotypes:
proliferation, migration, invasion,
and apoptosis

Let-7i regulates gene expression to control the processes that

underpin malignant phenotypes, such as tumor cell proliferation,

migration, invasion, and apoptosis. Let-7i can regulate gene
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expression indirectly via the classical mRNA regulatory pathway

or directly via the non-canonical epigenetic regulation pathway.

2.1.1 mRNA regulation
The regulation of protein levels by specifically binding to the

mRNA 3′ UTR is the classic mechanism employed by Let-7i. Let-7i

reduces melanoma cell proliferation and metastasis by upregulating

KISS1 expression (22), inhibits the proliferation and invasion of

osteosarcoma by downregulating the expression of Aurora B (a

member of the serine/threonine protein kinase family) (23),

inhibits the survival, proliferation, and motility of gastric cancer

cells by downregulating the expression of COL1A1 (24), and

promotes the DDP-induced apoptosis of esophageal cancer cells by

downregulating the expression of ABCC10 (25). In the process of

suppressing the occurrence and development of colorectal cancer,

Let-7i can not only specifically bind to serine protease (KLK6) mRNA

to inhibit its transcription (26) but also inhibits the activity of the

ERK signaling pathway by inhibiting the expression of CCND1 (27).

In glioblastoma, a study by Xiaopeng Sun et al. found that Let-7i-5p

could downregulate the levels of cyclin-dependent kinases (CDK2

and CDK4), cyclin A2, and BCL-2 by silencing GALE, thereby

inducing cell cycle arrest and a reduction in proliferation (28).

Furthermore, according to experiments by Lobna Elkhadragy,

ERK3 and BMI1 are both highly expressed in head and neck

cancer and BMI1 upregulates ERK3 by suppressing the expression

of Let-7i, ultimately facilitating the migration of head and neck cancer

cells (29). Therefore, we speculated that Let-7i can prevent head and

neck cancer cells from migrating by reducing the activity of ERK3.

2.1.2 Epigenetic alterations
DNA, histones, non-histone proteins, and a small amount of

RNA can all bind and interact with chromatin, which is a linear

complex structure containing the genetic material of interphase

cells (30). Epigenetics refers to heritable modifications of gene

function that ultimately alter phenotype but do not entail changes

to the DNA sequence itself. DNA methylation, histone

modification, non-coding RNA regulation, and chromatin

remodeling are all examples of epigenetic processes. Let-7i may

play a tumor-regulating role by modulating epigenetics.

Let-7i acts on histone lysine demethylase to achieve tumor

suppression through structural modification. In esophageal cancer,

KDM5B, a histone 3 lysine 4 (H3K4) methylation regulator (31),

can be downregulated by Let-7i to encourage the tri-methylation of

H3K4 (H3K4me3) in the promoter region, consequently promoting

the expression of the tumor suppressor SOX17 (32). Overexpressed

SOX17 can then silence the tumor promoter GREB1, thereby

reducing the proliferation and invasion of esophageal cancer cells

and exerting anti-tumor efficacy in vitro (32, 33). In lung cancer,

Let-7i enhances DCLK1 expression by interacting with endogenous

KDM3A, allowing KDM3A to bind to the promoter region of

DCLK1 and removing histone H3K9me2 (34). The enhancement

of DCLK1 expression promotes the expression of FXYD3, which

reduces the ability of lung cancer cells to proliferate, migrate, and

invade, thereby exerting its anti-tumor effect. The above

mechanisms have been confirmed in vitro and in vivo (34).

Yawen Liu et al. suggested that Lin28B upregulates the level of
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TET3 by blocking Let-7i, while TET3 catalyzes the conversion of 5-

methylcytosine to 5-hydroxymethylcytosine, resulting in DNA

depletion and pancreatic cell carcinoma (35). Through a feedback

mechanism, TET3 and Let-7i can also promote the expression of

Lin28B (35, 36).

High mobility group proteins A1 and 2 (HMGA1, 2) are

members of the HMGA family that are a class of non-histone

chromatin structural proteins with no transcriptional activity,

which primarily regulate transcription by altering DNA

conformation (37). HMGA1 exerts its tumor-regulating effects via

multiple pathways, including DNA phosphorylation, acetylation,

and methylation (37). Qin et al. illustrated that by targeting

HMGA1, Let-7i suppressed the malignant phenotype of bladder

cancer cell lines T24 and 5637 (38). According to Ravindresh

Chhabra’s study, Let-7i-5p overexpression and SOX2 silencing

could both decrease the number of spheroids formed in the

cervical cancer cell lines HeLa and CaSki, while HMGA2 and

SOX2 expression were significantly reduced in CaSki following

Let-7i-5p overexpression (39). HMGA2 has been shown to induce

SOX2; therefore, we speculate that Let-7i-5p can disrupt the stem

cell phenotype, alter the conformation of DNA, and downregulate

SOX2 expression by targeting HMGA2 expression (39–41). Figure 1

shows a schematic diagram illustrating the way in which Let-7i

regulates epigenetics.
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2.2 Tumor microenvironment
pathway regulation

2.2.1 Epithelial-mesenchymal transition and
mesenchymal phenotype

Epithelial-mesenchymal transition (EMT) is the process by

which epithelial cells lose polarity and transform into motile

mesenchymal cells, acquiring a mesenchymal phenotype (42).

This process mediates tumor metastasis by blocking connections

between cells, reorganizing the cytoskeleton, altering cell shape, and

encoding gene expression to enhance cell motility, migration, and

invasion. In addition, EMT promotes stem cell likeness and plays a

key role in the processes of treatment resistance, embryonic

development, and organ fibrosis (42–44). Epithelial cadherin (E-

cadherin) degradation is a fundamental mechanistic feature that

deconstructs intercellular links and induces EMT, leading to tumor

metastasis (42).

Hypoxia is a common feature of the tumor microenvironment.

It can activate hypoxia-inducible factor-1a (HIF-1a) to further

regulate the expression levels of Nur77 (45) and TWIST1 (46).

Nur77 is a distinct nuclear receptor, the low expression of which can

cause E-cadherin to be downregulated, causing more dispersed

colonies to form and triggering EMT and typical mesenchymal

morphology (45). Let-7i-5p plays a key role in this process. Under
FIGURE 1

Schematic diagram of Let-7i regulating epigenetics. Let-7i can enter the nucleus to combine with KDM3A and KDM5B, affect DNA methylation, and
directly interfere with gene expression. Additionally, it can act on HMGA1 and 2, modify the conformation of DNA, and directly regulate gene expression.
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hypoxia, Nur77 interacts with p63 to specifically inhibit Dicer,

which affects the maturation of Let-7i-5p from precursor (pre)-Let-

7i, resulting in a decrease in Let-7i-5p levels (45). Let-7i-5p binds

p110a mRNA on the 3′ untranslated region (UTR) and promotes

its degradation, while low expression of Let-7i-5p reduces the

degradation of PI3K-p110a to increase its level and activates the

Akt signaling pathway. Additionally, the low expression of Let-7i-

5p affects the phosphorylation of downstream mTORC1 and its

target proteins p70S6K and 4E-BP1, thereby inducing colorectal

cancer (CRC) EMT (45). Figure 2 provides an intuitive illustration

of the above mechanism.

TWIST1, a basic helix-loop-helix (bHLH) transcription factor,

is a master regulator of EMT (46–48). It is regulated by HIF-1a,
regulates BMI1 levels, and cooperates with BMI1 to inhibit E-

cadherin expression to induce EMT (49). Let-7i expression can be

co-repressed by TWIST1 and BMI1 simultaneously, while low Let-

7i levels can increase cell invasiveness. Let-7i downregulation

changes the morphology of head and neck squamous cell

carcinoma (HNSCC) OECM-1 cells, causing them to adopt an

elongated shape with pseudopodia protrusions, which promotes the

interstitial cell pattern, ultimately increasing their capacity to move

and invade. In addition, downregulating Let-7i increases the

expression of NEDD9 and DOCK3, activates RAC1, drives
Frontiers in Oncology 04
interstitial movement, and further enhances the invasive

phenotype (50).

Moreover, in human glioma cells, Yuan et al. confirmed that

Let-7i directly targets IKBKE (inhibitor of nuclear factor kappa-B

kinase subunit epsilon) to upregulate E-cadherin expression and

suppress EMT (51). In endometrial cancer cells, Let-7i is expressed

at low levels under the control of DICER1, and low levels of Let-7i

have been found to downregulate the expression of EZH2 to affect

the methylation of histone H3 at arginine 27 as well as total H3

acetylation, thereby inhibiting the expression of E-cadherin and

encouraging EMT (52). In head and neck squamous cell carcinoma

(HNSCC), Let-7i inhibits MBP4 to alter cell morphology, turn

slender cells round, and decrease interstitial movement, ultimately

preventing local invasion (53).

2.2.2 Extracellular vesicles
Extracellular vesicles (EVs), including exosomes and shed

microvesicles (sMVs), mediate intercellular trafficking and are

crucial for enabling bidirectional communication between cells

and the microenvironment at both the paracrine and systemic

levels (54). Studies have repeatedly demonstrated the close

connection between EVs and the emergence of cancer. EVs

transport a wide range of molecules from donor cells to recipient
FIGURE 2

Mechanism diagram of Let-7i regulating EMT. Nur77 binds to p63 under hypoxic conditions, inhibits the maturation of Let-7i-5p, prevents the degradation of
PI3K mRNA, activates the Akt signaling pathway, and regulates downstream mTORC1, p70S6K, and 4E-BP1/2, thereby inducing the EMT process.
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cells, including proteins (such as oncoproteins and oncopeptides),

RNAs (such as microRNA and mRNA), DNA fragments, and lipids;

this process profoundly alters the phenotype of the tumor

microenvironment (54–56). Adeleh Taghi Khani et al. confirmed

by in vivo and in vitro experiments that Let-7i can be delivered by

the intercellular delivery system-EV, exerting its tumor suppressive

effect in breast cancer cells (57). Experiments conducted by Jiefeng

Liu et al. demonstrated that Let-7i inhibits the malignant phenotype

of lung cancer through EV transport (34). Additionally, results from

a study by Deyi Xiao et al. suggest that Let-7i may act on LIN28B

and HMGA2 to alter the expression of EMT markers, thereby

inhibiting exosome-mediated melanocyte invasion by suppressing

EMT-like effects (58).
3 Tumor promoter function

Although Let-7i is widely recognized as a tumor suppressor,

increasingly more studies in recent years have found that Let-7i also

has a tumor-promoting effect. Moreover, it appears to promote

tumor growth and development through different pathways in

different tumors.
3.1 Classical pathways to modulating
malignant phenotypes: proliferation,
migration, invasion, and apoptosis

Let-7i promotes hepatocellular carcinoma (HCC) by targeting

TSP1. By conducting in vitro experiments, Hee Doo Yang et al.

found that Let-7i-5p rescued a range of tumor suppressive effects of

HDAC6, while the ectopic expression of a Let-7i-5p antisense

inhibitor (AS-Let-7i-5p) inhibited tumor cell proliferation,

induced apoptosis, and prevented migration under chemotactic

stimulation, revealing that Let-7i-5p promotes HCC (20). The

thrombospondin-1 gene (THBS1) 3′ UTR was cloned into a

reporter vector and detected using an AS-Let-7i-5p dual-luciferase

reporter assay, after which, there was an observed increase in the

relative luciferase activity (20). In addition, we observed that AS-

Let-7i-5p transfection increased thrombospondin-1 protein (TSP1)

secretion in the conditioned medium of HCC cells. It has been

proposed that Let-7i-5p can interact directly with the transcript 3′
UTR to selectively regulate the expression of THBS1, thereby

regulating TSP1 secretion. The inhibition of Let-7i-5p can

upregulate the level of TSP1 and inhibit both tumor growth and

invasion (20). Therefore, we hypothesized that Let-7i-5p may

contribute to tumor growth by suppressing the expression of

THBS1 and lowering TSP1 levels. In nasopharyngeal carcinoma

(NPC), Let-7i-5p has been demonstrated to act not only as an

oncogene to promote cancer but also as a valuable biomarker to

evaluate its end stage, predict its recurrence, and predict its

metastasis risk. Bo You et al. revealed that Let-7i-5p expression

was upregulated in NPC and was significantly associated with

clinical stage, recurrence, and metastasis. Patients with a higher

ISH staining score exhibited higher Let-7i expression, while patients

with higher Let-7i-5p expression displayed worse overall survival
Frontiers in Oncology 05
(OS) and progression-free survival (DFS) rates (59).

Simultaneously, the study confirmed the faciliatory effect of Let-

7i-5p on the proliferation and migration of NPC cells through

several in vitro experiments (59). Results obtained from luciferase

gene assays showed that Let-7i-5p binds to the 3′ UTR of ATG10

and ATG16L1, revealing the direct targeting effect on genes (59).

Let-7i-5p promotes tumor cell proliferation and migration, while

the knockdown of ATG10 and/or ATG16L1 abolished this effect,

indicating that Let-7i-5p exerts its effect by controlling ATG10 and

ATG16L1 (59). In renal clear cell carcinoma (ccRCC), Let-7i-5p is

also highly expressed as an oncogene, and its expression level is

strongly associated with the pathological stage. Experiments

conducted by Yujie Liu et al. showed that the level of Let-7i

differed significantly across different pathological stages and

different AJCC stages, allowing it to be used as a prognostic

marker for ccRCC (21). Meanwhile, the same research showed

that Let-7i-5p can promote malignant phenotypes by directly

targeting hyaluronan-binding protein 4 (HABP4) (21). HABP4 is

a nuclear and cytoplasmic regulatory protein involved in the

regulation of gene expression at the transcriptional and mRNA

levels. Additionally, it regulates the cell cycle and apoptosis to

modulate cell proliferation (60). Downregulating the level of

HABP4 to regulate the cell cycle may therefore be the mechanism

by which Let-7i promotes ccRCC (21).

Interestingly, Let-7i can promote or suppress hepatocellular

carcinoma growth by acting on different targets. Let-7i promotes

HCC proliferation and invasion by upregulating the expression of

THBS1 and TSP1. Conversely, it also inhibits the malignant

phenotype of HCC cells via multiple pathways. A study by Injie

Omar Fawzy et al. indicated that Let-7i can inhibit the viability and

colony-forming ability of HCC cells either by directly targeting

IGF1R or by indirectly reducing IGF1R expression via regulating

the expression of insulin-like growth factor 2-mRNA-binding

proteins (IGF2BP) 1, 2, and 3 (61). Alternatively, Let-7i can

mediate the downregulation of the apoptosis protein Bcl-xL,

thereby inhibiting HCC (62). Figure 3 features a schematic

diagram that summarizes the classical mechanism of action of

Let-7i.
3.2 Angiogenesis and extracellular vesicles

Angiogenesis in tumor tissue is an important prerequisite for

rapid tumor proliferation. Tumor tissue blood vessels originate

from the pre-existing vasculature and serve as a source of nutrients

and oxygen for the tumor cells to ensure their rapid proliferation.

The development of vascular architecture in the tumor

microenvironment depends on the coordination of pro- and anti-

angiogenic factors (63). Hee Doo Yang et al. treated HCC cells with

AS-Let-7i-5p and rTSP1, finding that the in vitro development of

microtubule cells was noticeably suppressed. This effect was

successfully rescued by combining the treatment with the TSP1

antibody C-terminal domain to the CD47 receptor (3F352). The

research elucidated the following mechanism: the downregulation

of Let-7i-5p levels mediates TSP1 binding to the cell surface

receptor CD47 to exert anti-angiogenic activity (20). We thus
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concluded that Let-7i contributes to the promotion of angiogenesis

during the development of tumors.

In a study by Hee Doo Yang et al. (20), exosomes were isolated

and purified from HCC cell culture medium, from which Let-7i-5p

was detected by qPCR, and donor cell fractions were analyzed. The

results of the study showed that Let-7i-5p was mainly present in the

exosomes but not in the donor cells of HCC cells. The exosomes

were then fluorescently labeled with PKH67 dye and incubated with

the receptor system. Measurements found that the expression of

Let-7i-5p in the receptor cells was significantly enhanced,

suggesting that in HCC, Let-7i-5p facilitates communication

between liver cancer cells and normal cells via exosomes,

subsequently promoting the malignant transformation of cells

and the development of cancer (20).
3.3 Regulation of autophagy

Autophagy is an intracellular degradation process that fuses

autophagosomes and lysosomes by the action of various autophagy

genes. It hydrolyzes damaged organelles and macromolecules by

hydrolases (64). Autophagy plays a complex dual role in tumors,

not only by inducing programmed death to eliminate tumor cells

but also by promoting cancer cell-stroma communication to

promote tumorigenesis and development, supporting tumor
Frontiers in Oncology 06
growth in a nutrient-limited environment (65, 66). Cancer

autophagy is affected by factors such as nutrient availability,

microenvironmental stress, and the immune system (65).

Numerous studies have documented how miRNAs regulate

autophagy and how autophagy affects tumor progression (67, 68).

In NPC, Bo You et al. found that the transfection of NPC cells

with a Let-7i-5p inhibitor could inhibit their proliferation and

migration ability via autophagy (59). The research also found that

silencing the expression of Let-7i-5p induced LC3 aggregation and

increased the number of both yellow fluorescent autophagosomes

and red fluorescent autolysosomes in the autophagic flux assay,

indicating that Let-7i-5p can inhibit the formation of the

autophagy phagosome and inhibit the autophagic flux of NPC

cells (59). Furthermore, after knocking out Let-7i-5p, western blot

showed that the expression levels of the autophagy marker LC3-II

and the autophagy-related gene ATG5 were significantly

increased, while the level of the autophagy substrate p62 was

decreased (59). The modulation of autophagy by Let-7i was also

observed in non-small cell lung cancer (NSCLC). The transfection

of a Let-7i-5p inhibitor into NSCLC cells resulted in an increase in

the LC3-II/LC3-I ratio and an increase in the number of

autophagosomes, while p62 levels were decreased, suggesting

that Let-7i-5p negatively regulates autophagy (69). Taken

together, Let-7i-5p exerts a tumorigenic role in NPC through

the inhibition of autophagy activity (59).
FIGURE 3

Schematic diagram of the mechanism of action of Let-7i. Let-7i can regulate the expression of KISS, ATG10, ATG16L1, THBS1, ABCC10, and COL1A1
at the post-transcriptional level by binding to the 3′ UTR of mRNA.
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3.4 Regulation of immune escape

As an important part of the immune system, innate immunity is

the first line of defense against infection and malignant cell

transformation (70). Macrophages can act as antigen-presenting

cells (APCs) in innate immunity, processing and cross-presenting

antigens to T cells to activate adaptive immunity (71). In addition,

macrophages have the ability to mediate phagocytosis, involving

multiple cell processes such as target cell recognition, phagocytosis,

and lysosomal digestion, which are essential for the programmed

clearance of damaged and foreign cells (72). Phagocytosis depends

on the relative expression of pro- and anti-phagocytic signals on

target cells. Tumor cells have been shown to evade macrophage

phagocytosis by expressing anti-phagocytic signals, including

CD200 and CD47 (73).

In hepatocellular carcinoma (HCC), TSP1 can prevent the

interaction between CD47 and SIRPa, disrupt the “don’t eat me”

signal between hepatoma cells and macrophages, and prevent

immune escape (20). SIRPa is a signal-regulating protein that is

mainly expressed on the surface of myeloid cells such as

macrophages. It binds to the transmembrane protein CD47 and is

activated to initiate a signal transduction cascade, resulting in the

inhibition of phagocytosis (74). It has been reported that cell

migration ability was significantly inhibited following the

treatment of HCC cells with a Let-7i-5p antisense inhibitor and

recombinant TSP1, whereas combined treatment with 3F352

rescued these responses, suggesting the existence of an autocrine/

paracrine TSP1-CD47 mechanism in HCC cells (20). Then, co-

cultured mouse peritoneal macrophages and HCC cells were treated
Frontiers in Oncology 07
with a Let-7i-5p antisense inhibitor and recombinant TSP1, and

consequently, an increase in the phagocytic index and enhanced

macrophage phagocytic activity were observed. This suggests that

TSP1 can compete with SIRPa for CD47, convert the CD47-SIRP

interaction between HCC and macrophages into the CD47-TSP1

interaction, activate the “eat me” signal, and restart macrophage

phagocytosis. However, Let-7i could target and downregulate the

levels of TSP1, inhibiting the competitive binding of TSP1, which

suppressed the immune response, mediated immune escape, and

encouraged the development of tumors (20).

Figure 4 illustrates the mechanisms by which Let-7i suppresses

immunological response, promotes angiogenesis, inhibits

autophagy, and delivers via exosomes.
4 Diagnostic and
prognostic biomarkers

Although there is an extensive body of research on cancer and a

deep understanding of its development, numerous challenges

remain regarding its diagnosis. Most cancers occur insidiously but

develop rapidly, and when diagnosed, they are often already at an

advanced stage, which is greatly related to an untimely diagnosis.

Therefore, it is of great significance to improve the diagnostic

methods, establish convenient, accurate, and efficient diagnostic

biomarkers, detect lesions in a timely manner, and follow up and

confirm diagnoses at an early stage.

In almost all cancer types, miRNA signatures are enriched for

proteoglycan-related proteins. Proteoglycans are macromolecules
FIGURE 4

Mechanism diagram of Let-7i regulating autophagy, angiogenesis, immune response, and exosomes. Let-7i suppresses autophagy by reducing LC3
aggregation. Let-7i blocks the immune response and initiates immune evasion by downregulating TSP1. Additionally, Let-7i inhibits the anti-
angiogenic effects of TSP1. Furthermore, Let-7i transmits between cells through exosomes.
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that are major components of the extracellular matrix, and

alterations in their expression correlate with the prognosis of

malignant tumors (75, 76). Specific miRNA signatures regulate

proteoglycan and stem cell pluripotency in the tumor

microenvironment, which may have profound implications for

early cancer detection.

Sathipati et al. (77) suggested that the recognition of Let-7i

signatures by CancerSig miRNAs can be used as a basis for

predicting the development and stage of various types of cancers,

which can help in early cancer identification and stratification. In

experiments conducted by Liang Li et al. (78), serum Let-7i was

detected in preclinical HCC patients and has the potential to be

used in the screening of CHB patients at high risk of developing

HCC 6–12 months after the measurement of miRNAs. Cochetti

(79) used Let-7i to differentiate patients with prostate cancer from

those with benign prostatic hyperplasia and found that the

expression level of Let-7i decreased with increasing malignancy of

prostate cancer, which led to the suggestion that Let-7i may be a

potential marker for high-risk disease. In addition, Let-7i was found

to be a potential biomarker for smoking-associated pneumonia

(80). The nucleotide diversity of Let-7i can also affect the risk of

cervical cancer, head and neck cancer, and many other cancers by

influencing Let-7i levels (81, 82).

The issue of tumor prognosis, which considers tumor

recurrence and metastasis, is still the focus of attention in the

prevention and treatment of malignant tumors, as it seriously affects

the survival time and quality of life of affected patients. Therefore,

there is an urgent need to identify a biological marker to monitor

the effect of tumor treatment and determine prognosis to intervene

early, adjust the treatment plan in time, and select the optimal

treatment. Let-7i has been extensively studied as a candidate

prognostic biomarker for clinical applications. For pancreatic

neuroendocrine tumors, Let-7i predicts metabolic aggressiveness

and contributes to pancreatic neuroendocrine tumor (PanNET)

stratification by peptide receptor radionuclide therapy (PRRT) (83).

Let-7i was found to be significantly associated with hepatitis

infection and overall survival in patients with hepatocellular

carcinoma and was an independent factor in the development of

hepatocellular carcinoma (HCC) in patients with chronic hepatitis

B (CHB) and chronic hepatitis C (CHC) (84). Let-7i is an early

predictor of HCC development after antiviral therapy, and

circulating Let-7i levels can be used for the early surveillance of

CHB and CHC with HCC risk and as a non-invasive biomarker to

predict the risk of hepatocellular carcinoma after antiviral therapy

in patients with chronic hepatitis B and C (84). Moreover, Let-7i is

associated with poorer overall cancer survival (OS) and could be a

potential biomarker for prognostic survival in individuals with

tumors (85). Let-7i has been demonstrated to be a good predictor

of overall survival (OS) in metastatic renal cancer (86), recurrence-

free survival (RFS) in oral cancer (87), progression-free survival

(PFS) in advanced ovarian cancer (88), and liver metastasis-free

survival (HFS) in colorectal cancer (89). Let-7i not only predicts OS

in gastric cancer but also predicts the sensitivity of gastric cancer to

chemotherapy (90). Similarly, Let-7i can be predictive of

chemotherapy resistance in ovarian and breast cancer cells (88).
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studies. A proportional risk model for COX has been developed

using the expression of miRNAs, including Let-7i, to robustly

predict the high and low risk of distant metastasis in

nasopharyngeal carcinoma patients (91).
5 Clinical target

Owing to the important role of Let-7i in tumorigenesis and

development, research on its utility as a therapeutic target is

progressively expanding. Let-7i can enable the cell-cell delivery of

Let-7i via exosomes (20). Additionally, it can effectively induce

dendritic cell (DC) maturation, which plays a key role in generating

an anti-tumor immune response. Based on this, Let-7i-modified

exosomes have emerged as a primary therapeutic direction, and this

technology can be administered by either intramuscular or

intraperitoneal injection to target DCs and promote their

maturation as well as enhance the proliferation of T-cells and

regulate the release of cytokines, thus exerting a powerful anti-

tumor response through enhancing the immune response and

remodeling the tumor microenvironment (57, 92). Let-7i-

modified exosomes also hold promise in the development of a

novel cell-free vaccine for cancer therapy (92).

In addition, Let-7i has been extensively studied for its ability to

enhance the sensitivity of cancer cells to chemotherapeutic drugs

(93). Let-7i can inhibit the transcription of lncRNA XIST and

downregulate the expression of XIST (94). LncRNA XIST has been

shown to confer chemoresistance to cancer cells via a variety of

pathways, including improved DNA repair and apoptosis

regulation (93). Therefore, the downregulation of lncRNA XIST

can reduce the proliferation and anti-apoptotic ability of lung

adenocarcinoma (LAD) cells, enhance LAD sensitivity to

cisplatin, and improve the drug resistance of cancer cells (94).

Yan-Ling Ren et al. (95) confirmed that propofol is not only useful

as an intravenous anesthetic but also exerts non-anesthetic effects

by interacting with various signaling pathways, thereby

participating in the regulation of various human malignant

tumors. Propofol can reduce HOXA11-AS expression and

upregulate Let-7i to regulate the expression of ABCC10 and

alleviate the resistance of colon cancer to chemotherapy (95).

Nenghui Liu et al. illustrated that a MUC1 aptamer-Let-7i

chimera can enhance the sensitivity of epithelial ovarian cancer

cells to paclitaxel by downregulating the expression levels of cyclin

D1, cyclin D2, Dicer 1, and PGRMC1 (96).
6 Article summary

By reviewing the role and mechanism of Let-7i in various

tumors, we conclude that Let-7i not only plays a tumor

suppressor role but also acts as an oncogenic factor to promote

the occurrence and development of cancer. Let-7i employs multiple

mechanisms of action across different cancers in a cancer-specific

manner. Furthermore, for the same cancer cell, depending on the
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target, it also plays a different role in promotion and inhibition.

Multiple processes underlying the cancer phenotype, including

cancer cell growth, migration, invasion, apoptosis, stem cell-

likeness, epithelial-mesenchymal transition, EV transmission,

angiogenesis, immune evasion, and autophagy, are all regulated

by Let-7i. Furthermore, Let-7i is a potential biomarker for the

diagnosis or prognosis of various diseases. Therapeutically, Let-7i

can modulate the anti-cancer immune response by modifying

exosomes while also contributing to the sensitivity of cancer cells

to chemotherapeutic drugs to varying degrees. The mechanism of

Let-7i is complex and detailed. Table 1 summarizes different aspects

of the mechanism of Let-7i in this paper, providing a theoretical

basis and reference for the future use of Let-7i as a clinical target in

the treatment of cancer.
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TABLE 1 Summary of the Let-7i mechanism.

Cancer type
The role of

Let-7i
Direct
target

Expression
status

Downstream pathways
involved

Involved phenotype

Hepatocellular
carcinoma

Promoter THBS1 Downregulate TSP1
Proliferation, migration, apoptosis,

angiogenesis, immune escape

Inhibitor Bcl-xL Downregulate Proliferation, apoptosis

Inhibitor IGF1R Downregulate Proliferation, migration, Invasion

Inhibitor IGF2BPs Downregulate IGF1R Proliferation, migration, Invasion

Nasopharyngeal
carcinoma

Promoter
ATG10,
ATG16L1

Downregulate Proliferation, migration

Clear cell renal cell
carcinoma

Promoter HABP4 Downregulate Proliferation, migration, invasion

Melanoma Inhibitor KISS1 Upregulate Proliferation, migration,

Osteosarcoma Inhibitor Aurora B Downregulate Migrate, Invasion

Stomach cancer Inhibitor COL1A1 Downregulate Proliferation, migration,

Esophageal cancer Inhibitor
ABCC10 Downregulate Apoptosis

KDM5B Downregulate SOX17, GREB1 proliferation, migration, Invasion, apoptosis

Colorectal cancer Inhibitor

KLK6 Downregulate Caspase signaling pathway Proliferation, migration, Invasion, apoptosis

CCND1 Downregulate ERK signaling pathway Proliferation, migration, invasion

p110a Downregulate Akt migrate, Invasion

Glioblastoma Inhibitor
GALE Downregulate CDK2, CDK4, BCL-2, Cyclin A2 Proliferation, migration, angiogenesis

IKBKE Downregulate migrate, Invasion

Head and neck
cancer

Inhibitor

ERK3 Downregulate Migrate

NEDD9,
DOCK3

Downregulate RAC1 Invasion

MBP4 Downregulate Migrate

Lung cancer Inhibitor KDM3A Downregulate DCLK1, FXYD3 Proliferation, migration, Invasion

Lung
adenocarcinoma

Inhibitor XIST Downregulate Proliferation, apoptosis, drug resistance

Pancreatic cancer Inhibitor TET3 Downregulate Proliferation, invasion

Bladder Cancer Inhibitor HMGA1 Downregulate Proliferation, migration, Invasion

Cervical cancer Inhibitor HMGA2 Downregulate SOX2 Cell stemness

Endometrial cancer Inhibitor EZH2 Downregulate Invasion
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