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Kidney disease is a serious public health problem and various kidney diseases

could progress to end-stage renal disease. The many complications of end-

stage renal disease. have a significant impact on the physical and mental

health of patients. Ultrasound can be the test of choice for evaluating the

kidney and perirenal tissue as it is real-time, available and non-radioactive. To

overcome substantial interobserver variability in renal ultrasound

interpretation, artificial intelligence (AI) has the potential to be a new

method to help radiologists make clinical decisions. This review introduces

the applications of AI in renal ultrasound, including automatic segmentation

of the kidney, measurement of the renal volume, prediction of the kidney

function, diagnosis of the kidney diseases. The advantages and disadvantages

of the applications will also be presented clinicians to conduct research.

Additionally, the challenges and future perspectives of AI are discussed.
KEYWORDS
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1 Introduction

Kidney disease is a serious public health problem affecting more than 10% of the

global population (1). End-stage renal disease, which develops from various kidney

conditions, eventually forces patients to finally rely on renal replacement treatment to

prolong their lives (2). The many complications of end-stage renal disease have a

significant impact on the physical and mental health of patients. Early and accurate

diagnosis is therefore essential to slow the progression of kidney disease and improve

the quality of life of people with kidney disease.
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Over the past few decades, the early detection, diagnosis, and

treatment of diseases have benefited greatly from the application of

several medical imaging modalities, such as computed tomography

(CT), magnetic resonance imaging (MRI), ultrasound, and X-ray

(3). Ultrasound is often the test of choice for evaluating the kidney

and perirenal tissue because it is real-time, accessible, and non-

radioactive. However, in clinical practice, the interpretation and

analysis of medical images have mostly been performed by

specialized physicians, which has been highly dependent on long-

term training and often prone to subjective judgments.

Furthermore, due to the high subjective heterogeneity in visual

interpretation, it is challenging to translate experience-based

prediction into standardized practice (4).

In recent decades, with the rapid development of AI technology,

there have been a large number of applications of AI in medical

imaging that benefits clinicians a lot (5). It is widely used in disease

diagnosis that rely on medical imaging, such as breast cancer (6),

liver diseases (7), pancreatic cancer (8), thyroid nodules (9) and

urology diseases (10). AI has been explored as a new potential tool

to assist radiologists in clinical decision making to overcome the

substantial interobserver variability in image acquisition

and interpretation.

In this review, we comprehensively introduce the applications

of AI in renal ultrasound, including automatic segmentation of the

kidney, measurement of the renal volume, prediction of the kidney

function, diagnosis of the kidney diseases. The advantages and

disadvantages of the applications will also be presented to clinicians

for research. Additionally, the challenges and future perspectives of
Frontiers in Oncology 02
AI in renal ultrasound are also discussed. The main structure of this

review was presented in Figure 1.
2 Methods

We searched the PubMed and Web of Science databases for all

research published in English up to 1 Jan 2023.In the search

strategy, we used the search terms including “artificial

intelligence”, “ultrasound”, and “renal”. The complete search

strategy was available from the authors. We also included some

narrative and systematic reviews to provide our readers with

adequate details within the allowed number of references. In

addition to the database searching, a hand search was performed,

consisting of the reference lists of related articles and reviews and

Google scholar search engines.

We mainly focused on AI in renal ultrasound images

segmentation and the diagnostic and predictive capabilities of AI-

assisted ultrasound in renal diseases. Hence, the articles were

reviewed to determine the relevance based on the following

criteria: studies that involved the application of AI methods to

analyze ultrasound images of normal kidneys or renal diseases. The

articles that were beyond this coverage were excluded.

All the titles and abstracts for all eligible articles were reviewed

by two authors independently. If the abstracts were not relevant,

then they were discarded, and the full-text articles were accessed.

Further reviewing the full-text papers may lead to deserting some

irrelevant documents and finally retaining articles that met the
FIGURE 1

Main structure of this review. AI, artificial intelligence; CAKUT, congenital abnormalities of the kidney and urinary tract.
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inclusion criteria in this review. When there was any discrepancy in

the ultimately included articles, a consensus negotiation was

reached to form the final inclusion result among the two authors.
3 Brief overview of
artificial intelligence

AI was originally proposed at the Dartmouth Conference in

1956. The main goal of AI is to enable the performance of complex

tasks that require human intelligence. The advancement of network

technology has hastened the growth of AI innovation research, and

significantly enhanced the technology’s usage. As an important

component of the fourth industrial revolution, AI has changed

dramatically our world, from facial recognition to smart homes.

Particularly, AI methods have been found myriad applications in

the medical image analysis field, driving it forward at a rapid pace,

such as detection, segmentation, diagnosis, as well as risk

assessment (5).
3.1 Machine learning

ML, a subfield of AI, is a general term for a class of algorithms.

The basic idea of ML is to abstract a real-world problem into a

mathematical model, to solve the model using mathematical

methods to deal with the problem, and to evaluate whether and

how well it has addressed the problem (11). Therefore, the process

of ML could be simply summarized into three processes: training,

validation, and testing.

According to the training methods, ML could be roughly

divided into three types: supervised learning, unsupervised

learning and reinforcement learning. Among them, supervised
Frontiers in Oncology 03
learning is the most widely used one in the field of medical

imaging technology (12). It uses known input-outputs to train a

model to map input data to output results, resulting in a function of

inference, which is then able to infer output results from new input

data. It is thus useful for classification, characterization and

regression of the similarity between instances of similar results

labels (12).

Consequently, in ultrasound imaging applications, expert-

designed or radiomics-extracted image features can be used as

input data to provide output predictions regarding subsequent

disease outcomes. Commonly used ML techniques include linear

regression, K-means, decision trees, random forests, support vector

machines (SVMs), and neural networks (6).
3.2 Deep learning

The concept of DL is derived from artificial neural networks,

which is the most significant branch of ML, as illustrated in

Figure 2. DL methods are representation-learning methods with

multiple levels of representation, obtained by composing simple but

non-linear modules that each transform the representation at one

level (starting with the raw input) into a representation at a higher,

slightly more abstract level (13). In contrast to traditional ML,

which relies on manual feature extraction, DL is based on automatic

feature extraction by machines. DL is highly dependent on data, and

the larger the amount of data, the better its performance. Thus it has

even surpassed human performance in tasks such as image

recognition and facial recognition (13).

Currently, convolutional neural networks (CNNs) are the most

popular type of DL architecture in the medical image analysis field

(14). A typical CNN architecture consists of three parts:

convolutional layers, pooling layers, and fully-connected layers.
FIGURE 2

The Venn diagram of the artificial intelligence hierarchic terminology.
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Generally, a CNN model has many convolutional layers and

pooling layers. The convolutional layer and the pooling layer are

alternately set (7). The convolution layer utilizes filters (convolution

kernels) to filter regions of the image to extract the features. Pooling

layers can reduce the dimensionality of data more effectively than

convolutional layers, which can not only greatly reduce the amount

of operations, but effectively avoid overfitting as well. The data

processed by the convolutional and pooling layers are fed to the

fully-connected layer. The fully connected layer can integrate local

information with class discrimination (7).

The emergence and continuous development of DL has shed

new light on medical image analysis and had a significant impact on

both clinical applications and scientific research (15).
4 Application of AI in renal ultrasound

4.1 Automatic segmentation of the kidney

Kidney segmentation is the key and fundamental step for

medical image analysis. The main motivations for kidney

segmentation in clinical practice are: (a) Evaluation of kidney

parameters, namely its size and volume, to diagnose potential

diseases; (b) Assessment of renal morphology and function; (c)

Localization of abnormalities or pathologies present in the kidney;

(d) Facilitating the decision-making process, helping in the

treatment/interventional planning; (e) Post-operative follow-up

after a renal intervention (16). In the current clinical work, there

are three main types of methods used in studies on kidney

segmentation: manual, semi-automatic and fully automatic.

Kidney image segmentation that is performed manually or semi-

automatically relies heavily on timing-consuming manual tasks that

also lead to higher inter-operator variability (17). Thus, automatic

segmentation methods for kidney ultrasound image using AI are

proposed, as summarized in Table 1.

Based on 2D ultrasound, Yang et al. developed a framework

which was combined with nonlocal total variation image denoising,

distance regularized level set evolution, and shape element for

kidney segmentation from noisy ultrasound images (18). The

results of this proposed method shown that the sensitivity, and

specificity could reach 96% and 95% respectively. Inspired by the

excellent performance of boundary detection-based kidney

segmentation methods, a fully-automatic kidney image
Frontiers in Oncology 04
segmentation method based on CNN, which consisted of a

transfer learning network, a boundary distance regression

network and a kidney pixelwise classification network was

developed by Yin et al. (19). Their technique used image

segmentation network architecture derived from DeepLab (21) to

speed up model training and improve the performance of kidney

image segmentation. Moreover, image-registration data

augmentation based on thin-plate splines transformation and

flipping was used to train the kidney segmentation model more

robust. The results showed that the proposed method had

significantly better performance than other 6 state-of-the-art DL

segmentation networks, namely DeepLab (21), FCNN (22), U-Net

(23), SegNet (24), PSPnet (25), DeeplabV3+ (26). Chen et al.

proposed a deep neural network architecture, namely Multi-

branch Aware Network to segment kidney (20). The neural

network mainly consists of a multi-scale feature pyramid, a multi-

branch encoder and a master decoder. The design of multi-scale

feature pyramid can make the network more accessible to different

kinds of details at different scales. The information exchange

between multi-branch encoder can reduce the loss of feature

information and improve the segmentation accuracy of the

network. Thus, this method not only can segment kidney images

more robustly and accurately, but also can reduce the false detection

rate and missed detection rate of the network.

In summary, the segmentation using DL in renal ultrasound

images could not only save a considerable amount of time for

radiologists and provide more objective and reliable information for

the clinical work, but also contribute to the development of AI in

automatic diagnosis of renal diseases. The aforementioned literature

only segmented normal kidneys, not those with abnormalities, and

did not set up external validators to further validate their models.

Future researchers deserve a chance to solve this issue.
4.2 Measurement of the renal volume

Renal length is closely related to kidney function, and its change

is considered as an important factor in assessing kidney status in

patients with kidney disease (27). Renal bipolar length is widely

used as a clinical indicator of chronicity and indirectly to estimate

severity of pre-existing parenchymal damage (28). However, given

that the bipolar length is a poor predictor of parenchymal volume

and renal function particularly in studies utilizing MRI and CT to
TABLE 1 Summary of the application of AI in the renal ultrasound for automatic segmentation.

Task Algorithms Data source Size Results Ref.

Automatic
Segmentation

A framework combining with nonlocal total variation image denoising, distance
regularized level set evolution and shape prior

synthetic and real
ultrasound images of
left kidney

/ Sen=95%
Spe=96%

(18)

Based on DeepLap and VGG16 CNNs incorporating transfer learning network,
boundary distance regression network and kidney pixel classification

sagittal view of the kidney
in children

289
images

Sen=94%
Dice=94%

(19)

A deep neural network consists of a multi-scale feature pyramid, a multi-branch
encoder and a master decoder

clinical medical records of
two centers

500
images

Spe=99.5% (20)
frontier
CNN, convolutional neural network; Sen, sensitivity; Spe, specificity; Dice, Dice coefficient.
/, not mentioned.
sin.org

https://doi.org/10.3389/fonc.2023.1252630
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2023.1252630
assess renal morphology (29). Renal volume is a relatively more

reliable and accurate indicator for changes in renal length; this is

confirmed by several methods for measuring renal volume, such as

CT, MRI, ultrasound (30). Among the imaging technologies,

ultrasound is undoubtedly a safer one for children. Kim D-W

et al. aimed to develop a new automated method for renal

volume measurement using hybrid learning, which integrated the

DL-based U-Net model with the active contouring method based on

ML to locate regions (31). They have demonstrated that the

accuracy and reliability of renal volume calculation using the

proposed process by comparing it with the renal volume

measured by CT method. Unfortunately, the study’s sample size

was insufficient, and there weren’t enough kidney samples from

children in each age group to assess the model’s generalizability,

statistical uncertainty, and potential bias. Overall, this is the first

study on healthy children to use image pre-processing and hybrid

learning to determine renal volume changes, since an age-matched

normal reference value of renal volume could help in the diagnosis

and prognosis of kidney diseases especially in childhood.
4.3 Prediction of the kidney function

Estimated glomerular filtration rate (eGFR) is the main indices

for evaluating kidney function and the main basis for the diagnosis

and staging of chronic kidney disease (CKD) (32). Detection of

eGFR using traditional methods is invasive and non-immediate.

Hence, the utilization of ultrasound for non-invasive prediction of

kidney function has been proposed, as shown in Table 2.

With texture features and SVM classification algorithm, Chen

et al. designed an integrated image analysis system for diagnosing

different CKD stages (33). And the accuracy of prediction results

could reach 75.95%. Kuo et al. employed a deep CNN to predict

eGFR based on renal ultrasound images (34). The neural network

architecture they constructed was referenced from the ResNet-101

model and included 33 residual blocks and three fully connected

layers consisting of 512, 512 and 256 neurons. For classifying eGFR

with a threshold of 60 ml/min/1.73 m2, their model achieved an

overall accuracy of 85.6% and area under receiver operating
Frontiers in Oncology 05
characteristic curve (AUC) of 0.904. Radiomics has also been

discovered to be useful in evaluating kidney function. Zhu et al.

developed different models based on clinical and ultrasound image

features as well as radiomic features to predict the kidney function

by different ML methods (35). The results of this study validated the

feasibility of radiomic features in the evaluation of kidney function.

The combination of renal ultrasound imaging and AI offers the

possibility of non-invasive prediction of kidney function, which can

be considered as complementary evidence to aid clinical diagnosis.
4.4 Diagnosis of the kidney diseases

Ultrasound is widespread used in the diagnostic studies of the

kidney and urinary tract. However, the diagnosis of kidney disease

based on ultrasound imaging data relies on a variety of anatomical

signatures, such as the renal length, the renal volume, the symmetry

of the kidney, and the echogenicity of the renal parenchyma, which

are usually obtained manually and exhibit a degree of interobserver

dependence (36). Therefore, it is desirable to automate image

analysis for a robust diagnosis of renal disease. At present, several

modified AI algorithms have been developed to diagnose the

various kidney diseases based on ultrasound images with the

intention to help radiologists to make unbiased diagnosis, which

is summarized in Table 3. Developing such AI algorithms helps the

clinician more deeply integrate AI with renal ultrasound to find

broader and practical clinical applications.

4.4.1 Classification and diagnosis of renal masses
Renal tumor is one of the common tumors in the urological

system, and most of them are malignant. And as medical imaging

technology develops by leaps and bounds in recent years, the

detection rate of renal tumors is also increasing each year (47).

However, only 16-19% of renal tumors are benign, especially in

small renal masses (SRM, <4 cm in size) with a high benign rate of

20-30% (37, 48). Accordingly, the percutaneous renal biopsy could

be considered an essential pre-treatment diagnostic procedure in

clinical practice. Nevertheless, percutaneous renal biopsy has

limitations, such as a high rate of false negatives, the inability to
TABLE 2 Summary of the application of AI in the renal ultrasound for prediction of the kidney function.

Task Algorithms Data source Size Results Ref.

Prediction
of the
kidney
function

Decisive area-proportional, textural features and SVM techniques non-diabetics, non- acute renal failure, non-
polycystic kidney disease, non-hydronephrosis,
non-inpatient, and age between 18 to 75
years old

798
images

left-kidney:
ACC=71%
right-
kidney:
ACC=76%
combining:
ACC=70%

(33)

The neural network architecture consists of 33 residual blocks as
CNN-based feature extractors, and three fully connected layers of
512, 512, and 256 neurons as regressors

the view of the maximum observable
kidney length

4505
images

ACC=86% (34)

5 ML algorithms (Nu-Support Vector Classification, C- Support
Vector Classification, Random Forest, Adaptive boosting, and
Xtreme gradient boosting) based on radiomics

clinical medical records of patients who
underwent renal transplantation

233
patients

AUC=0.79-
0.84

(35)
frontier
SVM, support vector machine; CNN, convolutional neural network; ML, machine learning; ACC, accuracy; AUC, the area under the receiver operating characteristic curve.
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accurately diagnose SRM, and the risk of bleeding and tumor

dissemination. Benign findings in the biopsy specimen will not

exclude the possibility of malignancy elsewhere in the lesion (49).

Therefore, accurate preoperative identification of benign and

malignant renal masses can avoid unnecessary surgery and

serious complications, and reduce the financial burden on

patients. Among renal malignancies, renal cell carcinoma (RCC)

is the most morbid and lethal pathological type, whereas

angiomyolipoma (AML) is the most common type of benign

renal tumor (50, 51).

As the imaging features of these two kinds of tumors not only

partially overlap, but are also easily influenced by the subjective

experience of radiologists, which are still challenging and

controversial to identify them based on imaging features solely.

Four supervised ML algorithms including quadratic discriminant

analysis, logistic regression, Na Free Baye, and nonlinear- SVM

were compared for accuracy in distinguishing RCC from AML,

using features of tumor, cortical and medullary regions as statistical

inputs. Hersh et al. demonstrated that SVM achieved the best

performance in distinguishing RCC between AML with an

accuracy of 94% (37). Radiomics based on ultrasound can be
Frontiers in Oncology 06
taken as a promising diagnostic aid, as confirmed by the studies

of Li et al. and Peiman et al. (38, 39). The accuracy of the radiomics

nomogram based on ultrasound constructed by Li et al. to

distinguish RCC from AML was superior to the assessment

performance of junior and senior radiologists (38). Peiman et al.

used radiomics to extract quantitative texture information and

combined tumor-to-cortex echo intensity ratio and tumor size to

construct a classification model that could accurately diagnose RCC

and AML with an AUC of 0.945 (39). Despite the fact that these

studies have yielded promising results, they all contain limitations

that can be improved, including too few images, lack of validation

set, and the proportion of the number of RCCs and AMLs included

significantly differs from the actual incidence in the real world. As a

result, when these models are applied to the real world, the

outcomes may be quite different.

Contrast-enhanced ultrasound (CEUS) is particularly indicated

for differential diagnosis between solid lesions and cysts. And

previous studies showed that CEUS can be used to differentiate

among lesions with an equivocal enhancement at CT or MRI (52,

53). This suggests that CEUS is a promising additional diagnostic

tool capable of differentiating malignant from benign renal masses.
TABLE 3 Summary of the application of AI in the renal ultrasound for diagnosis of kidney disease.

Task Algorithms Data source Size Results Ref.

Classification
and diagnosis
renal masses

SVM, logistic regression, naïve Bayes and quadratic
discriminant analysis

clinical medical records of
single center

10 AMLs; 42 RCCs ACC=94% (37)

Radiomics nomogram based on ultrasound clinical medical records of
single center

600 masses AUC=0.91
ACC=90%

(38)

Quantitative texture information combined with
tumor-to-cortex echo intensity ratio and tumor size

hyperechoic renal mass <5 cm
in size

105 AMLs; 25 RCCs AUC=0.95 (39)

Using EffecientNet-b3 to extract features from B-
mode and CEUS images, and adaptive weights are
learned to fuse the features

B-mode and CEUS-mode images
from two centers

9794 B-mode and CEUS-
mode images

ACC=80%
Sen=80%
Spe=79%
AUC=0.88

(40)

An ensemble of deep neural networks (ResNet-101,
ShuffleNet, and MobileNet-v2) based on
transfer learning

images from available standard
datasets and radiologists

4940 images ACC=96% (41)

Diagnosis
of CAKUT

MIL combined with transfer learning sagittal and transvers view from
the first renal ultrasound scans
after birth were used

86 patients with CAKUT;
96 controls

AUC=0.97
ACC=94%

(36)

a deep MIL method based on graph convolutional
networks, instance-level and bag-level supervision

clinical medical records of
single center

120 CAKUT patients with
2687 images; 105 controls
with 2246 images

ACC=85%
Sen=86%
Spe=84%

(42)

SVM classifiers integrating texture and deep transfer
learning image features

clinical medical records of
single center

50 CAKUT patients;
50 controls

AUC=0.92
ACC=87%

(43)

Diagnosis and
grading
of
hydronephrosis

An encoder-decoder framework based on U-net coronal and transverse view of the
renal ultrasound scans

Labeled dataset: 1850 images;
Graded dataset: 1407 images

ACC=89% (44)

An Attention-Unet which consists of four
convolution blocks

clinical medical records of
single center

506 patients with
hydronephrosis; 193 controls

Dice=0.83
Sen=90%
Spe=80%

(45)

Keras neural network consists of five convolutional
layers, a fully connected layer of 400 units, and a
final output layer

sagittal view of the renal
ultrasound scans

2420 images ACC=78% (46)
frontier
CAKUT, congenital abnormalities of the kidney and urinary tract; SVM, support vector machine; CEUS, contrast-enhanced ultrasound; MIL, multi-instance learning; CNN, convolutional neural
network; AML, angiomyolipoma; RCC, renal cell carcinoma ACC, accuracy; AUC, the area under the receiver operating characteristic curve; Sen, sensitivity; Spe, specificity; Dice,
Dice coefficient.
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Therefore, Zhu et al. (40) constructs a multimodal ultrasound

fusion network, which can independently extract features from

each of the two modalities (B-mode and CEUS-mode) and learn

adaptive weights to fuse features for each sample.

AI cannot merely assist in the differential diagnosis of RCC and

AML, but can also precisely distinguish between multiple classes of

renal abnormalities. Sudharson et al. proposed an ensemble of deep

neural networks based on transfer learning, which could ideally

classify renal ultrasound images into four categories, namely

normal, cysts, stones, and tumors (41). Their technique combined

different deep neural networks, including ResNet-101, ShuffleNet,

and MobileNet-v2 for feature extraction and then used SVM for

classification. The ensemble model has demonstrated better

classification performance than the individual deep neural

network model.

4.4.2 Diagnosis of congenital abnormalities of
the kidney and urinary tract

Congenital abnormalities of the kidney and urinary tract

(CAKUT) are disorders caused by developmental defects of the

kidney and its outflow tract, including abnormalities in the location

and number of kidneys, abnormalities in the size and structure of

the kidneys, and dilatation of the urinary tract, which could

accelerate the progression of CKD (54). The Prevalence is

estimated to be 0.04-0.6% (55). Although the widespread use of

ultrasound imaging facilitates early detection of CAKUT, current

methods are limited by the lack of automated processes that

accurately classify diseased and normal kidneys (36).

Recent studies have introduced the contribution of their

algorithms for accurate automated diagnosis of CAKUT. Yin et al.

developed a clinical diagnostic model for renal ultrasound images in

multiple views which built upon the transfer learning and the multi-

instance learning (MIL) (36). Diagnostic performance was measured

by AUC and accuracy, and was achieved to 96.5% and 93.5%

respectively. The results shown that their multi-view multi-

instance DL method could obtain higher classification accuracy

than DL models built on individual kidney images and kidney

images in one single view. Based on the graph convolutional

networks to optimize the instance-level features learned by CNNs

and the integrated instance-level and bag-level supervision to

improve the classification, Yin et al. also developed a deep MIL

method for accurately diagnosing CAKUT (42). Compared with

other deep MIL methods, the performance of the proposed method

could achieve the accuracy, sensitivity and specificity to 85%, 86%,

84% respectively, which demonstrated that it could improve other

state-of-the-art deep MIL methods for the kidney disease diagnosis.

SVM classifiers integrating texture images features and deep transfer

learning image features to accurately classify the kidneys of normal

children and those with CAKUT (e.g., posterior urethral valves,

kidney dysplasia) were built by Zheng et al. (43). The results

suggested that the proposed method performed better than

classifiers based on either the transfer learning features or the

conventional features alone and yielded the best classification

performance for distinguishing children with CAKUT from controls.

CAKUT is a very wide range of term that encompasses a variety

of congenital anomaly that may occur in the urinary tract. Different
Frontiers in Oncology 07
types of CAKUT can result in different sonographic findings in the

urinary tract. Nevertheless, the clinical characteristics of CAKUT

patients who were included in the research by Yin et al. didn’t been

described in detail (36, 42). And the study by Zheng et al. only

involved US images of 50 CAKUT patients and 50 controls for

modeling without further validation (43). These are the points that

should be taken into consideration and improved in the design of

future study.

4.4.3 Diagnosis and grading of hydronephrosis
Hydronephrosis is a dilatation of the kidney collecting system

that occurs unilaterally or bilaterally. The grading of

hydronephrosis is in accordance with the Society of Fetal Urology

(SFU) study, which categorized the dilated renal pelvis, the number

of calyces seen, and parenchymal atrophy into five grades of

increasing severity (56). SFU grade 0 is for the normal kidney

condition. Mild hydronephrosis (SFU grade 1-2) is usually

considered a benign and relatively self-limiting condition that

stabilizes or resolves spontaneously in most patients (57). In

contrast, medium (SFU grade 3) and severe hydronephrosis (SFU

grade 4) are closely related to a high risk of urinary tract infection

and loss of kidney function (58, 59). Grading the severity of

hydronephrosis relies on the subjective interpretation of renal

ultrasound images. Hence, the emergence of AI offers a promising

option for the evaluation and grading of hydronephrosis.

DL model has been used to solve hydronephrosis detecting and

grading tasks in several studies. Guan et al. trained an encoder-

decoder framework for ultrasonic hydronephrosis diagnosis (44).

They selected U-Net to accurately segment the renal region and

hydronephrosis region of the renal ultrasound images. U-Net for

segmentation was trained on a labeled dataset which was annotated

by professionals. And the classification network includes the

encoder of U-Net for feature extraction and the Image Adaptive

Classifier for image classification. Both the semantic segmentation

section and the classification section shared a mutual usage of a

transformation structure by separately training the encoder and

decoder and loop this circle. This design can jointly utilize different

supervision to automatical ly diagnose the severity of

hydronephrosis by first segmenting and then classifying, which

helps to improve the accuracy of the image classification network. A

recent study by Lin et al. indicated that the Attention-Unet achieved

a Dice coefficient of 0.83 for segmentation of the kidney and the

dilated pelvicalyceal system (45). They further applied a fluid-to-

kidney-area ratio measurement as a DL-derived biomarker for the

semi-quantification of hydronephrosis. This DL method has been

confirmed to provide an objective evaluation of pediatric

hydronephrosis. A five layers CNN model developed from the

Keras neural network API with Tensorflow to grade

hydronephrosis ultrasound images was conducted by Smail et al.

(46). The CNN model successfully achieved an average accuracy of

78% when classifying SFU grades 1-2 vs. SFU grades 3-4.

The current studies have explored the application of DL for

detection and grading of hydronephrosis, validating the potential of

the DL method to be capable of serving as a decision aid for clinical

practice. However, the aforementioned study was retrospective, so it

was not balanced in the types of SFU patients that included. A
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dataset with a balanced type and larger amount of data to construct

a DL model may result in better performance and more accurately

assist physicians in diagnosing hydronephrosis.
5 Challenges and prospects

Despite the unprecedented and rapid development of AI

technology in medical imaging, it is still far from being applied to

various hospitals on a large scale. At present, there are many

limitations to the various studies conducted on the application of

AI to renal ultrasound. Controversies in radiomics applications

include how to standardize ultrasound images, manual

segmentation of images is both time-consuming and unstable,

and unbalanced datasets used to construct models can lead to

overfitting. On the other hand, in DL applications, the lack of

large-scale public datasets, high requirements for image quality, and

ultrasound devices from different manufacturers and heterogeneity

of operators may lead to the variability in the training process. In

addition, when there are more restrictions on the inclusion and

exclusion criteria of the data, data censoring and bias are serious,

which can also lead to AI models that deviate from the real world

and have low generalization capabilities.

At the meantime, these also offer a new impetus for the

development of renal ultrasound and show the broad prospect of

AI-powered ultrasound in the future. Prospective multicenter

studies are now urgently necessary, so how to eliminate

discrepancies between different ultrasound devices and imaging

parameters is a primary problem to be solved. The heterogeneity

and variability of ultrasound data acquisition methods are the main

obstacles that limit the comparison and generalization of different

methods across different tasks. Therefore, the establishment of a

standardized database for ultrasound applications is one of the

directions for further research in the future. And the necessity of

more robust methods to deal with speckle noise in ultrasound

images and to automate the segmentation process (16).

In the subfield of renal ultrasound, there are still many

applications that deserve in-depth study. For instance, in the

treatment of renal masses, AI enables an optimized surgical

approach known as robot-assisted partial nephrectomy. Robot-

assisted partial nephrectomy has shown a significant

improvement in the preservation of renal function, with no

significant difference from radical nephrectomy in terms of

overall survival, cancer-specific survival, recurrence or

comorbidities (60, 61). However, one of the problems of AI in the

diagnosis and treatment of kidney disease is how to reliably evaluate

the remaining functional part of the kidney and choose the right

surgical scope appropriately. Therefore, in addition to the diagnosis

of benign and malignant renal tumors, the proper estimation of the

remaining portion of the kidney for accurate surgical scope should

be addressed when using AI for renal ultrasound.
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AI, particularly DL, is progressively changing the field of

medical imaging, giving rise to improved performance in the

kidney segmentation, prediction of the kidney function, diagnosis

of the kidney diseases. Due to its powerful image processing

capability, fast computing speed and fatigue-free, AI applied to

ultrasound is becoming more mature and coming closer to routine

clinical applications (62). In the future, AI technology would

gradually become inseparable from clinical work. However, we

cannot directly apply various algorithms to clinical tasks. Given

to the merits and weakness of varied algorithms, we need to choose

the algorithm carefully to make the best use of its advantages

according to the specific ultrasound task. With the rapid

development of AI technology, clinicians must quickly adapt to

their new roles as technology users and patient advocates, and refine

their expertise for the benefit of their patients (63).
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