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Introduction: Lymphovascular space invasion (LVSI) is associated with lymph

node metastasis and poor prognosis in cervical cancer. In this study, we

investigated the potential of radiomics, derived from magnetic resonance (MR)

images using habitat analysis, as a non-invasive surrogate biomarker for

predicting LVSI in cervical cancer.

Methods: This retrospective study included 300 patients with cervical cancer

who underwent surgical treatment at two centres (centre 1 = 198 and centre

2 = 102). Using the k-means clustering method, contrast-enhanced T1-weighted

imaging (CE-T1WI) images were segmented based on voxel and entropy values,

creating sub-regions within the volume ofinterest. Radiomics features were

extracted from these sub-regions. Pearson correlation coefficient and least

absolute shrinkage and selection operator LASSO) regression methods were

used to select features associated with LVSI in cervical cancer. Support vector

machine (SVM) model was developed based on the radiomics features extracted

from each sub-region in the training cohort.

Results: The voxels and entropy values of the CE-T1WI images were clustered

into three sub-regions. In the training cohort, the AUCs of the SVMmodels based

on radiomics features derived from the whole tumour, habitat 1, habitat 2, and

habitat 3 models were 0.805 (95% confidence interval [CI]: 0.745–0.864), 0.873

(95% CI: 0.824–0.922), 0.869 (95% CI: 0.821–0.917), and 0.870 (95% CI: 0.821–

0.920), respectively. Compared with whole tumour model, the predictive

performances of habitat 3 model was the highest in the external test cohort

(0.780 [95% CI: 0.692–0.869]).

Conclusions: The radiomics model based on the tumour sub-regional habitat

demonstrated superior predictive performance for an LVSI in cervical cancer

than that of radiomics model derived from the whole tumour.
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1 Introduction

Cervical cancer is one of the most prevalent gynaecological

malignancies worldwide, ranking fourth in cancer incidence among

women (1). In 2020, approximately 110,000 new cases of cervical

cancer were diagnosed in China alone, representing 18% of the new

cases of cervical cancer worldwide (2). In some developing

countries, the prevalence and mortality rates of cervical cancer

surpasses those of breast cancer (3, 4). In cervical cancer,

lymphovascular space invasion (LVSI), the infiltration of tumour

cells into the blood and lymphatic vessels, is closely associated with

lymph node metastasis and serves as an independent risk factor for

prognosis (5–7). According to the 2018 International Federation of

Gynecology and Obstetrics (FIGO) staging and treatment

guidelines, the treatment decision for patients with stage IA1

cervical cancer should take into account the LVSI status. Patients

with LVSI-posi t ive les ions should undergo adjuvant

chemoradiotherapy or additional radical resection and lymph

node dissection surgery to suppress the spread of lymph node

micrometastases and improve prognosis (8). Therefore,

determining LVSI status is important for making treatment

decision, especially in women of childbearing age who wish to

preserve fertility.

Considering the high heterogeneity of the malignancies,

tumours exhibit diverse microenvironments and microstructures

(9–11). Radiomics, which involves extracting numerous features

from medical images to classify diseases using machine-learning

techniques, offers the potential to deliver personalised medicine in

an no-invasive manner. Traditional radiomic analysis typically

focuses on the whole tumour and overlooks the sub-regional

phenotypic variations within the tumour (12). Recently, a new

approach called habitat, which divides tumours into sub-regions by

identifying grayscale voxels with comparable imaging

characteristics (12, 13), has shown the potential in improving the

ability to distinguish between tumour heterogeneity (14–16). In this

study, we intended to extract radiomic signatures from different

sub-regions of cervical cancer using contrast-enhanced T1-

weighted imaging (CE-TIWI) with habitat analysis to decode the

LVSI status, thereby facilitating personalised therapeutic

decision making.
2 Materials and methods

This study was approved by two medical ethics committees that

conducted ethical reviews and waived the requirement for obtaining

patient consent.
2.1 Patient population

We recruited 300 patients with pathologically confirmed

cervical cancer, who underwent pelvicmagnetic resonance (MR)

imaging within 1 month before surgery and without any anti-

tumour therapy before MR. Among them, 198 patients from centre
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1 constituted the training cohort, whereas the remaining 102 from

centre 2 constituted the external test cohort. We collected and

organised two distinct datasets of MRI images from female patients

diagnosed with cervical cancer using a picture archiving and

communication system. The training cohort comprised 104 LVSI-

positive and 94 LVSI-negative patients and the external test cohort

comprised 54 LVSI-positive and 48 LVSI-negative patients. We

retrospectively analysed clinical data and laboratory indicators,

including age, maximum tumour diameter, histological

classification, degree of cellular differentiation, FIGO stage,

CA125 and CA199 levels, squamous cell carcinoma antigen, and

human papillomavirus infection status. The inclusion criteria for

the study population were as follows: 1) patients who underwent

pelvic MRI before surgery and 2) LVSI confirmed by postoperative

pathological examination. The exclusion criteria were as follows: 1)

pregnant women; 2) those who underwent cervical conization or

loop electrosurgical excision; 3) those who had a history of

radiotherapy or chemotherapy before the MRI examination; and

4) those with blurry diagnostic images.
2.2 MRI protocols

The scanning protocol and parameters are included in the

Supplementary Material. The CE-TIWI images were downloaded

from the picture archiving and communication system and

transferred to a personal computer. Two radiologists, each with

more than 5 years of experience in pelvic diagnosis, segmented the

tumours layer-by-layer on the CE-TIWI images using the open-

source software ITK-SNAP (version 3.6, www.itk-snap.org) to

obtain the volume of interest (VOI) with the aid of diffusion

weighted image (DWI). After 1 week, 30 sets of CE-TIWI images

were randomly selected, and the outlining process was repeated.

Features with intraclass correlation coefficients (ICC) value of<0.75

were retained for screening. Any differences in the outlining process

were resolved by a radiologist with over 15 years of experience. The

two radiologists were blinded to the patients’ pathological diagnoses

during the outlining process. A flowchart illustrating this process is

presented in Figure 1.
2.3 VOI delineation and
sub-region clustering

Habitat utilises voxel and entropy values derived from MR

images to cluster VOIs into sub-regions (17–19). The voxel counts

for each tumour VOI were determined using a traditional method,

whereas the entropy values were computed for each layer of the MR

images using the following formula:

Vvoxel =  o
Nv

k=1

Vk

entropy   =  −o
Ng

i=1
p(i) log2 (p(i) + ϵ)
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The k-means method was employed to cluster the VOI regions at

the patient level, forming multiple habitats, and the distance

correlation between samples was calculated using the Euclidean

distance (voxel values and entropy values). The number of habitats

was tested from 2 to 10, and the optimal k-value was selected using

the Consensus Cluster Plus method, which evaluated the consistency

of clustering features by resampling multiple voxels in the cluster

1000 times in 80% of the samples to select the k-value corresponding

to a well-separated and stable cluster. The optimal k-value served as

the criterion for selecting the optimal number of clusters at the

patient population level (Figure 2). The optimal k-value was found to

be 3. Using the OnekeyAI platform, we imported each patient’s VOI

into the platform’s components and classified the cervical cancer

tumours into three classes named habitat 1, habitat 2, and habitat 3.
2.4 Feature selection and
model development

To account for differences in imaging features caused by

variations in the reconstruction layer thickness and pixel size, the

images were resampled to 1×1×3 m^3 and normalized to a

grayscale range of 0–255. Features were independently extracted

from each of the four habitats, habitat 1, habitat 2, habitat 3 and the

whole tumour using the PyRadiomics program package (20), which

adheres to the imaging biomarker standardization initiative (21).

Before the feature extraction, two filters, wavelet and log-sigma,

were implemented to enhance the process, facilitating the extraction

of various types of features, including first-order, shape, gray-level

co-occurrence matrix, gray-level size zone matrix, gray-level run

length matrix, neighbouring gray-tone difference matrix, and gray-

level dependence matrix.

First, the features with ICC<0.75 were screened, and imaging

histology features of different dimensions were subjected to Z-score

processing, normalizing the data to mean of 0 and variance of 1.
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After normalising all the data, the correlation between features was

calculated using the Pearson correlation coefficient. When the

correlation exceeded 0.9, only one feature was retained between

any two highly correlated features. Finally, the remaining features in

the training dataset were filtered using the least absolute shrinkage

and selection operator regression model.

A support vector machine (SVM) classification model was

developed in the training cohort based on features extracted from

habitat 1, habitat 2, habitat 3 and the whole tumour with five-fold

cross-validation and finally validated in an external test cohort.
2.5 Statistical analysis

Clinical characteristics were compared using the chi-square test

or Fisher’s exact test for categorical variables and the t-test or

Mann–Whitney U test for continuous variables.

The predictive performance of the models for LVSI in cervical

cancer was evaluated using the area under curve (AUC) of the

receiver operating characteristic curve. The accuracy, sensitivity,

specificity, positive predictive value, and negative predictive value

were calculated. The model with the highest AUCwas validated using

an external test cohort. The generalisation of the model was assessed

using the Delong test to compare the predictive performance of the

training and test cohorts as well as the calibration curves. Ultimately,

net benefit of the model’s clinical usefulness was measured using the

decision curve analysis. Statistical significance was set at P< 0.05.
3 Results

3.1 Clinical characteristics

Table 1 presents the clinical characteristics of patients with

cervical cancer. A total of 300 patients from two centres, with the
FIGURE 1

Flowchart showing the habitat analysis process.
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mean age of 51.48 ± 10.63 and 50.35 ± 9.77 years for the training

and validation cohorts, respectively, were included in the study.

Among them, 161 cases were classified as FIGO stage I, 105 cases as

stage II, and 34 cases as stage III. Squamous cell carcinoma was

present in 226 cases, adenocarcinoma in 54 cases, and

adenosquamous carcinoma in 20 cases. Significant statistical

differences were observed in maximum diameter, degree of

cellular differentiation, CA125 levels, and FIGO stage within the

training cohort. Maximum diameter, CA125 levels, and FIGO stage

also demonstrated significant statistical differences within the

validation cohort. Other clinical characteristics, including the

difference between LVSI+ and LVSI- groups, did not show

statistically significant differences in both training and external

testing cohorts.
3.2 Feature selection

A total of 1016 histological features were extracted from the

imaging data based on habitat 1, habitat 2, habitat 3, and the whole

tumour. After screening the features using ICC values<0.75, the

remaining number of imaging histological features based on habitat

1, habitat 2, habitat 3, and the whole tumour were 713, 617, 692, and

627, respectively. Pearson correlation coefficients were used for
Frontiers in Oncology 04
filtering, resulting in 190, 148, 170, and 155 features remaining for

habitat 1, habitat 2, habitat 3, and the whole tumour, respectively.

The remaining imaging histological features of the training cohort

were screened using the least absolute shrinkage and selection

operator regression method for model building, yielding 19, 18,

19, and 7 best imaging histological features based on habitat 1,

habitat 2, habitat 3, and the whole tumour, respectively. These

results are presented in the Supplementary Materials.
3.3 Performance evaluation of radiomics
based on habitat imaging

We developed SVM machine learning models based on the

most distinctive imaging histological characteristics of habitat 1,

habitat 2, habitat 3, and the whole tumour. The prediction efficiency

of each model is summarized in Table 2. Figure 3 illustrates the

receiver operating characteristic curves of the SVM machine

learning models, with area under the curves (AUCs) of 0.805

(95% confidence interval [CI]: 0.745–0.864), 0.873 (95% CI:

0.824–0.922), 0.869 (95% CI: 0.821–0.917), and 0.870 (95% CI:

0.821–0.920) for habitat 1, habitat 2, habitat 3, and the whole

tumour, respectively. The external test cohort had AUCs of 0.629

(95% CI: 0.519–0.739), 0.683 (95% CI: 0.577–0.789), 0.649 (95% CI:
A

B

FIGURE 2

Based on the area change under the conditional density function curve. We observed that clustering separation was optimal at a k value of 3 (A, B).
This value corresponded to a sharp decrease in the area change under the receiver operating characteristic curve, which suggested that after this k
value, further improvements in separability were negligible.
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0.540–0.757) and 0.780 (95% CI: 0.692–0.869) for habitat 1, habitat

2, habitat 3, and the whole tumour, respectively. The habitat 3

model demonstrated superior performance than that of the whole

tumour model in the external test cohort. Figure 4 displays the

calibration curves for the training and validation cohorts, showing

better calibration for both groups. Figure 5 presents the decision

curve analysis curves for the external validation cohort of the model,

with significant net gains observed for the habitat 3-based SVM

model. Thus, the clinical importance of our model for early cervical

cancer diagnosis was highlighted. Figure 6 presents the feature

weight map and confusion matrix of the habitat 3 imaging

histological model. The Delong test revealed statistically

significant differences between habitat 3 and the whole tumour

models in both the training and validation cohorts.
Frontiers in Oncology 05
4 Discussion

In this study, three sub-regions were delineated based on voxel

and entropy values from contrast-enhanced T1-weighted imaging

(CE-T1WI) of cervical cancer using habitat analysis, which is a

heterogeneous metric. The SVM models based on the three habitat

sub-regions exhibited a higher predictive performance for LVSI in

cervical cancer than those derived from the whole tumour. Notably,

the highest AUC of 0.870 (95% CI: 0.821–0.920) was derived from

habitat 3, and this performance was robust across different centres

(the AUC of the model in the external test cohort was 0.780 (95%

CI: 0.692–0.869), and the difference between the training and

external test cohorts was not statistical significant. The

performance of the models in predicting LVSI was compared, and
TABLE 1 Characteristics of cervical cancer patients in training and external test cohorts.

Characteristic
Training cohort Test cohort

LVSI- LVSI+ P LVSI- LVSI+ P

Age 51.63 ± 10.84 51.35 ± 10.49 0.853 51.81 ± 8.73 49.06 ± 10.52 0.156

Maximum diameter 22.94 ± 11.66 34.31 ± 12.75 <0.001 3.14 ± 1.45 3.85 ± 1.12 0.007

Histological type 0.161 0.717

Squamous cell carcinoma 64 (68.09) 83 (79.81) 36 (75.00) 43 (79.63)

Adenocarcinoma 24 (25.53) 16 (15.38) 8 (16.67) 6 (11.11)

Adenosquamous carcinoma 6 (6.38) 5 (4.81) 4 (8.33) 5 (9.26)

Degree of cellular differentiation <0.001 0.737

Low 10 (10.64) 21 (20.19) 11 (22.92) 16 (29.63)

Middle 68 (72.34) 82 (78.85) 23 (47.92) 23 (42.59)

High 16 (17.02) 1 (0.96) 14 (29.17) 15 (27.78)

HPV 0.275 0.868

Negative 48 (51.06) 44 (42.31) 15 (31.25) 15 (27.78)

Positive 46 (48.94) 60 (57.69) 33 (68.75) 39 (72.22)

CA125 0.046 0.481

≤35 79 (84.04) 74 (71.15) 36 (75.00) 36 (66.67)

>35 15 (15.96) 30 (28.85) 12 (25.00) 18 (33.33)

CA199 0.878 0.456

≤27 75 (79.79) 81 (77.88) 37 (77.08) 37 (68.52)

>27 19 (20.21) 23 (22.12) 11 (22.92) 17 (31.48)

SCC 0.622 0.582

≤1.5 44 (46.81) 44 (42.31) 24 (50.00) 23 (42.59)

>1.5 50 (53.19) 60 (57.69) 24 (50.00) 31 (57.41)

FIGO stage 0.001 0.04

I 63 (67.02) 47 (45.19) 29 (60.42) 22 (40.74)

II 29 (30.85) 43 (41.35) 15 (31.25) 18 (33.33)

III 2 (2.13) 14 (13.46) 4 (8.33) 14 (25.93)
CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 125; CA19-9, carbohydrate antigen 19-9; HPV, Human papillomavirus; FIGO, International Federation of Gynecology and
Obstetrics; SCC, Squamous cell carcinoma antigen.
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we observed that the prediction models built based on habitat 3

outperformed conventional overall tumour model in the training

and external test cohorts with an AUC of 0.780 (95% CI: 0.692–

0.869). This indicated that the tumour sub-regional radiomics

model based on habitat analysis could enhance LVSI prediction

in cervical cancer.

Cervical cancer primarily metastasizes through blood or

lymphatic vessels to other body tissues (22). Previous studies have

indicated that the presence of LVSI implies a higher risk of lymph

node metastasis and a greater probability of lymph node

micrometastasis when LVSI is positive (23). LVSI is widely

recognised as a risk factor for cervical cancer and directly affects

the prognosis of patients with cervical cancer (24). The treatment of

cervical cancer varies according to the stage and the presence of

LVSI in patients with clinical stage IA (8). In the absence of LVSI,

cervical conization alone is necessary to avoid radical hysterectomy.

Therefore, the preoperative evaluation of LVSI is essential (25–27).

In the final analysis, we included 300 patients. In the training

and validation cohorts, the difference between FIGO staging and

LVSI status was statistically significant. The probability of LVSI

occurrence increased from 42.86% (69/161) in stage IB to 58.1%

(61/105) and 82.35% (28/34) in stages II and III, respectively,
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suggesting a greater that the probability of LVSI occurrence

increased progressively with the advancing stage of cervical

cancer. In our study, squamous cell carcinoma was present in

226, adenocarcinoma in 54, and adenosquamous carcinoma in 20

patients. The difference between the histological type and LVSI in

the training and validation cohorts was not statistically significant,

thus indicating that the histological type of cervical cancer did not

affect the occurrence of LVSI in patients with cervical cancer (28).

Compared to whole-tumour radiomics, habitat imaging, an

approach focused on sub-region imaging omics analysis, offers

better quantification of tumour sub-regions that are more

relevant to tumour growth or invasiveness (15). Invasive sub-

regions have been reported to be important for prognosis and

treatment response (29, 30). Fang et al. utilised a variety of tumour

habitat features within a radiomics model to predict treatment

responses in patients with locally advanced cervical cancer before

synchronous chemoradiotherapy (31). The model, consisting of

three habitat features derived from multi-parametric MR images,

demonstrated good predictive performance with AUCs of 0.820 and

0.798 in the training and test sets, respectively, outperforming a

single MR parameter model. Cho et al. derived habitat images from

dynamic contrast-enhanced magnetic resonance imaging of breast
A B

FIGURE 3

The ROC curves of the SVM machine learning models in the training (A) and external test cohorts (B).
TABLE 2 LVSI prediction performance of SVM model.

Models Task AUC 95% CI Accuracy Sensitivity Specificity PPV NPV P

Habitat1
train 0.873 0.824 - 0.922 0.803 0.779 0.830 0.835 0.772 0.015

test 0.683 0.577 - 0.789 0.686 0.963 0.375 0.634 0.900 0.346

Habitat2
train 0.869 0.821 - 0.917 0.798 0.913 0.670 0.754 0.875 0.023

test 0.649 0.540 - 0.757 0.647 0.833 0.438 0.625 0.700 0.729

Habitat3
train 0.870 0.821 - 0.920 0.803 0.788 0.819 0.828 0.778 0.018

test 0.780 0.692 - 0.869 0.745 0.741 0.750 0.769 0.720 0.006

Whole tumour
train 0.805 0.745 - 0.864 0.732 0.942 0.500 0.676 0.887 ref

test 0.629 0.519 - 0.739 0.657 0.778 0.521 0.646 0.676 ref
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
P values are derived from the DeLong’s test of AUCs where AUC of whole tumour is the reference standard for comparison.
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cancer and extracted radiomic features to establish a breast cancer

habitat risk score that could accurately categorise patients into high-

risk and low-risk groups (32). Choi et al. used multi-parametric MR

to extract radiomic features from multiple habitats of the tumour

and identified three different subtypes through consistent

clustering, revealing different phenotypic subtypes of glioblastoma

with clinical and genomic significance. This approach highlights the

potential of radiomics as a prognostic biomarker by using multi-

habitat imaging (33).

In this study, we employed CE-T1WI images to conduct a

clustering analysis, enabling the effective evaluation of blood
Frontiers in Oncology 07
perfusion in the body by displaying vascular density and

perfusion. Additionally, we measured the volume transfer

constant, which relied on the permeability of tumour blood

vessels (34). This approach provided more discriminatory

information for predicting LVSI invasion in cervical cancer. Our

prediction results indicated that the radiomics model based on

habitat3 outperformed the whole tumour in both the training and

external validation sets. The heterogeneous nature of solid tumours

suggested that LVSI in cervical cancer might not be distributed

uniformly and could exhibit variations at the microscale voxel level.

After clustering the image voxels and entropy values, habitat3 was
FIGURE 5

The decision curve analyses of the radiomic model in external test cohort. The Habitat3-based SVM model achieved a great net effect.
A B

FIGURE 4

The calibration curves in the training (A) and external test cohorts (B).
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observed to contain more LVSI information, whereas the whole

tumour comprised complete heterogeneous information. Our

utilisation of habitat, a novel technology for clustering solid

tumours in preoperative imaging and subsequently extracting

radiomic features from the clustered tumour sub-regions, helped

to avoid the inclusion of irrelevant areas that are not related to LVSI

in cervical cancer in the feature extraction process, thereby

improving the model’s predictive performance.

This study had some limitations. First, although this study

included a larger number of patients than that of previous

studies, a larger prospective dataset will be required to further

improve the model’s performance. Second, the diversity in the

settings of multi-centre MR devices could have introduced

variability in MR images due to differences in equipment and

scanning parameters. Thus, we made efforts to standardise and

normalise the images as much as possible to eliminate the effect of

equipment-related differences.

In conclusion, the sub-region-based approach could predict the

LVSI status in cervical cancer demonstrating superior performance

over traditional radiomics of the whole tumour, thus making it a

promising non-invasive biomarker for predicting preoperative

LVSI, especially in patients with cervical cancer. The external test

cohort demonstrated the model’s stable performance with a

strong AUC.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by The Medical

Ethical Committee of Shenzhen People’s Hospital and Guangzhou

Women and Children's Medical Center. The studies were

conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.
Frontiers in Oncology 08
Author contributions

JG: Conceptualization, Writing-review and editing; SW and XL:

Data curation, Formal analysis, Resources, Software andWriting-original

draft; XL and YW: Investigation; CJ and YL: Methodology and

Validation; XT: Project administration; RW and XZ: Supervision. All

authors contributed to the article and approved the submitted version.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Acknowledgments

The authors would like to thank Professor JG for critically

reviewing the manuscript and Editage (www.editage.cn) for English

language editing.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1252074/

full#supplementary-material
A B

FIGURE 6

The feature weight map (A) and confusion matrix (B) of the Habitat3 radiomics model.
frontiersin.org

http://www.editage.cn
https://www.frontiersin.org/articles/10.3389/fonc.2023.1252074/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1252074/full#supplementary-material
https://doi.org/10.3389/fonc.2023.1252074
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1252074
References
1. Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, et al.
Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin (2022) 72:409–36.
doi: 10.3322/caac.21731

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin (2021) 71:209–49. doi: 10.3322/
caac.21660

3. Small W, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al.
Cervical cancer: A global health crisis. Cancer (2017) 123:2404–12. doi: 10.1002/
cncr.30667

4. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al.
Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources
and methods. Int J Cancer (2019) 144:1941–53. doi: 10.1002/ijc.31937

5. Margolis B, Cagle-Colon K, Chen L, Tergas AI, Boyd L, Wright JD. Prognostic
significance of lymphovascular space invasion for stage IA1 and IA2 cervical cancer. Int
J Gynecol Cancer (2020) 30:735–43. doi: 10.1136/ijgc-2019-000849

6. Shirabe K, Itoh S, Yoshizumi T, Soejima Y, Taketomi A, Aishima S-I, et al. The
predictors of microvascular invasion in candidates for liver transplantation with
hepatocellular carcinoma-with special reference to the serum levels of des-gamma-
carboxy prothrombin. J Surg Oncol (2007) 95:235–40. doi: 10.1002/jso.20655

7. Yoneda JY, Braganca JF, Sarian LO, Borba PP, Conceição JCJ, Zeferino LC.
Surgical treatment of microinvasive cervical cancer: analysis of pathologic features with
implications on radicality. Int J Gynecol Cancer (2015) 25:694–8. doi: 10.1097/
IGC.0000000000000416

8. Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R. Cancer of the cervix uteri.
Int J Gynaecol Obstet (2018) 143(Suppl 2):22–36. doi: 10.1002/ijgo.12611

9. Gillies RJ, Brown JS, Anderson ARA, Gatenby RA. Eco-evolutionary causes and
consequences of temporal changes in intratumoural blood flow. Nat Rev Cancer (2018)
18:576–85. doi: 10.1038/s41568-018-0030-7

10. Junttila MR, de Sauvage FJ. Influence of tumour micro-environment
heterogeneity on therapeutic response. Nature (2013) 501:346–54. doi: 10.1038/
nature12626

11. Janiszewska M. The microcosmos of intratumor heterogeneity: the space-time of
cancer evolution. Oncogene (2020) 39:2031–9. doi: 10.1038/s41388-019-1127-5

12. Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and
ecology. Radiology (2013) 269:8–15. doi: 10.1148/radiol.13122697

13. Dextraze K, Saha A, Kim D, Narang S, Lehrer M, Rao A, et al. Spatial habitats
from multiparametric MR imaging are associated with signaling pathway activities and
survival in glioblastoma. Oncotarget (2017) 8:112992–3001. doi: 10.18632/
oncotarget.22947

14. Kim J, Ryu S-Y, Lee S-H, Lee HY, Park H. Clustering approach to identify
intratumour heterogeneity combining FDG PET and diffusion-weighted MRI in lung
adenocarcinoma. Eur Radiol (2019) 29:468–75. doi: 10.1007/s00330-018-5590-0

15. Wu J, Cao G, Sun X, Lee J, Rubin DL, Napel S, et al. Intratumoral spatial
heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally
advanced breast cancer treated with neoadjuvant chemotherapy. Radiology (2018)
288:26–35. doi: 10.1148/radiol.2018172462

16. Park JE, Kim HS, Kim N, Park SY, Kim Y-H, Kim JH. Spatiotemporal
heterogeneity in multiparametric physiologic MRI is associated with patient
outcomes in IDH-wildtype glioblastoma. Clin Cancer Res (2021) 27:237–45.
doi: 10.1158/1078-0432.CCR-20-2156

17. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology (2016) 278:563–77. doi: 10.1148/radiol.2015151169

18. Xie C, Yang P, Zhang X, Xu L, Wang X, Li X, et al. Sub-region based radiomics
analysis for survival prediction in oesophageal tumours treated by definitive concurrent
chemoradiotherapy. EBioMedicine (2019) 44:289–97. doi: 10.1016/j.ebiom.2019.05.023

19. Chen L, Liu K, Zhao X, Shen H, Zhao K, Zhu W. Habitat imaging-based 18F-
FDG PET/CT radiomics for the preoperative discrimination of non-small cell lung
Frontiers in Oncology 09
cancer and benign inflammatory diseases. Front Oncol (2021) 11:759897. doi: 10.3389/
fonc.2021.759897

20. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,
et al. Computational radiomics system to decode the radiographic phenotype. Cancer
Res (2017) 77:e104–7. doi: 10.1158/0008-5472.CAN-17-0339

21. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A,
et al. The image biomarker standardization initiative: standardized quantitative
radiomics for high-throughput image-based phenotyping. Radiology (2020) 295:328–
38. doi: 10.1148/radiol.2020191145

22. Agarwal U, Dahiya P, Chauhan A, Sangwan K, Purwar P. Scalp metastasis in
carcinoma of the uterine cervix–a rare entity. Gynecol Oncol (2002) 87:310–2.
doi: 10.1006/gyno.2002.6829

23. Li K, Sun H, Lu Z, Xin J, Zhang L, Guo Y, et al. Value of [18F]FDG PET radiomic
features and VEGF expression in predicting pelvic lymphatic metastasis and their
potential relationship in early-stage cervical squamous cell carcinoma. Eur J Radiol
(2018) 106:160–6. doi: 10.1016/j.ejrad.2018.07.024

24. Parra-Herran C, Taljaard M, Djordjevic B, Reyes MC, Schwartz L, Schoolmeester
JK, et al. Pattern-based classification of invasive endocervical adenocarcinoma, depth of
invasion measurement and distinction from adenocarcinoma in situ: interobserver
variation among gynecologic pathologists.Mod Pathol (2016) 29:879–92. doi: 10.1038/
modpathol.2016.86

25. Fang J, Zhang B, Wang S, Jin Y, Wang F, Ding Y, et al. Association of MRI-
derived radiomic biomarker with disease-free survival in patients with early-stage
cervical cancer. Theranostics (2020) 10:2284–92. doi: 10.7150/thno.37429

26. Luo Y, Mei D, Gong J, Zuo M, Guo X. Multiparametric MRI-based radiomics
nomogram for predicting lymphovascular space invasion in endometrial carcinoma. J
Magn Reson Imaging (2020) 52:1257–62. doi: 10.1002/jmri.27142

27. Mazzola R, Ricchetti F, Fiorentino A, Levra NG, Fersino S, Di Paola G, et al.
Weekly cisplatin and volumetric-modulated arc therapy with simultaneous integrated
boost for radical treatment of advanced cervical cancer in elderly patients: feasibility
and clinical preliminary results. Technol Cancer Res Treat (2017) 16(3):310–5.
doi: 10.1177/1533034616655055

28. Arezzo F, Cormio G, Mongelli M, Cazzato G, Silvestris E, Kardhashi A, et al.
Machine learning applied to MRI evaluation for the detection of lymph node metastasis
in patients with locally advanced cervical cancer treated with neoadjuvant
chemotherapy. Arch Gynecol Obstet (2023) 307(6):1911–9. doi: 10.1007/s00404-022-
06824-6

29. Cui Y, Tha KK, Terasaka S, Yamaguchi S, Wang J, Kudo K, et al. Prognostic
imaging biomarkers in glioblastoma: development and independent validation on the
basis of multiregion and quantitative analysis of MR images. Radiology (2016) 278:546–
53. doi: 10.1148/radiol.2015150358

30. Zhou M, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA.
Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group
prediction. J Magn Reson Imaging (2017) 46:115–23. doi: 10.1002/jmri.25497

31. Fang M, Kan Y, Dong D, Yu T, Zhao N, Jiang W, et al. Multi-habitat based
radiomics for the prediction of treatment response to concurrent chemotherapy and
radiation therapy in locally advanced cervical cancer. Front Oncol (2020) 10:563.
doi: 10.3389/fonc.2020.00563

32. Cho H, Kim H, Nam SY, Lee JE, Han B-K, Ko EY, et al. Measurement of
perfusion heterogeneity within tumor habitats on magnetic resonance imaging and its
association with prognosis in breast cancer patients. Cancers (2022) 14:1858.
doi: 10.3390/cancers14081858

33. Choi SW, Cho H-H, Koo H, Cho KR, Nenning K-H, Langs G, et al. Multi-habitat
radiomics unravels distinct phenotypic subtypes of glioblastoma with clinical and
genomic significance. Cancers (2020) 12:1707. doi: 10.3390/cancers12071707

34. Ellingsen C, Walenta S, Hompland T, Mueller-Klieser W, Rofstad EK. The
microenvironment of cervical carcinoma xenografts: associations with lymph node
metastasis and its assessment by DCE-MRI. Transl Oncol (2013) 6:607–17.
doi: 10.1593/tlo.13313
frontiersin.org

https://doi.org/10.3322/caac.21731
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1002/cncr.30667
https://doi.org/10.1002/cncr.30667
https://doi.org/10.1002/ijc.31937
https://doi.org/10.1136/ijgc-2019-000849
https://doi.org/10.1002/jso.20655
https://doi.org/10.1097/IGC.0000000000000416
https://doi.org/10.1097/IGC.0000000000000416
https://doi.org/10.1002/ijgo.12611
https://doi.org/10.1038/s41568-018-0030-7
https://doi.org/10.1038/nature12626
https://doi.org/10.1038/nature12626
https://doi.org/10.1038/s41388-019-1127-5
https://doi.org/10.1148/radiol.13122697
https://doi.org/10.18632/oncotarget.22947
https://doi.org/10.18632/oncotarget.22947
https://doi.org/10.1007/s00330-018-5590-0
https://doi.org/10.1148/radiol.2018172462
https://doi.org/10.1158/1078-0432.CCR-20-2156
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1016/j.ebiom.2019.05.023
https://doi.org/10.3389/fonc.2021.759897
https://doi.org/10.3389/fonc.2021.759897
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1006/gyno.2002.6829
https://doi.org/10.1016/j.ejrad.2018.07.024
https://doi.org/10.1038/modpathol.2016.86
https://doi.org/10.1038/modpathol.2016.86
https://doi.org/10.7150/thno.37429
https://doi.org/10.1002/jmri.27142
https://doi.org/10.1177/1533034616655055
https://doi.org/10.1007/s00404-022-06824-6
https://doi.org/10.1007/s00404-022-06824-6
https://doi.org/10.1148/radiol.2015150358
https://doi.org/10.1002/jmri.25497
https://doi.org/10.3389/fonc.2020.00563
https://doi.org/10.3390/cancers14081858
https://doi.org/10.3390/cancers12071707
https://doi.org/10.1593/tlo.13313
https://doi.org/10.3389/fonc.2023.1252074
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study
	1 Introduction
	2 Materials and methods
	2.1 Patient population
	2.2 MRI protocols
	2.3 VOI delineation and sub-region clustering
	2.4 Feature selection and model development
	2.5 Statistical analysis

	3 Results
	3.1 Clinical characteristics
	3.2 Feature selection
	3.3 Performance evaluation of radiomics based on habitat imaging

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


