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Since the domestication of dogs 10,000 years ago, they have shared their living

environment with humans and have co-evolved. The breeding process that dogs

have undergone in only a few centuries has led to a significant accumulation of

specific genetic alterations that could induce particular diseases in certain

breeds. These canine diseases are similar to what is found in humans with

several differences; therefore, comparing such diseases occurring in humans

and dogs can help discover novel disease mechanisms, pathways, and causal

genetic factors. Human angiosarcoma (AS) and canine hemangiosarcoma (HSA),

which are sarcomas originating from endothelium, are examples of diseases

shared between humans and dogs. They exhibit similar characteristics and

clinical behaviors, although with some critical differences resulting from

evolution. In this review, we will describe the similarities and differences in

terms of clinical and molecular characteristics between human AS and canine

HSA, and discuss how these similarities and differences can be applied to

advance the treatment of these diseases.

KEYWORDS

angiosarcoma, hemangiosarcoma, cancer heterogeneity, non-conventional animal
model, drug discovery
Introduction

Dogs were domesticated more than 10,000 years ago in southern East Asia (1–4). Since

then, humans and dogs have co-evolved in a shared living environment, exposed to the

same pathological and dietary conditions (5). Dogs have undergone unique evolutionary

changes through selective breeding, resulting in a diverse range of breeds with variations in
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their morphology, physiology, and behavior. However, these

processes have also led to a significant accumulation of genetic

alterations and specific diseases in certain breeds (6, 7). Many of the

diseases closely resemble disorders that affect humans with several

minor differences; therefore, comparing such diseases occurring in

humans and dogs can help discover novel disease mechanisms,

pathways, and causal genetic factors. Indeed, this approach has

successfully contributed to the discovery of novel disease

mechanisms, pathways, and causal genetic factors of human

diseases, including NFAT in SLE-like disease (8), HAS2

biosynthesis in autoinflammatory disease (9), LGI2 in remitting

focal epilepsy (10), and SLC4A3 in progressive retinal atrophy (11).

Representative examples of diseases shared between humans and

dogs include sarcomas with vascular origins, such as human

angiosarcoma (AS) and canine hemangiosarcoma (HSA) (12–14).

Both human AS and canine HSA are highly aggressive sarcomas

derived from vascular-forming cells, with limited treatment options

and high mortality rates. They share many disease characteristics,

including molecular profiles and treatment responses. However, they

also exhibit critical differences in their incidence rates. Human AS is a

rare cancer, accounting for approximately 0.01% of all cancers (12, 14).

The rarity of human AS has hindered the development of new

therapeutics and biomarkers, despite a significant unmet medical

need for new diagnostics and therapies for AS patients. Even basic

research tools for AS, such as cell lines and mouse models, are limited.

Canine HSA, on the other hand, has an extraordinarily high incidence

rate in specific dog breeds (13). The high incidence rate in dogs offers

numerous advantages for investigating the clinical responses to

therapeutics and the basic biology of the disease, given its clinical

and genetic similarities to human AS. Therefore, canine HSA may

serve as a unique model for drug discovery research aimed at providing

a new treatment option to improve the prognosis of human AS. In this

context, we describe the characteristics of canine HSA and discuss how

their similarities and differences can be applied to advance the

treatment of these diseases.
Classification and general prognosis

Different pathological terminologies have been employed for

human AS and canine HSA, which are further differently

subclassified based on the disease characteristics of the primary

tumor site or etiology.

Human AS encompasses multiple types of endothelial cell-

derived sarcomas; i.e., sarcomas derived from endothelial cells of

blood vessels (HSA) and lymphatic vessels (lymphangiosarcoma).

AS is typically subclassified based on the primary tumor site

(cutaneous, soft-tissue, breast, and visceral AS) or etiology

(lymphedema-associated and radiation-induced AS) (15–17).

Each AS subtype has different prognoses and disease courses.

Generally, localized cutaneous AS has a relatively favorable

prognosis with 2-year overall survival rates (OS) of 71.6 to 94.1%

(18); however, metastatic AS has a poor prognosis with a median

OS of 8 to 9.9 months (12, 19).

The canine counterparts of human AS are still referred

to separately as HSA or lymphangiosarcoma. HSA is the
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cases have been reported as lymphangiosarcoma (20, 21).

However, it should be noted that the majority of reports use

diagnostic markers such as CD34, CD31, and Factor VIII-related

antigen (F8RA), which cannot differentiate between HSA and

lymphangiosarcoma. Lymphatic vessel markers like LYVE-1 and

PROX-1 are rarely used in veterinary medicine to exclude the

possibility of lymphangiosarcoma (22). Although evidence

of tumor-associated vessels containing blood cells may

help to distinguish HSA from lymphangiosarcoma, it would

not completely exclude the possibility of the lesion being

lymphangiosarcoma. Therefore, a certain number of cases

classified as HSA in veterinary medicine may have been

misclassified as lymphangiosarcomas. Nevertheless, canine HSA is

typically subclassified based on the primary site: visceral HSA

(splenic and hepatic HSA), cardiac HSA, and cutaneous HSA

(13). The prognosis is typically grave in splenic, hepatic, and

cardiac HSA, with median survival times ranging from 19 to 179

days (23–30). On the other hand, cutaneous HSA has a relatively

favorable prognosis, with median survival times ranging from 307

to 1189 days (31, 32).
Epidemiology

Human AS is a very rare cancer, accounting for less than 0.01%

of all adult malignancies (14, 33). AS is more likely to occur on the

skin of white, elderly individuals, but there are no significant

differences in distribution between sexes (33). While AS can arise

from any soft tissue or organ with vascular tissues, it most

commonly affects the skin of the head, neck, scalp, breast, and

extremities. Visceral forms of AS, occurring in the liver, right

atrium of the heart, and spleen, are less frequent.

Dogs have a significantly higher incidence of HSA compared to

humans, with an estimated 25 to 100 times higher incidence rate

(34). HSA accounts for 5% of all non-cutaneous malignant

neoplasms in dogs (13, 34) and approximately 50% of all splenic

tumors (13, 35). Similar to humans, HSA predominantly affects

older animals, although there seems to be a slight male

predisposition in dogs (36, 37). Golden Retrievers and German

Shepherds are high-risk breeds, and HSA is the leading cause of

cancer-associated death in Golden Retrievers (28, 38). Like in

humans, HSA can arise from any soft tissue with vasculature, but

it most commonly affects the spleen, right atrium of the heart, liver,

and skin or subcutaneous tissue (13). The different anatomical

distribution observed in human AS and canine HSA is one of the

characteristic differences, although the exact underlying cause

is unknown.
Etiology

Multiple potential risk factors have been identified in human

AS, including chronic lymphedema, radiotherapy, UV radiation,

BRCA mutation, familial syndromes, chemical exposure, foreign

bodies, and immunosuppression. Radiotherapy and chronic
frontiersin.org

https://doi.org/10.3389/fonc.2023.1250766
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Heishima et al. 10.3389/fonc.2023.1250766
lymphedema are well-known risk factors for AS (39, 40). Breast

cancer patients who receive adjuvant radiotherapy are predisposed

to developing chronic lymphedema and subsequent breast AS as

unintended side effects of treatment. This condition is known as

Stewart-Treves syndrome (39). The highest incidence of AS in

breast cancer patients occurs 5-10 years after adjuvant

radiotherapy (40). The risk of AS further increases in patients

with mutations in the BRCA1 (185delAG) and BRCA2 (854delC)

genes (41), which are crucial for DNA repair. Milroy’s disease and

chronic filariasis also cause chronic lymphedema and are associated

with the development of AS (15). AS is associated with various

familial syndromes such as neurofibromatosis, Maffucci syndrome,

Li-Fraumeni syndrome (TP53 mutations), and Klippel-Trenaunay

syndrome (PIK3CA mutations) (15), which is consistent with the

observed profiles of recurrent mutations in AS. Chemical exposure

is another risk factor for AS development, including exposure to

vinyl chloride (42), thorium dioxide (43), arsenic, radium, and

anabolic steroids (44). Among these, vinyl chloride and thorium

dioxide predominantly induce hepatic AS (42, 43). Foreign bodies

can also cause AS, such as surgical gauzes (45), vascular prostheses

(46), orthopedic prostheses (47), and gouty tophus (48). The

causal association between immunosuppression and AS

tumorigenesis remains unclear; however, AS has been observed in

immunosuppressed patients following renal transplantation, and

some epidemiological studies suggest a potential association

between AS and AIDS (49).

Not many risk factors have been reported for canine HSA so far;

however, the identified risk factors include dog breeds such as

German Shepherds or Golden Retrievers (50) and UV radiation (51,

52). Dog breeds such as German Shepherds or Golden Retrievers

are considered strong risk factors, possibly due to genetic

imbalances resulting from intense inbreeding and selection. A

genome-wide association study reported several loci significantly

associated with the risk of HSA in Golden Retrievers (50). Like

human AS, UV radiation has also been associated with cutaneous

HSA (51, 52), which exhibits a high mutation rate and a strong UV

mutational signature (53).
Pathology

Both human AS and canine HSA are heterogeneous tumors

with significant intra- and intertumoral differences. The hallmark of

AS is the proliferation of pleomorphic endothelial cells showing

rounded, polygonal, fusiform, or epithelioid morphology without a

clear border to normal tissue. Well-differentiated AS may contain

abnormal endothelial cells forming vascular sinusoids continuous

with normal vascular channels; however, aggressive and poorly

differentiated AS tends to lose such architecture and has an

epithelioid morphology with a high mitotic rate and areas of

hemorrhage and necrosis (15, 54, 55), which grants AS tissue

prominent complexity and heterogeneity. AS typically expresses

endothelial markers including von Willebrand factor, CD34, CD31,

and VEGF. Among these, von Willebrand factor (15) and CD31 are

the most commonly used markers for distinguishing AS from other

undifferentiated neoplasms (56). However, progressive AS may lose
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cause confusion with undifferentiated epithelial malignancies (56).

Canine HSA exhibits similar histological characteristics to

human AS. The histologic features include the proliferation of

immature, pleomorphic endothelial cells with expression of von

Willebrand factor, CD31, claudin-5, CD117, and VEGF (57–61).

Similarly, von Willebrand factor and CD31 are the most commonly

used markers for distinguishing HSA from other malignancies. An

intriguing hypothesis regarding the origin of canine HSA has

recently been proposed. Canine HSA has been considered to

originate from vascular endothelium based on histopathological

findings. However, recent studies have revealed that these

malignant cells may originate from pluripotent bone marrow

progenitors at the stage of hemangioblasts to angioblasts

differentiating into endothelial cells (34, 62, 63). This hypothesis

has been reported only in canine HSA; however, given the

similarities between human AS and canine HSA, it may also be

relevant to the origins of human AS.
Molecular abnormalities

Human AS and canine HSA share many similar genetic

abnormalities with minor differences (Figure 1, Table 1). Human

AS reportedly has many types of molecular abnormalities; however,

common driver pathogenic mutations or copy number aberrations

shared in all reported cases have not been identified, likely due to

the high heterogeneity in primary locations or etiologic factors of

AS. Recurrent mutations in human AS include KDR (VEGFR2)

(64), TP53 (67, 73), and PIK3CA (64). Other genetic abnormalities

of AS include mutations of KRAS (69, 74), MAPK (65), PTPRB, and

PLCG (70), as well as amplifications of KDR (65, 75), VEGFA (72,

73), MYC (65, 75), KIT (64), and deletions of CDKN2A (65, 75).

Among these, PTPRB and PLCGmutations andMYC amplification

are most frequently observed in secondary AS, such as radiation-

induced AS. Other factors are also reported in association with AS

pathogenesis: overexpression of WT1 (Wilms Tumor 1) (76),

LGALS3 (Galectin-3) (77), ETS1, metalloproteinases (MMP1,

MMP3, and uPA) (78, 79), and FSCN (the actin-bundling

motility protein) (72). AS has a KIT expression (80–82) and

amplification (64), whereas no activating mutations in exons 11

(juxtamembrane domain) or 17 (kinase domain) of KIT have been

observed so far.

Angiogenic pathways have long been recognized for their

pivotal roles in the context of Angiosarcoma (AS). Specifically,

the central components of these angiogenic pathways, namely KDR

(VEGFR2) and VEGFA, often exhibit mutations and amplifications,

as documented in multiple studies (64, 72, 73). KDR serves as the

principal receptor tyrosine kinase responsible for mediating

VEGFA-induced proangiogenic signaling. As such, it was initially

anticipated that the loss of KDR signaling might suppress the

proliferation and metastasis of AS, correlating with a more

favorable prognosis. Intriguingly, however, the results proved

contrary, revealing that the loss of KDR is associated with a less

favorable prognosis (83). These findings suggest that KDR may not

be a contributing factor to the tumorigenesis of AS but rather a
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potential regulator of endothelial cell differentiation. This may be

relevant to the disappointing results of clinical trials for

bevacizumab, an antibody targeting VEGF. In a phase II study,

only 2 out of 23 patients achieved partial response, and 11 had

stable disease (84), and even when combined with Paclitaxel, the
Frontiers in Oncology 04
response rate was only 28% compared to 45.8% in the combination

or monotherapy with Paclitaxel (85).

RAS and its downstream pathways appear to play important

roles in AS. The mutation of NRAS and KRAS has been observed in

AS (64, 69, 74). Furthermore, a functional study revealed that the
TABLE 1 Gene abnormalities shared between human angiosarcoma (AS) and canine hemangiosarcoma (HSA).

Human AS Canine HSA

Mutation Amplification Mutation Amplification

KDR
(VEGFR2)

12/47 (26%) Painter et al. (64) 4/34 Murali et al. (65) – 14/47 (22%) Megquier et al.
(66)

TP53 14/47 (30%) Painter et al. (64)
7/13 (53.8%) Naka et al. (67)

– 33/50 (66%) Wang et al. (68)
14/15 (93.33%) Wong et al. (53)

–

PIK3CA 10/47 (21%) Painter et al. (64) – 23/50 (46%) Wang et al. (68)
14/47 (29.8%) Megquier et al. (66)

–

RAS NRAS 3/47 (6%) Painter et al. (64)
KRAS 8/15 (53.3%) Weihrauch et al.

(69)

– NRAS 12/50 (24%) Wang et al. (68) –

PLCG 8/47 (17%) Painter et al. (64)
3/34 (8.8%) Behjati et al. (70)

– 2/50 (4%) Wang et al. (68)
1/20 (5%) Wang et al. (71)

–

VEGFA – 20/20 (100%) Dim et al.
(72)

– 9/47 (19%) Megquier et al. (66)

KIT – 4/47 (9%) Painter et al. (64) – 8/47 (17%) Megquier et al. (66)

CDKN2A
(p14ARF,

p16)

Deletion 9/34 (26%) Murali et al. (65) – Deletion 10/47 (22%) Megquier et al.
(66)

–

FIGURE 1

Summary of gene abnormalities in human angiosarcoma (AS) and canine hemangiosarcoma (HSA).
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introduction of continuously activated HRAS into murine

endothelial cells produces poorly differentiated AS in vivo (86),

indicating essential roles of the RAS pathway in the tumorigenesis

of AS. Among the downstream pathways of RAS, the activation of

the PI3K pathway has been frequently documented in AS patients.

Of note, several studies have suggested that PI3K signaling is more

important than the MAPK signaling cascade in AS (86, 87).

Although activation of PI3K pathways has been frequently noted,

the mutation of PIK3CA itself had not been reported in AS studies.

However, a recent international cooperative project (Angiosarcoma

Project) revealed that the PIK3CA activating mutation was one of

the most frequently mutated genes in human AS (64). These reports

suggest a strong contribution of PI3K pathways to the

tumorigenesis of AS.

Canine HSA has been reported to bear many shared genetic

abnormalities with human AS. The most commonly observed

recurrent mutations in canine HSA include TP53 (66), PIK3CA

(activating) (66, 71), and PIK3R1 (66), PTEN (inactivating) (71),

NRAS (68), and PLCG1 (66, 68). Additionally, canine HSA

frequently has other genetic abnormalities, including the deletion

of CDKN2A/B (66) and PTEN (88) and the amplification of KDR,

VEGFA, and KIT (66). However, unlike in human AS, the

amplification of MYC is not frequently observed in canine HSA

(89). This is likely due to secondary HSA not being prevalent

in dogs.

Many components of the angiogenic pathways are also altered

in canine HSA. Consistent with the profiles of human AS, canine

HSA frequently exhibits activation of the VEGFA-KDR pathway

(66). Similarities have also been observed in the clinical response to

inhibitors of angiogenic pathways. Despite the predominant

activation of the VEGFA-KDR pathway, a small molecule

inhibitor targeting canine KDR, toceranib, failed to induce

sufficient clinical responses in canine HSA (90). The results from

veterinary clinical trials strongly suggest fundamental similarities in

the response to treatment between human AS and canine HSA.

Canine HSA also shares gene abnormalities in the RAS and

PI3K pathways, as observed in human AS (68, 71). Intriguingly,

activating mutations in PIK3CA were first identified in canine HSA

by veterinary researchers (71). Initially, these activating mutations

in PIK3CA were considered to be specific to canines. However, a

recent large-scale analysis (Angiosarcoma Project) revealed that

human AS also frequently has activating mutations in PIK3CA (64).

This exemplifies that canine HSA has highly similar molecular

characteristics to human AS, indicating the strong potential of

canine HSA as a model with similar molecular and

clinical characteristics.
Treatment

Currently, there are no effective therapeutic options for both

human AS and canine HSA. Human AS has seldom been the

primary focus of clinical trials due to its uncommon occurrence;

instead, it has frequently been included in prospective clinical trials
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date, there have been no prospective clinical trials for AS that

demonstrated a prominent survival benefit of systemic therapy in

either the neoadjuvant or adjuvant setting. In line with this, many of

the discussions regarding therapeutic options for AS are based on

limited evidence reported from retrospective studies, albeit with a

few prospective studies.

The primary choice of treatment for human AS with localized

lesions remains radical surgery with complete resection. However,

due to the invasive nature of AS, achieving complete resection with

clear margins is often challenging (17, 91–93). Given the

circumstances, neoadjuvant chemotherapy may be performed

using gemcitabine, docetaxel, doxorubicin, ifosfamide, and

paclitaxel; however, no survival benefit has been reported with the

addition of neoadjuvant chemotherapy (94). Concurrent therapy

with paclitaxel and radiation has been explored for localized

cutaneous AS, and a prospective study has shown improved

survival with a 2-year overall survival (OS) of 94.1% compared to

71.6% in the control group (18). In the view of treating metastatic

disease, several cytotoxic drugs and regimens are used for this

purpose. One of the most commonly used agents is taxane-based

regimens involving paclitaxel. A Phase II single arm clinical trial

demonstrated that paclitaxel has particular activity in AS and is now

often used in the first or second-line setting (18). A prospective

study showed that the response rate for this treatment was

approximately 19%, with a median progression-free survival

(PFS) of 4 months and OS of 8 months (19). Anthracycline-based

regimens using doxorubicin are also often utilized, with a response

rate of approximately 25%, and a median PFS of 4.9 months and OS

of 9.9 months (prospective study) (95).

Canine visceral HSA is usually treated with surgery and

adjuvant chemotherapy, and most of the prognostic information

in the literature is from retrospective analysis. For splenic HSA,

total splenectomy and adjuvant chemotherapy with a single agent

or combination protocols involving doxorubicin are recommended

(13). However, the therapeutic efficacy is limited, and significant

improvement in survival time is rarely achieved. Splenectomy alone

has shown median survival times ranging from 19 to 86 days (23–

27), with a 2-month survival rate of 31% and a 1-year survival rate

of 7% (96). Surgery and adjuvant chemotherapy have resulted in

median survival times of 141–179 days, with less than 10% of dogs

surviving beyond one year (28–30). Cardiac HSA treated with

surgical excision and adjuvant doxorubicin-based chemotherapy

showed a similar response to splenic HSA, with median survival

times of 183–189 days (97, 98). For cutaneous HSA, surgery with or

without adjuvant chemotherapy is generally performed (13). Wider

margins are recommended for surgery, although it may be difficult

depending on the tumor location, similar to human AS (13).

Cutaneous HSA has median survival times of 307 days (with

invasion into the surrounding tissue) or greater than 2 years

(without evidence of invasion), which is a much better prognosis

compared to visceral HSA (31). Cutaneous HSA treated with

surgery and adjuvant doxorubicin has shown median survival

times as long as 1189 days (32). Only a few studies have reported
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the efficacy of radiation therapy for canine HSA, and none have

reported a significant improvement in overall survival (99).
Other treatment options and potential
treatment under investigation

For the treatment of human AS, several targeted agents have been

explored as alternative options. Agents targeting the VEGF-VEGFR

angiogenic pathway have been assessed for sarcoma, including

bevacizumab and pazopanib. Bevacizumab, a monoclonal antibody

targeting VEGFA (84, 100, 101), produced modest results with only 2

out of 23 patients showing a partial response and 11 out of 23 patients

with stable disease in a Phase II clinical trial (84). The results were

disappointing considering the well-known alteration of the VEGFA-

VEGFR pathway in AS. Pazopanib, a tyrosine kinase inhibitor, also

yielded modest results with a median progression-free survival (PFS)

of 3 months and no significant responses in a retrospective study

(102). Immune checkpoint inhibitors (ICIs) have recently emerged as

another option for AS. The anti-PD1 (programmed death 1)

checkpoint inhibitor pembrolizumab was approved for tumors with

a high tumor mutation burden regardless of histology (103).

Pembrolizumab showed an exceptional and durable response to 2

out of 3 metastatic AS cases that were refractory to standard therapies

(64). Although further studies are required to confirm their efficacy,

these reports suggest the promising potential of ICIs for

AS treatment.

For canine HSA, multiple agents have been explored as

alternative options, including a tyrosine kinase inhibitor targeting

KDR (toceranib) (90), a taxane-based agent (Paccal-Vet) (104),

immune checkpoint inhibitors (ICIs) (105, 106), other forms of

anthracycline (epirubicin) (107), pegylated liposome-encapsulated

doxorubicin (108), COX-2 inhibitors (109), and thalidomide (110).

Toceranib, a tyrosine kinase inhibitor targeting KDR (90), has been

explored for the treatment of canine HSA; however, the results were

disappointing: a prospective study showed that the use of toceranib

following doxorubicin-based chemotherapy did not improve either

disease-free interval or OS in stage I or II canine HSA (a median

disease-free interval, 161 days; a median survival time, 172 days) (90).

Paccal Vet, a water-soluble, micellar formulation of paclitaxel, has

been investigated for treating canine HSA. Paclitaxel has not been

used in dogs due to high rates of hypersensitivity reactions when

given intravenously (111, 112); however, Paccal Vet is designed not to

induce such hypersensitivity, thus it is expected to be useful for the

treatment of canine HSA (104). Although ICIs had not been

commercially available for dogs, Gilvetmab, the first anti-canine

PD-1 antibody, has been approved in October 2023 (Merck

Animal Health USA). Currently, Gilvetmab is approved only for 2

tumor types (mast cell tumor and malignant melanoma), and its

clinical efficacy for canine HSA is still unclear. Although further

studies are required, ICIs have promising potential as a therapeutic

modality for canine HSA as in human AS. Several other forms of

conventional immunotherapy are documented, including an
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HSA vaccine (113) , l iposome-encapsulated muramyl

tripeptide phosphatidylethanolamine (LMTP-PE) (114), and

polysaccharopeptide (115); however, their efficacy may be limited.
Issues in drug discovery research
for human AS

Major issues associated with drug discovery research for human

AS are caused by its rarity and can be subdivided into scientific or

investment issues. The scientific issues include (1) lack of

comprehensive information regarding treatment and biological

characteristics and (2) the lack of appropriate research models.

The majority of information regarding therapeutic responses

and biological characteristics of AS is based on the results from case

series, which may possess potential bias in selection, and the dataset

may be incomplete or a mixture of the results from different

treatment approaches (12). Randomized trials are lacking,

and there are limited prospective studies (12). Nonetheless,

recent initiatives for international collaboration, such as The

Angiosarcoma Project (64) and the International Rare Diseases

Research Consortium (IRDiRC), hold promise for gradually

addressing these challenges.

Cell lines and conventional xenograft mouse models useful for

AS research are also lacking. The establishment of AS cell lines is

extremely difficult. As a result, well-characterized and commonly

used cell lines are limited to only a few, including ISO-HAS (116)

and ASM (117). Similarly, the availability of cell-derived xenograft

models (CDX) and patient-derived xenograft models (PDX) is

limited, although a recent study reported a rare successful

example (118).

The low incentives for pharmaceutical companies to invest in

new drugs for AS are another challenge (119). Drug development

specifically for AS carries a high risk of failing to recoup the invested

funds and is thus rarely pursued. Additionally, few clinical trials

evaluating new compounds for other major cancers include patients

with rare cancers such as AS. This is because the inclusion of such

patients increases the risk of experiencing unexpected adverse

events, which could critically halt the entire development process.

Furthermore, the additional costs related to managing compound

supply, developing companion diagnostics, and applying for

regulatory approvals are not easily justified as investments for

pharmaceutical companies. Given these circumstances, current

drug discovery research for AS mainly focuses on drug

repositioning studies that can be conducted with relatively low-

risk investments. However, relying solely on these drug

repositioning studies remains challenging to achieve the

development of truly effective therapeutic drugs for AS.

The inefficient collection of patients for clinical trials or clinical

samples has been a factor that hinders drug discovery research for

AS. However, this is getting less problematic due to recently

improved cooperation between specialized hospitals or

institutions for the registration and enrollment of clinical trials (64).
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Advantages and disadvantages of
canine HSA as a drug discovery model

Canine HSA has advantages as a non-conventional model for

drug discovery (Figure 2). Despite canine HSA having an

exceptionally higher incidence rate than its human analog, it

retains significant similarities with human AS, including multistep

tumorigenesis that occurs over several years, histological and

molecular characteristics, a complete immune system, intra/

intertumoral heterogeneity, and living environment. Furthermore,

many HSA cell lines have been established and are available for

basic research (63, 113, 120–125). The value of the dog model is

further highlighted given the advantages in the investigation of

immunotherapy. Since the recent broad applications of ICIs,

understanding clinical responses to immunotherapy in the

heterogeneous tumor microenvironment seen in human cancers

is gaining more importance. However, conventional rodent models

hardly serve as appropriate models for this purpose due to their

non-spontaneous and artificial nature of tumors with dysfunctional

immune systems. In contrast, canine HSA is a naturally occurring
Frontiers in Oncology 07
tumor, which has genetic heterogeneity and an intact immune

system that could closely recapitulate the complexity of human

cancers. The recent development of a canine version of ICI

(Gilvetmab) could further facilitate the investigation of clinical

responses to immunotherapy in the setting of genetic and

immunologic heterogeneity of tumors. These characteristics and

the research environment are useful for analyzing therapeutic

responses and the complexities of drug resistance, metastasis, and

tumor-host immune interactions in AS patients.

On the other hand, the strategy of using canine HSA as a drug

discovery model also has certain disadvantages to consider.

Conducting drug discovery research using canine HSA in a

clinical setting could be more expensive compared to

conventional preclinical studies using laboratory animals such as

mice and rats. Dogs have a larger body size than laboratory animals,

which requires a higher amount of drugs for testing. Additionally,

to acquire high-quality clinical data to evaluate the response to

drugs, frequent medical checks during administration may be

necessary. These medical checks typically include a set of

assessments such as complete blood cell count, blood
FIGURE 2

Canine HSA shares molecular signatures with human AS, making it a potentially useful model for predicting therapeutic responses in human AS,
especially for evaluating the efficacy of drugs targeting shared genetic anomalies between humans and dogs.
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biochemistry, urinalysis, ultrasound, X-ray, computed tomography

(CT), and magnetic resonance imaging (MRI), which significantly

increases the total costs. Moreover, systemic anesthesia is typically

required for dogs undergoing CT and MRI, adding extra costs and

medical risks to the process of performing these evaluations.

Sometimes systemic anesthesia could result in fatal situations,

particularly for elderly dogs with cancer, making it challenging to

perform these evaluations multiple times from an animal welfare

perspective. Furthermore, from a regulatory perspective, the role

and purpose of using spontaneous dog tumor models are not clearly

defined in the status quo. Therefore, the data collected from canine

trials may be considered as supplemental information, which may

not have significant impacts on drug approval. Additionally, drug

repositioning studies can be directly initiated with humans,

reducing the relative necessity of canine models for such

purposes. Moreover, although many similarities have been

reported between human AS and canine HSA, these diseases are

not entirely identical. Therefore, for each study, performing

appropriate basic research is necessary to validate that the target

mechanism of action is actually conserved between human AS and

canine HSA.
Potentials as a model for drug
efficacy evaluation

As discussed above, canine HSA is a potentially useful model for

evaluating drug efficacy; however, more research is needed to fully

utilize its potential. To facilitate the effective use of this model in

drug discovery, several key factors should be considered from the

current regulatory perspective. The most critical factor to consider

is the scientific validity of the model, given that there are currently

no established regulatory guidelines for utilizing canine HSA in

evaluating drug efficacy (126). Scientific validity is typically

determined by whether the model appropriately reflects

the molecular mechanisms, physiological conditions, and

microenvironment of the target tumors in humans (126).

Therefore, conducting basic research to uncover the more

detailed characteristics of HSA, as well as establishing guidelines

for model evaluation by academic societies, can be an effective

strategy to promote the use of canine HSA as a valuable tool in drug

discovery. Canine HSA, in this role, holds the potential to help

mitigate the risks associated with drug development for human AS.

This can be accomplished by early identification of agents with

promising activity and safety, effectively distinguishing them from

those likely to fail in the drug development journey. Such an

approach represents a promising avenue for advancing AS drug

development and research progress.

Canine HSA may be useful for basic research aimed at

identifying novel mechanisms or therapeutic targets for the

development of new drugs, given that it appears to share

fundamental similarities with human AS in terms of biological

characteristics and therapeutic responses to drugs. Nonetheless, the
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investigation of new drugs for AS may be challenging due to non-

scientific reasons, including low incentives for investing in drug

discovery for rare cancers, as mentioned in a previous section.

However, a recent approach that targets a limited disease

population and recovers the investment through increased drug

prices (low population/high margin) may help overcome this

situation in drug discovery for rare cancers (119). Several new

drugs for rare diseases have been successfully developed using this

approach, such as Zolgensma for spinal muscular atrophy (affecting

1 out of 10,000 people) (127) and Tofersen (128) for SOD1-mutated

amyotrophic lateral sclerosis (affecting 3 out of 1,000,000 people).

Utilizing such an approach may help overcome the current

situation filled with difficulties, and the results obtained from

basic research using canine HSA still have the potential to pave

the way for future new drug development for AS. Additionally,

canine HSA may also be a useful research model to explore

appropriate doses and intervals in exploratory studies involving

the repositioning of drugs that are approved for other cancers. Also,

the heterogeneous nature of canine HSA, which includes the

complexity of the tumor microenvironment with a complete

immune system, may help collect crucial information for

understanding factors essential for drug resistance and recurrence.
Potentials as a model for
toxicity evaluation

Canine HSAmay not be an effective model for toxicity evaluation

in drug development as it does not meet the standards of Good

Laboratory Practice (GLP) studies. Companion dogs with HSA lack

sufficient background or reference data, making it difficult to interpret

the results and reducing the reliability of the data compared to

toxicity studies conducted under GLP conditions. The nature of

this model makes it challenging to determine whether the observed

toxicity is caused by disease exacerbation, drug effects, or individual

differences within the model. This critical disadvantage hinders the

scientific investigation of the underlying causes of toxicity observed in

the model. The use of non-conventional animal models may be

considered only when general toxicity evaluations are deemed

inappropriate. One example is biopharmaceuticals that do not

exhibit pharmacological effects in conventional animal models. In

such cases, non-conventional animal models can be justified by

examining species differences in terms of pharmacological effects,

target molecule distribution and expression, and tumor behavior,

with reference to ICH guideline S6 (129). However, it is unrealistic to

check all these aspects in companion animals; therefore, transgenic

animals are commonly used as substitutes for this purpose. The

results of efficacy studies described in the previous section may be

included as supplemental information for safety evaluations.

However, they are typically considered as supplemental reference

data with less impact on drug approvals. Therefore, the companion

animal model cannot provide the same quality of toxicity data,

limiting its use in toxicological studies.
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Conclusion

The development of new drug discovery for AS has remained

elusive, and the challenges outlined in this review persist. However,

it is crucial that these limitations do not deter the commitment of

our research community to advancing therapeutic options for

patients with AS. As illustrated in this review, canine HSA

exhibits significant molecular similarities to human AS, making it

a valuable model for predicting therapeutic responses in human AS,

especially when evaluating the efficacy of drugs targeting shared

genetic anomalies between humans and dogs. This review

represents an initial step toward the development of novel drugs

for AS and HSA. Nevertheless, further foundational research is

imperative to enhance the utilization of canine HSA as a model for

drug discovery.
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