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Purpose: To establish a model combining radiomic and clinicopathological

factors based on magnetic resonance imaging to predict pathological

complete response (pCR) after neoadjuvant chemotherapy in breast cancer

patients.

Method: MRI images and clinicopathologic data of 329 eligible breast cancer

patients from the Affiliated Hospital of Qingdao University from August 2018 to

August 2022 were included in this study. All patients received neoadjuvant

chemotherapy (NAC), and imaging examinations were performed before and

after NAC. A total of 329 patients were randomly allocated to a training set and a

test set at a ratio of 7:3. Wemainly studied the following three types of prediction

models: radiomic models, clinical models, and clinical-radiomic models. All

models were evaluated using subject operating characteristic curve analysis

and area under the curve (AUC), decision curve analysis (DCA) and calibration

curves.

Results: The AUCs of the clinical prediction model, independent imaging model

and clinical combined imaging model in the training set were 0.864 0.968 and

0.984, and those in the test set were 0.724, 0.754 and 0.877, respectively.

According to DCA and calibration curves, the clinical-radiomic model showed

good predictive performance in both the training set and the test set, and we

found that we had developed a more concise clinical-radiomic nomogram.
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Conclusion: We have developed a clinical-radiomic model by integrating

radiomic features and clinical factors to predict pCR after NAC in breast

cancer patients, thereby contributing to the personalized treatment of patients.
KEYWORDS

breast cancer, radiomics, MRI, neoadjuvant chemotherapy, pathological complete response
1 Introduction

According to GLOBOCAN 2020 database statistics, there were

nearly 2.3 million new breast cancer cases and 685,000 breast cancer

deaths in 2020, making breast cancer the most common cancer in

women (1). Neoadjuvant chemotherapy may reduce the stage,

improve the chance of surgery or improve the prognosis (2). The

ideal state of neoadjuvant chemotherapy is to have no residual

invasive tumor cells in the breast tissue resected after NAC or to

achieve pCR. The realization of pCR is a strong proxy for recurrence

and long-term survival risk (3), but there is currently no standard

way to predict pCR. However, prospective clinical trials have

demonstrated that the effectiveness and accuracy of SLNB after

NAC is lower than expected in patients newly diagnosed with

positive lymph nodes, and the false-negative rate is also higher. If

noninvasive methods can be used to predict pCR, surgical trauma to

patients can be avoided. To better predict the response of patients to

NAC, mammography ultrasound, magnetic resonance and PET-CT

are widely used. Due to the high resolution of magnetic resonance

imaging, it is an imaging method with high specificity and

sensitivity, so it is widely used (4). MRI is particularly sensitive to

the diagnosis of breast cancer and the evaluation of its size,

especially for young women less than 50 years of age,

with a sensitivity of nearly 90%. At the same time, MRI is

considerably better than ultrasound and mammography in the

diagnosis of multicenter or multifocal breast cancer (5, 6). MRI

images of breast cancer often include the axillary region,

allowing simultaneous detection and diagnosis of axillary
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lymphadenopathy, especially in the evaluation of axillary zone III

and internal milk lymphadenopathy; the approach is less dependent

on the operator’s level of experience (5, 7).

In recent years, radiomics has been on the rise. By extracting

multiple quantitative features from single or multiple medical

imaging modes, radiomics can substantially enhance the

discrimination and prediction potential of medical imaging by

highlighting features invisible to the naked eye (8). The process of

radiomics consists of several successive steps, and the methods used

in each step determine the quality of the final model, so different

methods may result in heterogeneous results that are difficult to

compare (9). Radiomics research in the field of clinical diagnosis,

treatment, and prognosis of cancer is encouraging; it includes

immune response in patients with non-small cell lung cancer

(10), microvascular infiltration in hepatocellular carcinoma (11),

and nonrecurrent survival in patients with esophageal gastric cancer

(12). In the field of breast cancer, radiomics has been widely used in

the differentiation, prognosis, and recurrence risk of benign and

malignant breast cancer (13–15). Several studies have demonstrated

that radiomics models based on MRI have a good predictive effect

on the prognosis of breast cancer patients (16–18). Previous studies

have shown that MRI-based imaging models show good predictive

performance, but the results are quite different. Moreover, this kind

of research is still at a relatively early stage, so there are

methodological and technical variations in the process of

extracting image omics features.

MRI is currently common in neoadjuvant chemotherapy for

breast cancer patients. Radiomic and deep learning are developing

rapidly (19). There is little research on whether the combination of

radiomics and clinicopathological features offers a better prognostic

effect regarding breast cancer than radiomics alone or clinical

models. In addition, few studies have used the combination of

pre- and post-NAC images to predict pCR, and the number of

patients included is small, so we will combine the above radiomic

and clinical conditions in this study to construct a model

to predict whether breast cancer patients achieve pCR after

neoadjuvant therapy.
2 Materials and methods

This single-center, retrospective study was approved by our

Institutional Review Board, and the requirement for written

informed consent was waived.
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2.1 Patient screening and study design

A total of 329 patients with breast cancer admitted to the

Affiliated Hospital of Qingdao University from August 2018 to

August 2022 were included in this retrospective study according to

the following inclusion and exclusion criteria. The inclusion criteria

were as follows: (a) breast cancer confirmed by puncture pathology;

(b) DCE-MRI examination before and after neoadjuvant

chemotherapy; (c) available clinical and pathological data; and (d)

at least 4 cycles of neoadjuvant chemotherapy prior to radical

surgery. The exclusion criteria were as follows: (a) loss of DCE-

MRI images; (b) patients receiving neoadjuvant chemotherapy in

other institutions; and (c) patients with other cancers during the

same period.

A total of 329 patients were enrolled and assigned to two

datasets (230 patients in the training and 99 patients in the

validation) using computer-generated random numbers in a ratio

of 7:3. According to the NCCN and CSCO guidelines, the

neoadjuvant chemotherapy regimens for Her-2 positive patients

include TCbHP (docetaxel, carboplatin, trastuzumab and

pertuzumab), THP (docetaxel, trastuzumab and pertuzumab),

TCbH (docetaxel, carboplatin and trastuzuma), and AC-THP

(epirubicin, cyclophosphamide – paclitaxel, trastuzumab and

pertuzumab); the regimens for triple-negative breast cancer

include TAC (docetaxel, doxorubicin and cyclophosphamide), AT

(epirubicin and docetaxel), TP (albumin paclitaxel and platinum),

AC-T (epirubicin, cyclophosphamide – paclitaxel), and AC-TP

(epirubicin, cyclophosphamide – paclitaxel, platinum); and the

regimens for hormone receptor-positive patients include TAC,

AT, and AC-T. By immunohistochemistry (IHC) of US-guided

core biopsies, the tumor type and receptor status were confirmed.

The patients underwent surgery within 6 weeks after the completion

of NAC.
2.2 Clinical prediction model

Baseline clinical data including age, clinical T stage and N stage,

menopausal state, estrogen receptor, progesterone receptor, Her-2,

and Ki-67 were obtained from the hospital medical record system.

Histopathological findings were assessed jointly by two pathologists

with at least 10 years of diagnosis of breast disease. Age groups were

classified as 40 years or older and 40 years or younger. In

accordance with the eighth TNM staging criteria, T: Tumor

indicates the extent of the primary tumor. N: Lymph node,

represents the existence and extent of regional lymph node

metastasis. Menopause in women refers to the permanent absence

of menstruation caused by the cessation of ovarian function.

Generally, menopause can be determined after 12 months. ER

refers to estrogen receptor, PR refers to progesterone receptor,

and the positive threshold of ER and PR immunohistochemical

detection is ≥1%. Human epidermal growth factor receptor 2 (Her-

2) positivity (+) is determined by the American Society of Clinical

Oncology (ASCO) Guidelines. Ki-67 is a proliferative cell-

associated nuclear antigen whose function is closely related to cell

mitosis, and its classification is according to the proportion of
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positive cells. To evaluate the patient’s pathological response, we

selected the Residual Cancer Burden (RCB) system recommended

by the International Breast Collaboration Group, and RCB grade 0

represents PCR. Patients in the training group were classified into

the pCR group (n=57) and the nonpCR group (n=174), and those in

the test group were classified into the pCR group (n=24) and the

nonpCR group (n=75). Differences in important variables between

the training and test datasets were not statistically significant. We

used the eight clinical features collected above to construct the

clinical model.
2.3 Radiomics prediction model

2.3.1 MRI acquisition
All the MRI examinations were performed with 1.5- or 3.0-

Tesla scanners within two weeks before initiation of NAC and after

completing NAC. A 3.0T double gradient superconducting MRI

with a bilateral breast array coil (GE Health Care) was used. The

patient had bilateral mammary glands naturally overhanging in the

coil hole in the prone position, and relevant parameters were set.

The sagittal position, transverse position and coronal position were

routinely scanned, and multiphase enhanced breast volume imaging

was used in the dynamic enhancement scan. A total of 8 phase scans

were performed. Finally, high-resolution plain scan and dynamic

contrast-enhanced imaging were obtained.
2.4 Radiomics feature extraction and
model construction

Most breast cancers are shown most clearly in enhanced T1WI

sequences, so the region of interest (ROI) (Figure 1) is only outlined

in enhanced T1WI sequences to more accurately determine tumor

boundaries and axillary lymph node distribution. To extract

imaging features, two ROIs were selected, one for primary breast

tumors and the other for axillary lymph nodes. We manually

delineated ROI stratification in MRI using ITK-SNAP to delineate

axillary lymph nodes and primary tumors before and after NAC

treatment. ROI was sketched at all visible levels of the primary

tumor and lymph nodes. Two doctors with at least 15 years of

experience in reading breast MRI images were selected for ROI

profiling, and any differences were resolved by consensus. If no

tumor was visible on the post-NAC MRI, we performed manual

segmentation based on the tumor bed and/or anatomic markers on

the pre-NAC MRI. We used the Python software package

PyRadiomics to extract the image radiomic data from the original

image, including shape features, first-order features, and texture

features, and then used the filter to calculate the high-order features

according to the above features. We sketched the primary tumor

and lymph nodes separately, then extracted the features separately,

and finally analyzed all the features together. After feature

extraction, Pearson’s correlation coefficient was used to select

features, and then lasso regression was used for screening. Finally,

according to the selected features, we used the scikit-learn package

in Python 3.70 for model construction and evaluation, the training
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set for model construction and repeated cross-validation, and the

test set for the final evaluation of the model. We chose logistic

regression (LR), support vector machine (SVM), random forest

(RF) and eXtreme Gradient Boosting (XGBoost) to develop the

prediction model. The model established by pre-NAC MRI was R1.

Similarly, we conducted the same modeling processing for post-

NAC MRI, and the model was R2. We combined the advantages of

R1 and R2 to build a new model.
2.5 Construction of the clinical-
radiomic model

We combined predictors from the clinical model with optimal

radiomic features from R1 and R2 to create a clinical-radiomic

model, which was evaluated in a test set.
2.6 Statistical analysis

All statistical tests were conducted in Python 3.6 and SPSS 26.

Independent t tests were used for continuous variables, and chi-

square tests were used for categorical variables. The LASSO

regression model was analyzed through the “Glmnet” package,

and then the receiver operating characteristic (ROC) curve,

decision curve (DCA) and calibration curve were drawn using the

“Proc,” “Dca. R” and “rms” software packages, respectively. We

evaluated the predictive performance of the model by analyzing

receiver operating characteristic (ROC) curves and calculating the
Frontiers in Oncology 04
area under the curve (AUC). It is a performance index to measure

the merits and demerits of the learner. The decision curve is

intended to describe the entire forecast model or a test to see the

net benefit of an intervention based on the model results, while the

calibration curve is intended to avoid overfitting the model. For all

analyses, P< 0. 05 was considered statistically significant, and all

tests were two-sided.
3 Results

3.1 Characteristics of the enrolled patients

Patient screening is shown in Figure 2. The clinical

characteristics of the entire training and test sets are shown in

Table 1. All characteristics were not significantly different between

the training and test sets (p> 0.05). Among all 329 patients, a total of

81 patients achieved pCR, and the pCR probability was 24.6%. The

pCR rate was 23.2% in the training set and 25.2% in the test set. This

is not considerably different from the pCR rate in previous studies

(20, 21). The clinical information between patients in the pCR and

non-pCR groups is shown in Supplementary Table 2.
3.2 Radiomic model

The entire radiomic modeling process is shown in Figure 3. We

manually segmented MRI images of 329 patients on each layer and

then extracted features. A total of 1032256 features were extracted
FIGURE 1

Representative images of breast tumors [(A) for pre-NAC; (B) for post-NAC] and representative images of axillary lymph nodes [(C) for pre-NAC; (D)
for post-NAC]. The breast tumors and axillary lymph nodes were manually segmented (NAC: neoadjuvant chemotherapy).
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from R1+R2 images, and according to one-way analysis of variance,

4788 meaningful features were screened out, and the Pearson

correlation coefficient was determined. If the correlation was

greater than 0.9, one of the features was retained. Then, 48 features

were further screened by lasso regression (Figures 4A–D). We did the

same thing in solitary R1 and R2. Four machine learning methods

were used for modeling. Based on the machine learning results, we

select the best algorithm. In the R1 training set, the AUCs of LR,

SVM, RF and XGBoost were 0.765, 0.930, 0.996 and 1.000,

respectively. In the R1 test set, the AUC values were 0.730, 0.748,

0.605 and 0.793, respectively. In R2, the AUCs of the four machine

algorithms were 0.956, 0.954, 0.998 and 1.000 in the training set and

0.666, 0.761, 0.600, and 0.634 in the test set. The AUCs of R1+R2

were 0.966, 0.968, 0.999, and 1.000 in the training set and 0.629,

0.754, 0.657, and 0.604 in the test set, respectively, which were better

than those of R1 and R2 alone. Therefore, we chose the R1+R2 model

as the selected radiomic model for comparison with the subsequent

model (Table 2). Due to its better AUC, sensitivity and specificity of,

SVM was used for subsequent comparison.
3.3 Clinical model

The clinical model yielded AUC values of LR, SVM, RF and

XGB of 0.852, 0.864, 0.999, and 0.972 in the training set and 0.823,

0.724, 0.721, and 0.799 in the test set for predicting a pCR

(Supplementary Table 1). The AUCs of the four models were

higher. Due to its better AUC, sensitivity and specificity, SVM

was used for subsequent comparison.
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3.4 Combination model

The AUC of the clinical combined radiomics model in the

training set was 0.984 and that in the test set was 0.877 (Figure 5A).

Combining DCA, we can see that the clinical-radiomic model

showed good predictive performance in both the training set and

the test set, and it was better than both the clinical model and the

radiomic model (Figure 5B). We have developed a clinical-radiomic

nomogram that is more concise in the end (Figure 6). The

calibration curve showed good agreement between the

probabilities predicted by the nomogram and those observed in

the two sets (Figure 5C).
4 Discussion

The purpose of this study was to establish a model to evaluate

whether breast cancer patients will achieve a pathological complete

response after NAC by using MRI image analysis and clinical

factors. The AUC of our final combined model is 0.984 in the

training set and 0.877 in the test set, which is a relatively good result.

Prior to traditional radiomics, studies have used imaging features to

predict the efficacy of neoadjuvant chemotherapy, with promising

results. For example, the La Forgia D et al. (22)study used

background parenchymal enhancement (BPE) parameters in

breast magnetic resonance imaging (MRI) as potential predictors

of neoadjuvant therapy. With the development of imagomics, more

precise feature extraction processes allow us to make more accurate

predictions. The advantages of this study are the use of relatively
FIGURE 2

Flow chart of patient enrollment. (MRI, enhanced magnetic resonance imaging).
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many samples and a relatively standardized radiomics extraction

process, making the process more comparable and reproducible.

Based on previous studies, eight clinical and pathological

factors, including age, clinical T stage and N stage, menopausal

state, ER, PR, Her-2 and Ki-67, were selected to predict pCR. Pierga

et al. (23) demonstrated that pathological lymph node status after

NAC was a major prognostic factor for patients. Verdial’ et al. (24)

study showed that young women (≤ 40 years of age) with breast

cancer who received neoadjuvant chemotherapy (NAC) had a

higher incidence of pathological complete response (pCR). A

meta-analysis showed that patients with a high Ki-67 marker

index showed significantly higher pCR rates. Mernut et al. (25)

found that T1 staging, N1 staging, NG 3, estrogen receptor negative,

progesterone receptor negative, Her-2 positive, and chemotherapy
Frontiers in Oncology 06
plus trastuzumab for patients with pCR were statistically significant

(p<0.05). Amoroso N et al. ‘s results show that molecular subtypes

are the most important features of hierarchical clustering (26).

Considering that the number of selected predictors after univariate

analysis and multifactor analysis is small, unable to reflect most

clinical information of patients, and has little clinical adaptability,

we intended to incorporate all eight clinical factors into the model

construction. Tsai et al. (27) established a model based on the

radiomic features and clinical features of CT, and all 6 clinical

features were used in the construction of the clinical model. The

final AUC was 0.69, showing moderate performance, while the

AUCs of our clinical model were 0.864 and 0.781, showing better

efficacy. The best predictive efficacy was achieved when the machine

learning model included both clinical and radio-MRI parameters,

which is instructive for subsequent treatment of patients. This has

also been shown in studies of other tumors, such as locally advanced

cervical cancer (28).

To achieve robust and high performance of the classifiers, four

machine learning algorithms, LR, SVM, RF, and XGBoost, were

used for classifier construction. In this study, these algorithms were

selected based on the common classifiers used in previous studies

on mammary glands, such as breast cancer prediction, axillary

lymph node metastasis, and mastectomy (29–31). To avoid

overfitting in the modeling process, we used the grid search

method and tenfold cross validation to repeatedly complete the

hyperparameter search of the optimal classifier. In the R1+R2

training set, the AUC values of four machine learning classifiers

ranged from 0.900 to 1.000, and SVM classifiers showed the best

performance, while the others were all above 0.9. The DeLong test

found no significant difference. In the test set, SVM classifiers

performed best, with AUCs ranging from 0.6 to 0.8. The

sensitivity and specificity of SVM were 0.9 and 0.957 in the

training set and 0.9 and 0.589 in the test set. Therefore, SVM

classifiers were finally selected and obtained as the Rad-Score

model. In the process of radiomics training, the loss of

backpropagation is obtained through the training set, while the

test set does not participate in the training process, so it is normal

that the accuracy of the training set is slightly higher than that of the

test set. On the contrary, if the accuracy of the training set cannot be

guaranteed, the accuracy of the test set will generally be worse.

However, our training accuracy is 0.968, and the test accuracy is

0.754. The difference is not large, there is only a slight overfitting

that does not affect the overall effect, which is a normal

phenomenon in the training process, and can be further alleviated

by increasing the amount of data in the future. A comparison of the

ROC curves of the four machine learning classifiers in the training

set and test set is shown in Table 2.

Due to the many types of MRI radiomic features, the specific

radiomic features ultimately selected for modeling are mostly

different according to different research purposes and methods.

For example, Li’ et al. (32) established multiparameter MRI

radiomic models of tumors and their surroundings. A total of 863

radiomic features were extracted, and the first 30 features were

selected for the final model construction by the RF algorithm. These

features were selected based on correlation. Sheng et al. (33)

combined dynamic contrast-enhanced magnetic resonance
TABLE 1 Consistency of clinical characteristics between training set and
test set.

Characteristic No. (%)

Test set
(n=99)

p
Value

Training set
(n=230)

Age, years 0.06

≥40 36 (15.7) 25 (25.2)

<40 195 (84.3) 74 (74.8)

Menopausal 0.13

Premenopausal 116 (50.4) 59 (59.6)

Postmenopausal 114 (49.6) 40 (40.4)

ER 0.32

Negative 90 (39.1) 33 (33.3)

Positive 140(49.6) 66 (66.7)

PR 0.15

Negative 113 (49.1) 40 (40.4)

Positive 117 (50.9) 59 (59.6)

Her-2 0.38

Negative 132 (57.4) 62 (62.7)

Positive 98 (42.6) 37 (37.2)

Ki-67 0.68

≤30% 101 (43.9) 41 (41.4)

>30% 129 (56.2) 58 (58.6)

Clinical T stage 0.26

1 24 (10.4) 2 (2.0)

2 102 (44.3) 54 (54.6)

3 85 (37.0) 31 (31.3)

4 19 (8.3) 12 (12.1)

Clinical N stage 0.78

1 202 (87.8) 88 (88.9)

2 28 (12.2) 11 (11.1)
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imaging (DCE-MRI) three-dimensional volume characteristics with

clinical data to predict molecular subtypes of invasive ductal breast

cancer using t tests and LASSO regression in R language for

screening. The final features included shape-based features,

texture features, wavelet features, first-order statistical features

and the Laplacian of a Gaussian filter. The features extracted by

the best radiomics model in this study included shape features,

signal intensity features, texture features and high-order features,

among which shape features were very important in the evaluation
Frontiers in Oncology 07
of tumor features (4). By extracting features from lymph nodes and

primary tumors separately and analyzing them together, we can

more convincingly include shape features. Texture features

explained the spatial interdependence or cooccurrence of

information between adjacent voxels, which could be used to

assess intertumor heterogeneity and reflect lymphocyte

infiltration and molecular subtypes of breast tumors (34).

Most of the studies in the past literature involved establishing

separate radiomic models, such as separate pre-NAC. Choudhery
FIGURE 3

The workflow of MRI radiomics model development. PPMCC, Pearson product-moment correlation coefficient; LASSO, least absolute shrinkage and
selection operator; SVM, support vector machine; LR, logistic regression; RF, random forest; XGBoost, eXtreme Gradient Boosting.
B

C D

A

FIGURE 4

Feature screening procedure. (A) distribution map of screening features. (B) the proportion of each filter feature. (C, D) lasoo regression diagram.
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TABLE 2 Comparison of AUCs in the radiomics model.

Model

LR

AUC(95%CI)

XGBoostSVM RF

R1 Training 0.765 (0.701-0.830) 0.930 (0.885-0.974) 0.996 (0.990-1.000) 1.000 (1.000-1.000)

Test 0.730 (0.577-0.884) 0.748 (0.603-0.893) 0.605 (0.399-0.812) 0.793 (0.676-0.910)

R2 Training 0.956 (0.934-0.979) 0.954 (0.923-0.986) 0.998 (0.995-1.000) 1.000 (1.000-1.000)

Test 0.666 (0.451-0.882) 0.761 (0.604-0.918) 0.600 (0.338-0.812) 0.634 (0.429-0.841)

R1+R2 Training 0.966 (0.940-0.991) 0.968 (0.939-0.996) 0.999 (0.998-1.000) 1.000 (1.000-1.000)

Test 0.629 (0.609-0.903) 0.754 (0.614-0.828) 0.657 (0.486-0.929) 0.604 (0.415-0.792)
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R1: pre-NAC, R2: post-NAC, R3: pre- and post-NAC.
B

C

A

FIGURE 5

Receiver operating characteristic (ROC) curves and decision curve analysis of the 3 models in the training and testing sets. (A) receiver operating
characteristic (ROC) curves in the training and testing sets. (B) decision curve analysis (DCA) curves in the training and testing sets. (C) calibration
curves in the training and testing sets.
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et al. (35) retrospectively analyzed clinical and pretreatment MRI

data of 259 patients with biopsy-confirmed breast cancer receiving

NAC and found that the radiomic features were associated with

different molecular subtypes, pCR and RCB. Liu et al. (36) extracted

10 quantitative imaging features from T2-weighted, diffusion-

weighted, and enhanced T1-weighted imaging before NAC in

each patient and developed a new RMM model based on

optimal radiological features combined with independent

clinicopathological risk factors to predict pCR for NAC in breast

cancer patients. The RMMmodel was better than the clinical model

and the radiomics model. We suggest that combining the radiomic

features of MRI after NAC can reduce the influence of confounding

factors such as different treatment regiments and cycles on

predicting pCR. Furthermore, previous studies have focused on

the use of intertumor and peritumor features without considering

the association between ALNs and the primary tumor. Trials such

as Braman et al. (18) evaluated intratumor and peritumor radiomic

features in 117 patients, with a maximum AUC of 0.78 ± 0.03 for

the combined feature set. Our results also showed that the R1+R2

model was superior to either R1 or R2. Therefore, our study not

only accounted for pretreatment and posttreatment image features

but also combined axillary lymph nodes with the primary tumor,

including as many radiomic features as possible, to achieve a better

prediction effect. According to the CSCO guidelines, neoadjuvant

chemotherapy is recommended for the following patients: (1) large

masses (> 5cm); (2) axillary lymph node metastasis; (3) Positive

HER-2; (4) Triple negative; (5) There is a desire to preserve the

breast, but the ratio of tumor size to breast volume is large and

difficult to preserve the breast. Our center started neoadjuvant

therapy early, but the patients who received neoadjuvant therapy

were mostly patients with N+ and T3-4. Woo et al. (37)

retrospectively analyzed 1017 patients who received NAC and

surgery, and found that 16.2% of patients obtained a breast

radiologic complete remission (rCR) and 26.9% obtained an

axillary rCR. The proportion of this population was not high. The

patients we included this time were all N+, so the delineation of

breast masses was mainly based on the fibrotic changes after tumor

regression, and the axillary lymph nodes were based on the

anatomical location and chemotherapy changes. The ROI were

sketched by senior doctors after drawing by junior doctors, and the
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disputed parts were revised jointly by senior doctors, so as to

increase accuracy.

However, our study still has many limitations. First, all of our

patients were from the same institution, we enrolled a limited

number of patients, we did not use a multicenter collaborative

study, and we conducted only internal validation, not external

validation. Secondly, this is a retrospective study, and future

prospective studies are needed to verify our column graph. Third,

when extracting the radiomic features, only T1 was selected, and T2

and DWI phases were not included. Moreover, manual

segmentation was chosen when we were making the ROI, which

was relatively time-consuming and labor-intensive. Semiautomatic

or automatic mapping could be considered to help reduce the

interobserver radiomic feature variability caused by manual

segmentation in the included study. Then, the patients we

included were all N+, it is also hoped to explore the pCR

prediction of non-N + patients in the future. The last, there was

no classification analysis for breast cancer patients; otherwise,

predicting different types or distinguishing different neoadjuvant

chemotherapy schemes to provide personalized treatment might

have been possible.
5 Conclusions

In summary, we showed that the combination of clinical factors

and radiological characteristics could be used to better predict

whether breast cancer patients achieve pCR after neoadjuvant

chemotherapy and proposed a nomogram model. The model was

helpful in treatment decision-making for the individualized

treatment of breast cancer patients, but more patients or

prospective experiments are still needed to verify the conclusions

in the future.
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