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Metabolic barriers in non-small
cell lung cancer with LKB1
and/or KEAP1 mutations for
immunotherapeutic strategies

Ichidai Tanaka*, Junji Koyama, Hideyuki Itoigawa,
Shunsaku Hayai and Masahiro Morise

Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
Currently, immune checkpoint inhibitors (ICIs) are widely considered the

standard initial treatment for advanced non-small cell lung cancer (NSCLC)

when there are no targetable driver oncogenic alternations. NSCLC tumors

that have two alterations in tumor suppressor genes, such as liver kinase B1

(LKB1) and/or Kelch-like ECH-associated protein 1 (KEAP1), have been found to

exhibit reduced responsiveness to these therapeutic strategies, as revealed by

multiomics analyses identifying immunosuppressed phenotypes. Recent

advancements in various biological approaches have gradually unveiled the

molecular mechanisms underlying intrinsic reprogrammed metabolism in

tumor cells, which contribute to the evasion of immune responses by the

tumor. Notably, metabolic alterations in glycolysis and glutaminolysis have a

significant impact on tumor aggressiveness and the remodeling of the tumor

microenvironment. Since glucose and glutamine are essential for the

proliferation and activation of effector T cells, heightened consumption of

these nutrients by tumor cells results in immunosuppression and resistance to

ICI therapies. This review provides a comprehensive summary of the clinical

efficacies of current therapeutic strategies against NSCLC harboring LKB1 and/or

KEAP1 mutations, along with the metabolic alterations in glycolysis and

glutaminolysis observed in these cancer cells. Furthermore, ongoing trials

targeting these metabolic alterations are discussed as potential approaches to

overcome the extremely poor prognosis associated with this type of cancer.

KEYWORDS

immune checkpoint blockade, NSCLC, LKB1, KEAP1, metabolic barriers, glycolysis,
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1 Introduction

The advent of immune checkpoint inhibitor (ICI) therapy has revolutionized the

treatment approach for various cancers, including advanced non-small cell lung cancer

(NSCLC). Currently, the standard first-line therapy for advanced NSCLC without

targetable driver oncogenic alternations consists of multiple treatment regimens
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involving ICIs, either alone or in combination with platinum-based

chemotherapy (1–8). Predictors such as programmed death 1

ligand-1 (PD-L1) tumor proportion scores (TPS) or tumor

mutational burden (TMB) are available but insufficient in

accurately forecasting the treatment outcome (9–11). In first-line

therapies for advanced NSCLC, ICIs as monotherapy, such as

pembrolizumab and atezolizumab, have demonstrated clinical

benefits primarily in patients with high tumor PD-L1 expression

(2, 3). However, several combinations of ICIs and platinum-based

chemotherapies have been approved as standard first-line therapies

irrespective of TPS, although the effectiveness of these combinations

still relies to some extent on the tumor PD-L1 expression status.

Nonetheless, even among the subset of patients with high tumor

PD-L1 expression, approximately 20–30% initially exhibit

resistance to ICIs, either alone or in conjunction with platinum-

based chemotherapy (1, 9).

Recent multiomics analyses, including next-generation

sequencing-based tests (NGS), have played a crucial role in

identifying predictive biomarkers for ICI therapies and

uncovering mechanisms of immune evasion in cancer (9, 12–15).

Among them, T cell–inflamed gene expression profile and

proteogenomic characterization in addition to NGS data analysis

have revealed that specific driver mutations in NSCLC exhibit

discrete immune phenotypes (16, 17). Notably, two tumor

suppressor genes, liver kinase B1 (LKB1) and Kelch-like ECH-

associated protein 1 (KEAP1), are associated with inactivating

driver mutations that contribute to an immunosuppressed

phenotype (18). Somatic mutations in LKB1, encoded by serine/

threonine kinase 11 (STK11), occur in approximately 20-25% of

lung adenocarcinoma (LUAD), while inactivating mutations in

KEAP1 are observed in approximately 10-15% of LUAD (19–21).

Several studies using a large number of clinical specimens have also

reported a high frequency of co-occurring mutations in STK11 and

KEAP1 (22–24). NSCLC with STK11 and/or KEAP1 mutations

represents one of most aggressive types of cancer, characterized

by resistance to standard cytotoxic chemotherapy or radiotherapy

(20, 25–27). However, these tumors also exhibit reduced efficacy to

immunotherapy, independent of PD-L1 expression and high TMB

(18, 28, 29). This highlights the urgent need for novel therapeutic

strategies to effectively treat NSCLC patients with these specific

mutations. T-cell infiltration in tumors is known to be relatively

weak, and researchers have investigated various factors that

contribute to this, such as the secretion of immunosuppressive

molecules and impairment of antigen presentation (17, 18). Among

these factors, the metabolic reprogramming of glycolysis and

glutaminolysis in tumor cells has emerged as a current area of

focus for explaining the limited response to immunotherapy (30,

31). The intrinsic metabolic reprogramming of tumor cells, which is

essential for tumor growth, also impacts various cells within the

tumor microenvironment (TME), leading to immune evasion by

the tumor (30–34).

To understand how the inactivation of the two tumor suppressors

leads to metabolic reprogramming of glycolysis and glutaminolysis,

researchers have gradually uncovered the molecular mechanisms

through various biological approaches. These metabolic alterations

play a significant role in promoting tumor aggressiveness and
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reconstructing the TME to support tumor growth (31, 35, 36). In

this review, we provide a summary of the current therapeutic

strategies and their clinical efficacies against NSCLC with LKB1

and/or KEAP1 inactivation. Furthermore, we delve into the

metabolic alterations of glycolysis and glutaminolysis in NSCLC

with these mutations, which are associated with ICI resistance, and

discuss ongoing trials that target metabolic alterations.
2 Clinical efficacies of ICI regimen to
advanced NSCLC

2.1 Heterogeneity of PD-L1 expression and
ICIs efficacy in NSCLC

PD-L1 expression on cancer cells is regulated by various

mechanisms, including inflammatory cytokines, mechanical

signals, and tumor-intrinsic cell signaling. Consequently, there is

heterogeneity in the PD-L1 expression levels across tumors (37–40),

making them imperfect markers for predicting the response to ICIs.

However, during the clinical development of anti-PD-1/PD-L1

antibodies, tumor PD-L1 expression status was used for patient

selection based on the observed association between the objective

response rate of anti-PD-1 antibody, pembrolizumab, and tumor

PD-L1 expression level (41). The KEYNOTE-010 study

demonstrated the durable response of pembrolizumab in patients

with high tumor PD-L1 expression, leading to subsequent

KEYNOTE-024 trial that compared pembrolizumab monotherapy

with platinum-based chemotherapy specifically in patients with

high tumor PD-L1 expression (2, 42). In these trials, which

selected patients based on tumor PD-L1 expression status, the

anti-PD-1 antibody showed superior survival outcomes compared

to platinum-based chemotherapy, and subsequently, the anti-PD-

L1 antibody atezolizumab also demonstrated overall superiority

over platinum-based chemotherapy (3, 43) (Figures 1A, B;

Supplementary Table 1). Several phase III studies have

investigated the clinical efficacy of combining anti-PD-1/PD-L1

antibodies with platinum-based chemotherapy, irrespective of

tumor PD-L1 expression, in comparison to platinum-based

cytotoxic chemotherapy. These studies, namely, KEYNOTE-189,

IMpower150, IMpower130, IMpower132, and KEYNOTE-407,

have now become standard first-line options (4, 5, 44–49)

(Figures 1A, B; Supplementary Table 1). In addition, the

combination of anti-PD-1 antibody and anti-cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) antibody has also

demonstrated similar survival superiority. CheckMate 227 and

CheckMate 9LA trials showed that the clinical benefits of

nivolumab plus ipilimumab and nivolumab plus ipilimumab in

combination with platinum-based chemotherapy, respectively,

surpassed those of platinum-based chemotherapy alone (7, 50–

52). Moreover, in the phase III POSEIDON study, the combination

of anti-PD-L1 antibody durvalumab and anti-CTLA-4 antibody

tremelimumab, along with platinum-based chemotherapy, recently

showed positive results in terms of both progression-free survival

(PFS) and overall survival (OS) when compared to platinum-based

chemotherapy alone (8) (Figures 1A, B; Supplementary Table 1).
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These combination regimens involving ICIs have emerged as the

leading options for standard first-line therapy in advanced NSCLC

cases without targetable drive alterations, regardless of TPS

and TMB.

In contrast, most molecular-targeted therapies have become

established as the standard first-line treatment for NSCLC cases

with epidermal growth factor receptor (EGFR), anaplastic lymphoma

kinase (ALK), ROS proto-oncogene 1 (ROS1), B-Raf proto-oncogene

(BRAF), and Ret proto-oncogene (RET) alterations, exhibiting over

50% antitumor response rates and long-term PFS (53). A recent

significant advancement in molecular-targeted therapy is the

approval of sotorasib for second-line treatment in NSCLC cases

with Kirsten rat sarcoma viral oncogene homolog (KRAS) G12C

mutation, following immunotherapy-based therapies (54).

Interestingly, the presence of oncogenic driver gene mutations has

been found to have an impact on the efficacy of ICIs in NSCLC.

Specifically, EGFR and KRAS mutations have been identified as key

factors associated with ICI efficacy. NSCLC patients with KRAS

mutations have shown favorable responses to ICIs with or without

platinum-based chemotherapy compared to those without KRAS

mutations. For instance, in a study involving patients with non-

squamous NSCLC treated with pembrolizumab alone or in
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combination with chemotherapy, those with KRAS mutations had

a longer PFS compared to patients with wild-type KRAS (median

PFS 16.5 months vs. 8.0 months) (55). Another study also reported

that KRAS mutations were significant favorable prognostic factors

in NSCLC patients treated with pembrolizumab in combination

with carboplatin plus pemetrexed for non-squamous NSCLC or

paclitaxel for squamous NSCLC (56). A subgroup analysis of the

IMpower150 trial revealed that the combination of atezolizumab,

bevacizumab, carboplatin, and paclitaxel (ABCP) showed a greater

PFS benefit in the population with KRAS mutations compared to

the combination of bevacizumab, carboplatin, and paclitaxel, with

hazard ratios (HRs) of 0.42 and 0.65, respectively, in KRAS

mutation-positive and KRAS mutation wild-type populations (57).

Conversely, a meta-analysis of phase III studies comparing ICI

monotherapy to docetaxel in the pretreatment setting revealed that

ICI monotherapy is less beneficial in NSCLC patients with EGFR

mutant compared to those of wild-type (58). However, several

clinical trials have shown the clinical benefit of combining ICIs

with platinum-based chemotherapy and an anti-vascular

endothelial growth factor (VEGF) strategy. In a subset analysis of

the IMpower150 trial, the combination of atezolizumab,

carboplatin, paclitaxel, and bevacizumab demonstrated longer
B

A

FIGURE 1

Bar graph comparing control and trial arms in pivotal phase III clinical trials in terms of median progression-free survival (A) and median overall
survival (B).
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PFS and OS compared to carboplatin, paclitaxel, and bevacizumab

in patients with common EGFR mutations (59). VEGF-A has been

found to have an immunosuppressive role by promoting the

function of regulatory T-cell and driving the growth of EGFR

mutant NSCLC. Therefore, combining ICIs with VEGF-A

inhibitors, such as bevacizumab, has emerged as an appealing

treatment strategy for EGFR mutant NSCLC after driver-targeted

therapy failure (60–62). However, regarding the predictive value of

driver oncogenes other than EGFR and KRASmutations, conclusive

evidence has not been established at this stage. Several small

retrospective cohort studies have reported the efficacy of ICI

monotherapy in NSCLC patients with other diver oncogenic

alterations, with response rates ranging from 0% in NSCLC

patients with ALK fusion to 24% in NSCLC patients with BRAF

mutation (40, 63, 64). Nevertheless, these findings are insufficient to

draw definitive conclusions regarding the clinical relevance of ICIs

for patients with these driver gene alternations other than EGFR

and KRAS. Regarding RET alternations, the ongoing phase III trials

comparing the RET inhibitor selpercatinib to other treatments will

provide insights into the clinical efficacy of combination therapy

involving ICIs for those patients (65).
2.2 Therapeutic efficacies of ICI regimens
to advanced NSCLC with LKB1 and/or
KEAP1 inactivation

Recent large-scale profiling studies using NGS in NSCLC have

uncovered multiple non-random patterns of driver gene alterations.

These patterns often exhibit co-occurrence or mutual exclusivity

and are associated with specific driver alterations. One notable

example is the co-occurrence of oncogenic driver alterations, such

as KRAS and EGFR mutations, along with the inactivation of well-

known tumor suppressor genes like tumor protein p53 (TP53),

LKB1 (STK11), and KEAP1. These co-occurring patterns have

significant biological implications and can influence tumor

evolution and progression (18). Furthermore, these co-occurring

patterns also impact the clinical efficacies of various therapies,

including ICI and cytotoxic chemotherapy. In patients with

KRAS-mutant NSCLC who were treated with ICI monotherapies

or ICI combination therapies, the response rate was remarkably

higher in the group with TP53 co-mutation compared to the group

with STK11 co-mutation (28). The median PFS and median OS

were reported as 3.0 months and 16.0 months, respectively, for

patients with KRAS/TP53 co-mutation (KP group), while it was 1.8

months and 6.4 months for patients with KRAS/STK11 co-mutation

(KL group). The underlying biological mechanism explaining the

poor efficacy of ICIs in the KL group may be attributed to the

immunosuppressive TME caused by LKB1 inactivation followed by

STK11 mutation (18). LKB1 inactivation in cancer cells leads to the

production of several immunosuppressive cytokines, such as

Interleukin (IL)-6, IL-33, chemokine (C-X-C motif) ligand 7, and

granulocyte colony-stimulating factor, which contribute to the

mobilization of neutrophils (66). Neutrophils play a role in

impeding T-cell movement and function, leading to the

development of an “immune desert environment” characterized
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by reduced tumor-infiltrating lymphocytes. The limited efficacy of

ICI monotherapies and ICI combined with cytotoxic

chemotherapies has been observed in NSCLC patients with

STK11 or KEAP1 mutations. In the subgroup analysis of the

IMpower150 trial, the KRAS-mutant NSCLC patients and co-

occurring STK11 and/or KEAP1 mutations exhibited a

significantly shorter median PFS of the combination therapy

ABCP compared to those with wild type in both STK11 and

KEAP1 (6.0 months vs. 15.2 months) (57) (Supplementary

Table 2). In contrast, NSCLC patients with KRAS/TP53 co-

mutation had a longer median PFS with ABCP compared to

those with KRAS mutations and wild-type TP53 (14.3 months vs.

7.3 months) (57). In the subgroup analysis of the KEYNOTE-189

trial, the overall response rate (ORR) of pembrolizumab in

combination with platinum plus pemetrexed was 30.6%

in NSCLC patients with STK11 mutation, whereas it was 48.8% in

those with STK11 wild type (67) (Supplementary Table 2).

Furthermore, in NSCLC patients with KEAP1 mutation, the ORR

of pembrolizumab in combination with platinum plus pemetrexed

was 35.6% (67). The median PFS for patients with STK11 mutation

and those with KEAP1 mutation were 6.1 and 5.1 months

(Figures 2A, C), respectively, indicating that the clinical efficacy of

ICIs combined with cytotoxic chemotherapy is also limited in

NSCLC patients with both gene mutations. However, since STK11

and/or KEAP1 mutations are also associated with poor clinical

outcomes to cytotoxic chemotherapy without ICIs, there may still a

benefit in adding PD-1/PD-L1 inhibitors to platinum-based

chemotherapy even in this population.

To enhance the clinical outcomes of PD-1/PD-L1 inhibitor-

based therapy for “immune desert environment” NSCLC caused by

STK11 and/or KEAP1mutations, the addition of CTLA-4 inhibitors

to PD-1/PD-L1 inhibitors represents a promising approach. CTLA-

4 is expressed on activated T cells upon tumor antigen presentation

by dendritic cells. It has a stronger binding affinity to CD80/86

compared to CD28, which is responsible for T-cell activation,

thereby suppressing T-cell activation (68). Anti-CTLA-4

antibodies, such as ipilimumab and tremelimumab, block the

binding of CTLA-4 to CD80/86, leading to enhanced and

sustained T-cell activation (68). The reported clinical benefits of

combining PD-1/PD-L1 inhibitors with CTLA-4 inhibitors for

NSCLC with STK11 and/or KEAP1 mutations are based on

exploratory analyses of phase III clinical trials and involve

unstratified univariate analysis with a relatively smaller sample

size. In the subgroup analysis of CheckMate 227, the PFS-HR of

nivolumab plus ipilimumab compared to platinum-base

chemotherapy were 1.04 for patients with STK11 mutation (n =

78) and 0.25 for those with KEAP1 mutation (n = 38) (69)

(Figures 2A, C; Supplementary Table 2). In the subgroup analysis

of CheckMate 9LA, the PFS-HRs of nivolumab plus ipilimumab

with platinum-based chemotherapy compared to platinum-based

chemotherapy alone were 0.61 (95%CI: 0.37–1.00) for patients with

STK11 mutation and 0.34 (95%CI: 0.14–0.83) for patients with

KEAP1 mutation (52) (Figures 2A, C; Supplementary Table 2).

Further, in the subgroup analysis of the POSEIDON trial, the PFS-

HRs of durvalumab plus tremelimumab with platinum-based

chemotherapy compared to platinum-based chemotherapy alone
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were 0.47 (95%CI: 0.23–0.93) for patients with STK11 mutation

(n = 53) and 0.94 (95%CI: 0.33–3.35) for patients with KEAP1

mutation (n = 28) (70) (Figures 2A, C; Supplementary Table 2). The

subgroup analyses of these major clinical trials indicate that certain

ICI combination therapies may have some degree of effectiveness in

treating NSCLC with STK11 or KEAP1 mutations, although their

therapeutic benefits are generally limited (Figures 2A–D).

Specifically, KRAS-mutant NSCLC with STK11 or KEAP1

mutations tends to have a poorer prognosis, and comprehensive

co-mutation analyses in KRAS-mutant NSCLC have not been

conducted extensively for other ICI combination therapies except

IMpower150 (57). Therefore, for NSCLC cases with these

mutations, it is important to continue clinical and molecular

analyses and to develop more advanced therapeutic strategies

targeting novel therapeutic targets.
3 Glycolysis and glutaminolysis
in NSCLC with LKB1 and/or
KEAP1 inactivation

3.1 Glycolysis in NSCLC with
LKB1 inactivation

Cancer cells have possess a distinct metabolic characteristic

known as the Warburg effect, wherein they preferentially utilize the

glycolytic pathway for energy production, even in the presence of

sufficient oxygen (71–73). This unique glycometabolism trait is

characterized by increased glucose uptake and enhanced

carbohydrate conversion into lactose. By consuming high

amounts of glucose, tumor cells can rapidly proliferate and

generate ATP, while also obtaining the necessary glycometabolic
Frontiers in Oncology 05
intermediates for synthesizing cellular components (73–75).

Glucose is not only vital for tumor cell growth but also plays a

crucial role in the proliferation and activation of effector T cells.

Consequently, intratumoral effector T cells must outcompete tumor

cells to acquire glucose (33, 76). Hence, in rapidly growing tumors,

h igh g lucose consumpt ion i t se l f may contr ibute to

immunosuppression. In support of this, a study by Zappasodi

et al. explored the correlation between tumor immune infiltration

and glycolysis of cancer cells in advanced melanoma patients

treated with ipilimumab. They discovered that high expression of

glucose catabolism genes in melanoma was inversely associated

with infiltration of substantial immune cells, suggesting that tumors

with low glycolytic activity are more likely to respond to anti-

CTLA-4 antibodies (77). Furthermore, lactate dehydrogenase A

(LDHA) and monocarboxylate transporter 1 (MCT1), which are

key enzymes involved in glycolysis and lactate production, have

been found to exhibit an inverse correlation with immune infiltrates

even after ipilimumab treatment (77). This suggests that anti-

CTLA-4 blockade alone may be insufficient to enhance immune

cell infiltration in highly glycolytic tumors.

LKB1 is recognized as a key metabolic regulator that exerts

control over glucose metabolism by inducing the expression of

critical genes encoding enzymes involved in glycolysis,

gluconeogenesis, aerobic oxidation, and the pentose phosphate

pathway. It achieves this regulation by acting on several

downstream targets, including the central metabolic sensor called

AMP-activated protein kinase (AMPK) (78–82). Under conditions

of energy stress, LKB1 directly phosphorylates AMPK, which in

turn promotes the activation of catabolic pathways such as

glycolysis and fatty acid oxidation. Simultaneously, it suppresses

anabolic pathways, including gluconeogenic enzymes, to maintain

intracellular ATP levels (81, 82). Furthermore, the LKB1-AMPK
B

C

D

A

FIGURE 2

Bar graph comparing control and trial arms in subgroup analyses of pivotal clinical trials for NSCLC with STK11 or KEAP1 mutation in terms of median
progression-free survival (A, C) and median overall survival (B, D).
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axis plays a role in regulating cell growth and division by inhibiting

the mammalian target of rapamycin complex 1 (mTORC1), which

serves as the central integrator of nutrient and mitogenic signals.

Notably, mTORC1 is often activated in cancer cells, contributing to

tumor progression (81, 83). When LKB1 function is compromised,

these downstream factors become dysregulated, leading to increased

glucose uptake and consumption, as well as a metabolic shift toward

aerobic glycolysis. Even in benign tumors with LKB1

haploinsufficient, there have been reports of enhanced

accumulation of 18F-deoxyglucose on positron emission

tomography, indicating that the loss of LKB1 function directly

influences glucose metabolic reprogramming (84). Studies using the

naturally LKB1-inactivated NSCLC cell line A549 have

demonstrated that the activation of hypoxia-inducible factor 1

alpha (HIF-1a), induced by LKB1 inactivation, contributes to the

enhancement of the aerobic glycolytic system (85). The absence of

LKB1 was found to result in increased HIF-1a expression, which

was shown to depend on both mTOR signaling and cellular

mitochondrial reactive oxygen species (ROS) levels. Notably, HIF-

1a knockdown in LKB1-deficient cell line significantly reduced

proliferation under low-glucose conditions, indicating that HIF-1a
promotes the growth of NSCLC with LKB1 inactivation even when

nutrients are limited (85). Alongside LKB1 inactivation, KRAS

mutation, which is the most prevalent oncogenic alteration in

tumors with LKB1 inactivation, also leads to heightened glucose

uptake and increased glycolytic activity. This is achieved through

the upregulation of glucose transporter 1 (GLUT1) and key

glycolyt ic enzymes such as LDHA, hexokinases, and

phosphofructokinase 1 (PFK1) (86–88). Mutant KRAS, by

upregulating GLUT1 and these glycolytic enzymes, further

enhances aerobic glycolysis. Therefore, lung cancer cells with

simultaneous LKB1 inactivation and KRAS mutation are likely to

exhibit greater glucose uptake and consumption, contributing to

their rapid tumor growth and suppression of intratumor effector T-

cell activity (Figure 3A).

Tumor cells that undergo rapid proliferation stimulate the

formation of tumor blood vessels by releasing factors that

promote angiogenesis. This process is crucial for acquiring

nutrients and oxygen. However, the resulting vasculature is often

immature and hyperpermeable, leading to the development of

hypoxic regions within the tumor. These hypoxic areas create a

barrier that hampers the infiltration of immune cells (89).

Moreover, the hypoxic tumor microenvironment contributes to

the accumulation of immunosuppressive metabolic byproducts.

These metabolic alterations negatively impact the function of

effector T cells, while they may have little to no effect or even

benefit suppressive immune populations like regulatory T cells

(Treg) and suppressive myeloid populations (31, 90). The

increased glycolytic activity in tumor leads to the production of

large amounts of lactate, which in turn acidifies the extracellular

spaces. NSCLC with LKB1 inactivation is associated with an

elevated extracellular acidification rate (ECAR), which indicates

higher lactate levels. Introducing transient expression of LKB1 in an

NSCLC cell line with LKB1 inactivation resulted in a 20% decrease

in ECAR (85). Despite its ability to lower pH, lactate has diverse

effects on immune cell populations. For instance, it promotes a
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environments and induces macrophages to adopt an M2

phenotype, which supports tumor growth (91–93). Notably, the

accumulation of lactic acid can suppress the proliferation of CD4+

and CD8+ T cells, as well as inhibit their cytokine production (94).

Lactate can deplete intracellular nicotinamide adenine dinucleotide

+ (NAD+) levels and impair effector T cells because LDH uses

lactate to generate NAD+ hydrogen (NADH). Conversely, Treg can

continue to function in high lactate environments where

conventional T cells are suppressed due to the NAD+ produced

by mitochondrial metabolism (91, 93).

Furthermore, it is recognized that circulating lactate is

transported into cells via MCT1 and used as an energy source

and substrate for lipogenesis in certain cancer types (95). In an

analysis that measured the uptake of metabolic intermediates from

tumor samples after labeled glucose infusion in NSCLC patients,

elevated lactate labeling was observed, indicating the uptake of

lactate in tumors compared to glycolytic metabolites (96). In

addition, a xenograft model using an NSCLC cell line with LKB1

inactivation showed increased labeled lactate in the tumor,

indicating the uptake of extracellular lactate and its incorporation

into the tricarboxylic acid (TCA) cycle as a carbon source (96). This

study suggests that lactate plays a crucial role as an energy source in

LKB1-inactivated NSCLC. Apart from LDHA/B, elevated levels of

the lactate transporter MCT1/4 have also been observed in lung

cancer cells with LKB1 inactivation (96, 97), suggesting that

intracellular lactate is not only incorporated into the TCA cycle

but that extracellular lactate released by neighboring cancer cells

can be taken up and incorporated into the TCA cycle as an energy

source (Figure 3A).
3.2 Glutaminolysis in
LKB1-inactivated NSCLC

Glutamine (Gln) is a vital amino acid with significant roles in

cellular functions, including energy and biomolecule synthesis, as

well as ROS scavenging. Upon cellular uptake, Gln is converted into

glutamate (Glu) by the enzyme glutaminase (GLS). It is further

converted to a-ketoglutarate, which enters the TCA cycle,

generating metabolic intermediates for lipid, nucleic acid, and

protein synthesis. In the TME, both tumor cells and infiltrating

immune cells have a high demand for Gln, similar to glucose. T-cell

activation and proliferation heavily rely on Gln metabolism, and

when Gln is insufficient in the TME, the high consumption by

tumors can inhibit T-cell activity. Conversely, reduced Gln

metabolism in tumors has shown to increase Gln utilization

within the TME (34). In a mouse model of colorectal cancer

using MC38 tumor-bearing mice, combination therapy of anti-

PD-1 monoclonal antibody and a Gln antagonist prodrug, 6-diazo-

5-oxo-L-norleucine, resulted in enhanced tumor growth

inhibition (98).

Several oncogenes and tumor suppressors play a role in

regulating Gln metabolism, and LKB1 inactivation is also

implicated in Gln flux regulation. LKB1 ectopic expression in

NSCLC cells with LKB1 deficiency led to a decrease in Gln-
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derived Glu (85). Furthermore, in the LKB1-deficient NSCLC cell

line A549, the majority of Gln-derived carbon entered the TCA

cycle compared to glucose-derived carbon, in contrast to the cell

line with LKB1 ectopic expression (85). Moreover, LKB1-

inactivated NSCLC cells exhibit higher levels of GLS expression

and more active conversion of Gln to Glu (99). The released NH4+

during this conversion is used for the synthesis of purine/

pyrimidine bases, which are essential for rapid cell proliferation.

Notably, studies have demonstrated characteristic overexpression of

carbamoyl phosphate synthetase 1 (CPS1), the first rate-limiting

mitochondrial enzyme in the urea cycle, in a subset of NSCLC with

LKB1 inactivation (100, 101). CPS1 plays a vital role in promoting

cell growth by increasing the bioavailability of carbamoyl

phosphate, an intermediary metabolite required for de novo
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pyrimidine synthesis. The CPS1 expression is transcriptionally

regulated by LKB1 through AMPK, and cases with high CPS1

expression have been associated with poor prognosis, particularly in

NSCLC with LKB1 inactivation (100, 101). Thus, LKB1-inactivated

lung cancers effectively utilize excess Gln, and the activation of these

metabolic pathways may contribute to their high malignancy.

Furthermore, oncogenic KRAS has been shown to stimulate Gln

catabolism in the mitochondria (87, 88). Since both KRAS and

LKB1 regulate metabolism, the co-mutation of these two genes

could lead to a unique metabolic phenotype not observed with

either mutation alone. In fact, CPS1 plays a pivotal role in

maintaining the balance between purine and pyrimidine in

NSCLC cells with co-mutated KRAS and LKB1, and the enzyme

also provides an alternative pool of carbamoyl phosphate to sustain
B

A

FIGURE 3

Overview of glucose and glutamine (Gln) metabolism in KRAS-mutant NSCLC with LKB1 or KEAP1 inactivation. (A) Overview of glucose and Gln
metabolism in KRAS-mutant NSCLC with LKB1 inactivation. Glucose is imported by glucose transporter 1 (GLUT1) and is then metabolized by
glycolysis into pyruvate. Pyruvate then either enters the tricarboxylic acid (TCA) cycle for ATP synthesis or is converted to lactate by lactate
dehydrogenase (LDH). Mutant-KRAS enhances aerobic glycolysis by upregulating GLUT1 and LDH. After exported by monocarboxylate transporter 4
(MCT4), lactate increases extracellular acidification rate of tumor microenvironment (TME) and has diverse effects on various immune cells. Gln is
imported by SLC1A5 where it then enters into the mitochondria and is converted to glutamate (Glu) by glutaminase (GLS), which is highly increased
in NSCLC with LKB1 inactivation. The released NH4+ during the conversion to Glu is used for the synthesis of the purine/pyrimidine base. Carbamoyl
phosphate synthetase 1 (CPS1), which is the first rate-limiting mitochondrial enzyme in the urea cycle, is overexpressed in NSCLC with LKB1
inactivation. Glu is also used for the precursor of glutathione (GSH), which promotes reactive oxygen species (ROS) detoxification. In addition, the
excess synthesized Glu is excreted out via xCT/SLC7A11 and is then required for T-cell activation. (B) Overview of glucose and Gln metabolism in
KRAS-mutant NSCLC with KEAP1 inactivation. Glucose and Gln metabolism are promoted to the anabolic pathway through interaction with the
phosphatidylinositol 3’-kinase/protein kinase B signaling. Gln exchanges Glu for cystine via the antiporter xCT (SLC3A2/SLC7A11), which activated
NRF2 target. Both cystine and Gln are used to produce GSH, leading to ROS neutralization. Gln is also used in purine base synthesis, and fewer Gln
are used for TCA cycle.
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pyrimidine availability (101). Hence, apart from glucose

metabolism, reprogramming of Gln metabolism in tumors

harboring co-mutated KRAS and LKB1 likely contributes to

aggressive oncological behavior and impacts TME (Figure 3A).

Notably, the clinical response to PD-(L)1 inhibition is significantly

poorer in NSCLC patients with co-mutated KRAS and STK11

compared to those with only STK11 mutation (102).

Cellular metabolism generates ROS, which need to be scavenged

to prevent damage to DNA, RNA, and proteins. Gln metabolism

also plays an important role in maintaining oxidative homeostasis.

Glu, generated from Gln by the catalytic action of GLS, serves as the

precursor of glutathione (GSH), which promotes ROS

detoxification (103). GSH, along with thioredoxin, plays a major

role in neutralizing ROS and is synthesized through an NADPH-

dependent mechanism. Loss of LKB1 activity resulting in metabolic

reprogramming leads to elevated ROS levels and metabolic stress,

while the conversion of Gln to Glu significantly contributes to ROS

neutralization by stimulating the production of GSH (104).

Furthermore, due to the increased aerobic glycolysis in cancer

cells, metabolites are shunted toward the pentose phosphate

pathway (PPP), which aids in ROS scavenging. In LKB1 mutant

cell lines, such as A549 and H460 cells, genes associated with the

PPP are upregulated, indicating their dependence on this pathway

(105). Meanwhile, A549 cells that re-express LKB1 exhibit a higher

apoptosis rate under ROS stress compared to control cells (104),

suggesting that the upregulation of Gln conversion observed in

LKB1-inactivating mutations may confer increased resistance

to ROS.
3.3 Glutaminolysis in
KEAP1-inactivated NSCLC

The KEAP1-nuclear factor erythroid-derived 2-like 2 (NRF2)

pathway plays a crucial role in regulating the cellular response to

oxidative stress, and its signaling abnormalities have been observed

in various cancer types, including NSCLC (106, 107). In normal

conditions, KEAP1 ubiquitinates NRF2, encoded by the NFE2L2

gene, for degradation through ubiquitination. However, under

stress conditions, KEAP1 activity is reduced, leading to increased

transcription of NRF2 target genes. This activation of NRF2

signaling enhances antioxidant defense against ROS and regulates

drug detoxification and immune response (106, 107). In NSCLC,

KEAP1 deficiency is commonly observed in LUAD, while activating

alterations of NFE2L2 are more prevalent in squamous cell lung

carcinoma (~20%), with both alterations being mutually exclusive

(108). The constitutive activation of NRF2 signaling in advanced

cancer patients diminishes the therapeutic effects of chemotherapy

and radiation therapy, as these treatments rely on inducing cell

death through DNA replication damage and ROS induction (106,

107). Furthermore, recent studies have revealed that NRF2

activation promotes various metabolic reprogramming processes

and is associated with tumor progression in NSCLC, including

glutaminolysis (109–111).

Similar to tumors with LKB1 inactivation, tumors harboring

KEAP1 mutations increased uptake of Gln from TME, leading to
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reduced availability of Gln for infiltrating T cells and consequent

inhibition of their activation. Activation of NRF2 signaling resulting

from KEAP1 inactivation promotes glucose and Gln metabolism

toward the anabolic pathway through phosphatidylinositol

3’-kinase/protein kinase B signaling (112). This increased

Gln consumption is accompanied by increased expression of the

Gln importer SLC1A5 (113). Furthermore, the incorporated Gln

exchanges Glu for cystine through the antiporter xCT (SLC3A2/

SLC7A11), which is upregulated as a target of NRF2 activation, in a

Gln degradation-dependent manner (113, 114). Both cystine and

Gln contribute to the production of GSH, thereby enhancing

antioxidant activity. In addition, Gln is actively used in purine

base synthesis. Therefore, tumors with KEAP1 inactivation may

have limited Gln availability for the TCA cycle (Figure 3B). NRF2

knockdown in NSCLC cell lines, such as A549, reduces GSH

formation from Gln (104). Furthermore, KEAP1-mutant NSCLC

cell lines demonstrate sensitivity to GLS inhibition due to their high

dependence on Gln uptake in the culture medium (104). Integrating

these findings, the combination of GLS inhibition and

immunotherapy may offer a promising therapeutic strategy in

KEAP1-inactivated NSCLC. By suppressing Gln uptake, this

strategy could potentially activate T cells in the TME while

attenuating the antioxidant effect of KEAP1-inactivated tumors.

Furthermore, Pranavi et al. found that NSCLC with KEAP1

inactivation exhibits increased dependence on glucose under

glucose-limiting conditions, as NRF2-dependent SLC7A11

expression is upregulated, resulting in cytotoxicity related to

disulfide stress (115). In addition, they demonstrated the high

sensitivity of KEAP1-inactivated NSCLC to GLUT inhibitor

(115). These findings suggest that targeting Gln and glucose

metabolism could be an attractive therapeutic target in NSCLC

cases with KEAP1 inactivation or constitutive activation of NRF2.
3.4 Glutaminolysis in NSCLC with co-
occurring mutations of STK11 and KEAP1

Clinical data analysis reveals that lung cancers characterized by

simultaneous mutations in LKB1 and KEAP1 exhibit an

exceptionally poor prognosis (23). In vitro and in vivo studies

have demonstrated that co-occurring mutations of STK11 and

KEAP1 in KRAS-mutant NSCLC promote tumor growth and

confer enhanced resistance to radiotherapy (116). The co-

inactivation of LKB1 and KEAP1 cooperatively promotes

metabolic reprogramming in KRAS-mutant tumor, and even in

the presence of KEAP1 inactivation, LKB1 inactivation modulates

NRF2 activity through increased ROS levels (104). LKB1-mutant

cells induce NRF2-dependent Glu cysteine ligase expression, a key

enzyme that generates g-Gly-Gly from Gln and cysteine to increase

the GSH pool (104). These results indicate that KRAS-mutant

NSCLC with co-inactivation of LKB1 and KEAP1 enhanced Gln

dependence compared to KRAS-mutant NSCLC with LKB1 or

KEAP1 inactivation. Consistently, KRAS-mutant NSCLC cell lines

with co-inactivation of LKB1 and KEAP1 display increased

sensitivity to GLS inhibitors compared to other cell lines (104),

indicating that targeting glutaminolysis in KRAS-mutant NSCLC
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with co-inactivation of LKB1 and KEAP1 holds promise as a

therapeutic strategy.

In a study conducted by Best et al., distinct metabolic

characteristics were observed among KRAS-KEAP1 (KK), KRAS-

LKB1 (KL), and KRAS-KEAP1-LKB1 (KKL) mutant LUAD using

genetically engineered mouse models (99). In KRAS-mutant LUAD

with LKB1 inactivation, the expression of GLS1, an enzyme

responsible for metabolizing Gln to Glu, was significantly higher

compared to KRAS-mutant NSCLC with co-inactivation of LKB1

and KEAP1. The conversion of Gln to Glu was particularly

enhanced in the KL mouse model (Figure 3A). Furthermore, the

influx of a-ketoglutaric acid into the TCA cycle was significantly

increased in KL mice compared to KK or KKL mice (99). Tumors

from KL mice also exhibited a notable increase in orotic acid, which

is synthesized during the Gln to Glu conversion process via

carbamoyl phosphate. Orotic acid is a precursor of pyrimidine

and its synthesis directly affects pyrimidine production (99).

Tumors from KL mice also exhibited a notable increase in orotic

acid, which is synthesized during the Gln to Glu conversion process

via carbamoyl phosphate. Orotic acid is a precursor of pyrimidine

and its synthesis directly affects pyrimidine production (117, 118).

Increased orotic acid synthesis is closely linked to enhanced nucleic

acid synthesis, as nucleotide synthesis is tightly regulated by

pyrimidine. In KRAS-mutant LUAD with LKB1, CPS1, an

enzyme responsible for carbamoyl phosphate synthesis in the

mitochondria, is highly expressed, and the heightened Gln

metabolism contributes to rapid tumor growth through increased

nucleic acid synthesis (100, 101). Excess Glu synthesized is also

released from cancer cells via xCT/SLC7A11 (119, 120). Best et al.

demonstrated that the release of Glu from cancer cells is crucial for

T-cell activation and clonal expansion of T-cell receptors (99).

Therefore, GLS inhibition attenuates CD8+ T-cell activation,

sugges t ing that the combining GLS inhib i tors wi th

immunotherapy may not enhance the immune response.

Particularly in KL mice, the amount of Glu released from cancer

cells was higher, and KKL mice exhibited a similar Glu metabolic

pattern to KL mice compared to KK mice (99). These findings

suggest that GLS inhibitors may be less effective in KRAS-mutant

LUAD with LKB1 inactivation and co-occurring mutations of LKB1

and KEAP1 compared to KRAS-mutant LUAD with

KEAP1 inactivation.
4 Discussion

To date, subgroup analyses of pivotal clinical trials have shown

that current ICI combination regimens have some effectiveness in

NSCLC patients with LKB1 or KEAP1 inactivation compared to

standard platinum doublet chemotherapies (52, 57, 67, 69, 70).

However, their efficacy is not sufficient to significantly improve

long-term prognosis compared to NSCLC patients without LKB1

and KEAP1 inactivation (52, 57, 67, 69, 70). This indicates that the

combination of anti-PD-1/PD-L1 antibodies with cytotoxic

chemotherapies and/or anti-CTLA-4 antibodies is unable to fully

restore the dysfunctional state of T cells or NK cells in NSCLC with

these mutations. Moreover, the clinical efficacy of most regimens
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has not yet been analyzed for KRAS-mutant NSCLC with LKB1 or

KEAP1 inactivation, which is associated with the poorest prognosis

(29, 102). On the other hand, a subgroup analysis of the

IMpower150 trial revealed that the trial arm, ABCP regimen,

demonstrated superior antitumor effects compared to the control

arm in KRAS-mutant NSCLC with STK11 or KEAP1 mutations

(57). By normalizing abnormal tumor vasculature, the addition of

VEGF-A inhibitors to ICIs can increase the infiltration of effector T

cells into tumors (121). Furthermore, since VEGF-A receptors are

expressed on various tumor-promoting immune cells, such as Tregs

and immature dendritic cells, this combination therapy may have

additional effects in converting the intrinsically immunosuppressive

TME into an immunosupportive one, even in immune cold

subtypes (121). However, further analysis is needed to fully

understand the significance of VEGF-A inhibition for immune

cold tumors from both basic and clinical perspectives. Regarding

molecular-targeted agents for KRAS G12Cmutations, sotorasib and

adagrasib are now indicated as a second-line treatment following

ICI regimens and has expanded the therapeutic options for KRAS-

mutant NSCLC patients (54). However, its efficacy is limited in

cases of NSCLC with co-mutations of STK11 and KEAP1 (122).

Similarly, in NSCLC with EGFR mutations, co-mutations such as

TP53 and RB transcriptional corepressor 1 can affect the antitumor

effect of EGFR-tyrosine kinase inhibitors (123). Therefore, in

addition to targeting oncogenic driver alterations, it is

increasingly important to identify inactivating mutations in

tumor suppressor genes that can impact the efficacy of

immunotherapy and of molecularly targeted agents. In fact, some

clinical trials of novel molecularly targeted agents targeting KRAS

G12C mutation have included STK11 mutation as a stratification

factor (124, 125) (Table 1). These trends underscore the need for

novel therapeutic strategies in the treatment of NSCLC with STK11

and/or KEAP1 mutations, as the efficacy of ICIs and molecular

targeting agents directly affects patient outcomes.

Concurrent with the advancements in immune checkpoint

inhibitors (ICIs) and molecularly targeted therapies, recent

fundamental research has uncovered that each driver gene

alteration has a cancer-specific impact on the TME through

metabolic reprogramming. Specifically, the alteration of glucose

and glutamine (Gln) metabolism resulting from LKB1 or KEAP1

inactivation appears to play a significant role in diminishing the

effectiveness of current immunotherapies by suppressing the

activity of effector T cells. Ongoing clinical trials targeting glucose

or Gln metabolism, as depicted in Table 1, aim to develop novel

therapies for NSCLC with LKB1 or KEAP1 inactivation (126–128).

One therapeutic strategy being explored involves the addition of

metformin, a commonly used medication for type 2 diabetes, to

cytotoxic chemotherapy. Accumulating evidence supports the

antitumor effects of metformin, as it enhances AMPK-mediated

cell growth inhibition and cisplatin-induced apoptosis in LKB1-

inactivated NSCLC (135, 136). Interestingly, despite initial reports

indicating that metformin requires LKB1 for the regulation of

gluconeogenesis in the liver, it demonstrates efficacy in LKB1-

inactivated NSCLC (137). Clinical trials targeting Gln metabolism

have also been initiated, employing Gln antagonists and oral GLS

inhibitors, to explore a new therapeutic approach for NSCLC with
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LKB1 inactivation or KEAP1 inactivation/NFE2L2 alteration (127,

128) (Table 1). However, the utilization of glutamate (Glu) released

from cancer cells by T cells reveals a complex and interconnected

relationship between cancer metabolism and immune cells within

the TME (99). Furthermore, NSCLC with concurrent STK11 and

KEAP1 mutations exhibit distinct Gln metabolism patterns

compared to NSCLC with KEAP1 mutation alone, suggesting that

the antitumor effects of targeting Gln metabolism may vary among

NSCLC subgroups with different mutation co-occurring patterns

(99). Therefore, considering the potential impact of diverse

metabolic reprogramming based on specific mutation patterns, it

will be crucial to assess the response of each mutated subgroup

when treated with Gln metabolism inhibitors, either alone or in

combination with a PD-(L)1 inhibitor.

In conclusion, high consumption of glycolysis and

glutaminolysis in immune-resistant phenotype tumors, such as

NSCLC with LKB1 and/or KEAP1 inactivation, not only

contribute to tumor aggressiveness but also impede intratumor T-
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cell function. The presence of co-occurring mutations in NSCLC

leads to distinct metabolic alterations that impact immune cells

within TME. These differences in metabolic reprogramming may

affect clinical efficacies of current ICI combination regimens and

novel agents targeting metabolic enzymes. To develop new

therapeutic strategies that target metabolic alterations in

combination with ICI regimens for NSCLC with LKB1 and/or

KEAP1 inactivation, further extensive analyses on a larger scale

will be necessary.
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TABLE 1 Summary of on-goiong trials against advanced NSCLC with STK11 or KEAP1 mutation.

Study Subject of research Treatment
setting Treatment regimen Overcoming

mechanism Phase Primary
outcome

Ongoing trials where STK11 mutation is a stratification factor

CodeBreaK201
NCT04933695
(124)

KRAS G12C mutant NSCLC with
PD-L1 < 1%, stratified by STK11
co-mutation

Treatment
naïve

AMG510 (Sotorasib)
KRAS G12C
inhibitor

Phase 2 ORR

KRYSTAL-1
NCT03785249
(125)

Solid tumor harboring KRAS
G12C mutation, stratified by
STK11 co-mutation

Previously
treated

MRTX849 (Adagrasib)
KRAS G12C
inhibitor

Phase 1/2
Safety,
ORR

Ongoing trials

FAME
NCT03709147
(126)

LUAD with LKB1 inactivation
Treatment
naïve

Platinum+PEM+Pembrolizumab
+Metfolmin Platinum+PEM
+Pembrolizumab+Metfolmin+FMD

Biguanide and
Nutrient
Deprivation

Randomized
Phase 2

PFS

BeGIN
NCT03872427
(127)

Solid tumor harboring NF1/
KEAP1/STK11 mutation

Previously
treated

CB-839 (Telaglenastat)
Glutaminase
inhibitor

Phase 2 ORR

NCT04471415
(128)

NSCLC harboring KEAP1/
NFE2L2/STK11 alteration

Previously
treated

DRP-104 (Sirpiglenastat)
Glutamine
antagonist

Phase 1/2a
Safety,
ORR

CAPTUR
NCT03297606
(129)

Solid tumor harboring STK11/
NF1/NF2/other mutation

Previously
treated

Temsirolimus
mTORC1
inhibitor

Phase 2 ORR

NCT05469178
(130)

NSq-NSCLC harboring STK11
mutation

Treatment
naïve

CBDCA+PEM+Pembrolizumab
+Bemcentinib

AXL inhibitor Phase 1b/2a DLT, ORR

NCT05704634
(131)

NSCLC harboring STK11
mutation

Previously
treated

Cemiplimab+Sarilumab
IL6-receptor
antibody

Phase 1b
Safety,
ORR

NCT05275868
(132)

NSCLC harboring NFE2L2/
KEAP1/CUL3 alteration

Previously
treated

MGY825 unavailable Phase 1 Safety

KontRASt-06
NCT05445843
(133)

KRAS G12C mutant NSCLC
harboring co-mutation of STK11
and PD-L1 ≥ 1%

Treatment
naïve

JDQ443 (Opnurasib)
KRAS G12C
inhibitor

Phase 2 ORR

NCT05276726
(134)

NSCLC harboring co-mutation of
KRAS G12C and STK11 and
KEAP1 wild-type

Any JAB-21822
KRAS G12C
inhibitor

Phase 1b/2 DLT, ORR
fr
NSCLC, Non-small cell lung cancer; NSq-NSCLC, Non-squamous non-small cell lung cance; LUAD, Lung adenocarcinoma; LKB1, Liver kinase B1; STK11, Serine/threonine kinase 11; KEAP1, Kelch-
like ECH-associated protein 1; NEF2L2, Nuclear factor erythroid 2-related factor 2; CUL3, Cullin3; KRAS, Kirsten rat sarcoma virus; mTORC1, Mammalian target of rapamycin complex 1; AXL, AXL
receptor tyrosine kinase; IL-6, Interleukin 6; PFS, Progression-free survival; HR, Hazard ratio; DLT, Dose limiting toxicity; ORR, Overall response rate; CBDCA, Carboplatin; PEM, Pemetrexed.
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demonstrated the dependency of CPS1, a metabolic enzyme, in cell

growth, metabolism and prognosis in LKB1-inactivated lung

adenocarcinomas. Furthermore, Serglycin secretion, which is a

chondroitin sulfate proteoglycan involved in reprograming to an

immunosuppressive TME, is epigenetically induced through

nicotinamide N-methyltransferase-induced perturbation of

methionine metabolism in TTF-1–negative lung adenocarcinoma.

These results were published in J Natl Cancer Inst (2017) 109:1-9

and J Natl Cancer Inst (2022) 114:290-301.
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