
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Massimiliano Cadamuro,
University of Padua, Italy

REVIEWED BY

Antonio Cigliano,
University of Sassari, Italy
Mariapia Vairetti,
University of Pavia, Italy

*CORRESPONDENCE

Yue Yang

y1437373375@163.com

†These authors contributed equally to this
work

RECEIVED 27 June 2023

ACCEPTED 23 August 2023
PUBLISHED 11 September 2023

CITATION

Tu T, Yuan Y, Liu X, Liang X, Yang X and
Yang Y (2023) Progress in investigating the
relationship between Schlafen5 genes and
malignant tumors.
Front. Oncol. 13:1248825.
doi: 10.3389/fonc.2023.1248825

COPYRIGHT

© 2023 Tu, Yuan, Liu, Liang, Yang and Yang.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 11 September 2023

DOI 10.3389/fonc.2023.1248825
Progress in investigating the
relationship between Schlafen5
genes and malignant tumors

Teng Tu1†, Ye Yuan2†, Xiaoxue Liu1†, Xin Liang2†,
Xiaofan Yang3† and Yue Yang1*

1School of Basic Medicine, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China,
2Beidahuang Industry Group General Hospital, Harbin, China, 3The 1st Clinical Medical College,
Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
The Schlafen5(SLFN5)gene belongs to the third group of the Schlafen protein

family. As a tumor suppressor gene, SLFN5 plays a pivotal role in inhibiting tumor

growth, orchestrating cell cycle regulation, and modulating the extent of cancer

cell infiltration and metastasis in various malignancies. However, the high

expression of SLFN 5 in some tumors was positively correlated with lymph

node metastasis, tumor stage, and tumor grade. This article endeavors to

elucidate the reciprocal relationship between the SLFN5 gene and malignant

tumors, thereby enhancing our comprehension of the intricate mechanisms

underlying the SLFN5 gene and its implications for the progression, invasive

potential, and metastatic behavior of malignant tumors. At the same time, this

paper summarizes the basis of SLFN 5 as a new biomarker of tumor diagnosis and

prognosis, and provides new ideas for the target treatment of tumor.
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1 Introduction

The increasing incidence of cancer poses a significant threat to human health. While it is

well known that the human body possesses a powerful immune system, tumors can

proliferate endlessly (1). One characteristic of malignant tumors is their resistance to cell

death, specifically resistance to apoptosis (2). Apoptosis is a tightly regulated programmed

cell death process characterized by nuclear condensation, cellular shrinkage, and DNA

fragmentation (3). Evading cell death is an ability observed in almost all types of cancer cells

(4). Signaling molecules responsible for cell apoptosis can be categorized into two groups:

pro-apoptotic factors and anti-apoptotic factors. Recent studies have confirmed that DNA

damage, imbalances in signaling molecules, and hypoxia may trigger apoptosis in malignant

tumor cells (5). During the process of tumor formation, by examining changes in the genomic

structure itself, including gene mutations and chromosomal abnormalities, potential factors

that influence tumor occurrence, development, and related indicators can be identified.

Increasing research results suggest that the Schlafen (SLFN) family plays a role in the immune
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system and malignant tumors, including melanoma and renal cell

carcinoma (6–10). Schlafen was first discovered when it was

differentially expressed during thymocyte development and T cell

activation in mice (11–13). The term “Schlafen” is derived from the

German word meaning “sleep” and refers to the G0/G1 cell cycle

arrest observed in ectopic expression of Slfn1 in situ in NIH-3T3

fibroblasts (11, 14). The Schlafen family of proteins is a group of

genes originally characterized on the basis of their growth-regulatory

properties (10, 15). SLFN5 (Human Schlafen 5) is an important

molecule in the Schlafen family (16). Studies have shown that human

SLFN5 (SLFN5) plays a regulatory role in the proliferation of several

specific cancer cells. Firstly, downregulation of SLFN5 promotes the

formation of soft agar colonies/non-anchorage-dependent growth in

human melanoma cells (17), but does not affect the proliferation of

renal cell carcinoma (RCC) cells, and even enhances the growth of

glioblastoma cells (18). Therefore, the inconsistent results of SLFN5’s

role in different types of tumors have attracted attention, prompting

further exploration of its function in other malignancies.

The role of SLFN5 in tumor development may exhibit

inhibitory or stimulatory effects depending on the type of tumor.

Therefore, further research on the mechanisms of SLFN5 in

different types of malignant tumors is of significant importance.

Some studies have indicated that SLFN5 is associated with apoptosis

and cell cycle regulation in tumor cells. High expression of SLFN5

can promote tumor cell apoptosis and inhibit the cell cycle, thereby

suppressing tumor cell proliferation (19). Additionally, SLFN5 can

influence tumor cell proliferation and transformation by regulating

processes such as DNA replication and repair (20–22).

Consequently, SLFN5 may serve as a potential therapeutic target

for cancer treatment, with treatment strategies targeting SLFN5

aimed at inhibiting tumor cell proliferation and transformation.

In conclusion, as a member of the Schlafen family, SLFN5 plays an

important role in malignant tumors. Although its effects vary across

different tumor types, an increasing body of research suggests that

SLFN5 may serve as a crucial target for cancer treatment (23). Future

studies should continue to investigate the mechanisms and regulatory

pathways of SLFN5 in tumors, aiming to provide more effective

approaches and strategies for cancer prevention and treatment.
2 Structure of the SLFN5
gene and protein

As a member of the third group of SLFNs, SLFN5 shares most of

its structural domains with SLFN11, SLFN13, and SLFN14 (20, 21).

However, the endoribonuclease activity of SLFN5 appears to be

defective, suggesting that SLFN5 has unique functions within the

SLFN family (21, 24). The conserved domain COG2865, which is

found in known and putative transcriptional regulatory factors and

helicases, shows partial homology in SLFN5. Another SLFN-specific

domain defined by the sequence Ser-Trp-Ala-Asp-Leu, called the

SWADL domain, is present (25). It contains a conserved motif at the

C-terminus and is characterized by the presence of sequences

homologous to the helicase superfamilies I and UvrD DNA

helicases. Additionally, the C-terminal extension carries a nuclear
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localization signal (RKRRR), further supporting the idea of nuclear

functions associated with the Group III SLFNs. SLFN5 possesses a

specific SLFN box domain located near the AAA domain (11).

Although the “Schlafen box” and SWADL domain are present, their

functions remain unknown. In contrast to other SLFNs, SLFN5 does

not possess endoribonuclease activity towards tRNA2, although its

active site is conserved, suggesting that it may target single-stranded or

double-stranded DNA (24, 26). It also contains a nuclear localization

signal and predicted DNA/RNA interaction domains.
3 SLFN5 protein and its functions

The core structural domain of SLFN5 consists of a positively

charged patch, which is in close proximity to the highly conserved

zinc finger region proposed for the putative endoribonuclease active

site and located at the opposite site of the molecule (21, 24, 25). An

assumed zinc finger motif is present on the back valley of SLFN5,

suggesting that the putative zinc finger may contribute to the

recognition of nucleotide targets or assist in protein folding and

the endonuclease/ATPase activities within the M and C domains

(20). The M domain of SLFN5 exhibits a twist where it connects to

the assumed helicase/ATPase in the C domain (20). The SLFN

family has been found to play a crucial role in tumor development

and drug resistance. High expression of SLFN5 in melanoma (6),

renal cell carcinoma (27), and breast cancer inhibits tumor invasion

and migration (28), indicating that SLFN5 acts as a tumor

suppressor gene. However, elevated SLFN5 expression in

glioblastoma, pancreatic ductal adenocarcinoma, and prostate

cancer promotes tumor proliferation, invasion, and metastasis

(21). Nevertheless, the expression of SLFN5 is still induced by

interferon (IFN), and IFN-activated SLFN5 is primarily localized in

the cell nucleus and inhibits anchorage-dependent growth of

melanoma cancer cells (6). SLFN5 downregulates membrane type

1 matrix metalloproteinase (MT1-MMP) expression through the

AKT/GSK-3b/b-catenin pathway in several types of cancer cells,

exerting inhibitory effects on migration and invasion (17). SLFN5

also negatively controls STAT1-mediated transcriptional activation

of IFN-stimulated genes and ZEB1 transcription, suppressing

the antitumor immune response in glioblastoma cells and the

mesenchymal-epithelial transition (18, 29). Low expression of the

SLFN5 protein is significantly associated with various clinical-

pathological variables, including tumor diameter, T classification,

N classification, and clinical staging.
4 Association between SLFN 5 and
malignant tumors

4.1 SLFN5 and breast cancer

As a transcriptional repressor, SLFN5 prevents epithelial-

mesenchymal transition (EMT) in breast cancer and targets the

ZEB1 promoter to suppress ZEB1 transcription and downstream

PTEN/AKT/cyclin D1 signaling cascade, ultimately inducing cancer
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cell death (28, 29). Through differential expression analysis using

data from The Cancer Genome Atlas (TCGA), clinical samples, and

cell lines, Gu et al. (28) found a negative correlation between SLFN5

expression and breast cancer metastasis. Wan et al. (29)

8demonstrated, through knockdown and overexpression of

SLFN5, as well as luciferase reporter gene assays and

metabolomics analysis, that SLFN5 regulates PTEN transcription,

the AKT pathway, and proliferation/apoptosis through ZEB1

mediation, and inhibits purine metabolism, leading to cancer cell

death. SLFN5, as a transcriptional repressor (30), plays a crucial role

in various cancers. In breast cancer, downregulation of SLFN5

protein in breast cancer cells increases ZEB1 transcriptional

activity. Subsequently, upregulated ZEB1 protein binds to the

PTEN promoter, inhibiting PTEN expression, activating the AKT

pathway, and promoting breast cancer progression (28) (see

Figure 1). Thus, SLFN5 suppresses cancer cell proliferation and

induces apoptosis by regulating the ZEB1/PTEN/AKT pathway and

purine metabolism (17, 28). PTEN is considered a tumor

suppressor gene that can dephosphorylate phosphatidylinositol-3,

4, 5-triphosphate (PIP3) to PIP2, thereby antagonizing

phosphoinosit ide-3-kinase (PI3K) signal ing and AKT

phosphorylation/activation, which in turn affects cell cycle

progression, apoptosis and motility (31–33). Notably, knockdown

of ZEB1 led to induction of PTEN with loss of constitutive

pS473Akt (34). Additionally, it maintains and restores the

epithelial morphology of breast cancer cells by downregulating

ZEB1 transcription, thereby preventing EMT in breast cancer. Li

et al. (35), through bioinformatics analysis of TCGA data,

discovered that miR-146b-5p can bind to the SLFN5 3’UTR and

MEG3, demonstrating that MEG3 positively regulates SLFN5

expression and inhibits breast cancer development through

sequestration of miR-146b-5p (see Figure 1). MEG3 is

downregulated in various cancers and positively correlates with

SLFN5 expression in breast cancer (36, 37).
Frontiers in Oncology 03
4.2 SLFN5 and gastric cancer

Currently, there is limited research on the role of SLFN5 in

gastric cancer (GC) (38). Xu et al. (13) investigated the relationship

between SLFN5 expression and tumor stage, lymph node

metastasis, and tumor grade using the UALCAN database. The

results revealed a positive correlation between high expression of

SLFN5 in GC and lymph node metastasis, tumor stage, and tumor

grade. The functional implications of SLFN5 were also explored.

Comparative analysis using the TCGA database demonstrated

significantly higher expression of SLFN5 in gastric tumor tissues

compared to normal tissues, suggesting that SLFN5 may promote

the development of gastric cancer. KM plotter analysis showed that

high expression of SLFN5 was associated with poor prognosis,

specifically lower overall survival (OS) and progression-free

survival (PFS), indicating that SLFN5 could serve as a prognostic

indicator for this disease. KEGG pathway enrichment analysis of

SLFN5 revealed its involvement in T-cell activation and immune

response regulation. Specifically, SLFN5 expression in GC showed a

significant positive correlation with infiltration of CD8 T cells, CD4

T cells, macrophages, neutrophils, and dendritic cells. Additionally,

SLFN5 expression exhibited a positive association with natural

killer (NK) cells, Th17 cells, and regulatory T (Treg) cells in GC.

Tsao AC et al. (39) found that SLFN5 co-localized with T cells and

M2 macrophages in gastric cancer precancerous lesions, suggesting

an immune suppressive role of SLFN5 in GC. SLFN5 was

predominantly expressed in Treg and naive T cells, which play a

tumor-promoting role in cancer (40, 41). Intestinal metaplasia (IM)

is the highest-risk precursor lesion for gastric cancer (GC)

progression. Companioni Napoles et al. (39) observed the highest

levels of SLFN5 expression in IM subjects progressing to GC

through immunohistochemical detection and statistical analysis.

Thus, elevated SLFN5 protein expression in IM subjects was

associated with gastric cancer progression.
FIGURE 1

Schematic representation of the mechanism by which SLFN 5 regulates BRCA progression.
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4.3 SLFN5 and pancreatic
ductal adenocarcinoma

Fischietti et al. (42) inferred that high expression of the human

SLFN5 gene is associated with poor clinical prognosis in patients

with pancreatic ductal adenocarcinoma (PDAC), indicating the

involvement of SLFN5 in the occurrence and progression of

PDAC, leading to adverse outcomes. Furthermore, Frank et al.

conducted additional research and found a positive correlation

between SLFN5 expression and PDAC grading, depth of

infiltration, lymph node metastasis (LNM), and TNM staging.

They also performed cell viability assays based on Alamar Blue

and observed a significant reduction in tumor cell viability upon

SLFN5 depletion. Through in-depth analysis, SLFN5 was identified

as a novel stimulator of cell cycle progression in the S phase,

mediating interaction with E2F7 and regulating potential genes

involved in cell cycle progression, thereby slowing down the

process. Felix et al. (43) demonstrated a significant increase in

SLFN5 expression at both the mRNA and protein levels upon

ZNF154 transfection. Thus, it is suggested that SLFN5 may play a

role in pancreatic cancer and is associated with the upregulation or

downregulation of the ZNF154 gene. Increased survival rates in

pancreatic cancer patients were associated with the silencing of

ZNF154, which, in turn, led to increased levels of SLFN5. However,

the precise mechanism between ZNF154 and SLFN5 still requires

further clarification (44).
4.4 SLFN5 and glioblastoma

SLFN5 plays different roles in specific types of cancer cells

through distinct mechanisms, exhibiting inhibitory effects in some

cancers while promoting effects in others. However, the specific

mechanisms underlying these roles are not yet fully understood.

Ahmet et al. (18) conducted a study demonstrating that SLFN5

expression promotes the motility and invasiveness of glioblastoma

multiforme (GBM) cells, and high levels of SLFN5 expression are

associated with lower survival rates in high-grade gliomas and GBM
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patients. Protein analysis revealed overexpression of SLFN5 in

malignant brain tumor cells. High expression of SLFN5 facilitates

the proliferation, invasion, and in vivo growth of GBM cells. SLFN5

can be induced by type I interferon (IFN) in malignant brain tumor

cells and acts as an inhibitor of gene transcription driven by STAT1

through direct protein interactions (18, 45, 46). The enrichment of

SLFN5 binding sites within the promoter of STAT1-induced type I

IFN-stimulated genes suggests that SLFN5 functions as a negative

regulator of the overall transcriptional response to IFNb (47, 48)

(See Figure 2). Targeting SLFN5 may serve as a promising approach

for the treatment of drug-resistant glioblastoma and/or the

elimination of glioma cancer stem cells, but further research is

needed to explore its feasibility and effectiveness (49).
4.5 SLFN5 and renal cell carcinoma

Renal cell carcinoma (RCC) is highly sensitive to interferon

treatment (50). Sassano et al. (27) demonstrated that the expression

of human SLFN5 can be induced by type I interferon receptor and

proposed an inverse relationship between SLFN5 expression and the

invasiveness and motility of renal cell carcinoma. SLFN5 inhibits the

motility and invasiveness of malignant renal cell carcinoma cells by

negatively controlling the expression of matrix metalloproteinase

genes (such as MMP-1 and MMP-13). T-test analysis of RCC

samples revealed a positive correlation between higher levels of

SLFN5 expression and overall survival rates in RCC patients. This

indicates that SLFN5 possesses tumor-suppressive activity. In renal

cell carcinoma, SLFN5 is also associated with clinical prognosis. Liu

et al. (51) determined the expression level of SLFN5 protein in renal

clear cell carcinoma using immunohistochemical techniques and

found that SLFN5 expression decreased with increasing age, higher

pathological grade, higher T stage, and clinical stage in RCC patients.

Kaplan-Meier analysis showed that patients with high expression of

SLFN5 protein had longer overall survival time and disease-free

survival time compared to those with low expression. Furthermore,

multivariate Cox regression analysis revealed that patients with high

expression of SLFN5 protein had significantly longer overall survival
FIGURE 2

Schematic representation of the mechanism of SLFN 5 regulating ovarian cancer and glioblastoma.
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time and disease-free survival time compared to those with low

expression. Therefore, SLFN5 has the potential to serve as a novel

clinical indicator for the prognosis of renal cell carcinoma (RCC).
4.6 SLFN5 and lung cancer

SLFN5 represents a promising biomarker for early-stage non-

small cell lung cancer (NSCLC) patients (52). The downregulation

of SLFN5 is strongly associated with disease progression and poor

prognosis in NSCLC. Studies have consistently shown weak

expression of SLFN5 in NSCLC tissues. The reduced expression

of SLFN5 protein is significantly correlated with several clinical and

pathological variables, including tumor diameter, T classification, N

classification, and clinical staging. Notably, NSCLC patients with

high expression of SLFN5 protein demonstrate significantly

improved overall survival rates. Epithelial-mesenchymal transition

(EMT) is a critical initial step for tumor cells to acquire invasive and

metastatic capabilities. Gu et al. (53) conducted comprehensive

experiments utilizing green fluorescent protein labeling, wound

healing assays, real-time quantitative PCR, and protein blotting.

The results unveiled that SLFN5 overexpression promotes EMT in

lung cancer cells. As EMT progresses, lung cancer cells exhibit

increased nuclear or cytoplasmic translocation of b-catenin,
elevated levels of the EMT-related transcription factor Snail, and

decreased expression of E-cadherin, ultimately leading to enhanced

cell invasion and migration. These findings indicate that heightened

expression of SLFN5 augments the migration and invasion

capabilities of lung cancer cells. SLFN5 promotes EMT and cell

metastasis in human lung cancer cell line A549 by inducing

translocation of b-collagen from the cell membrane to the

nucleus, thereby activating the b-collagen-mediated snail/E-

calmodulin signaling pathway (30).Wan et al. identified a critical

role for SLFN5 in maintaining non-/low-invasive cancer cell lines

(breast cancer cell line MCF5, colorectal cancer cell line HCT7, and

lung cancer cell line A116) in a non-invasive state, and found that

the b-cartenin pathway mediated SLFN5 on MT1-MMP expression

(17). In lung cancer, PTEN is regulated by p53 (54, 55), Oct4 (56), c-

Jun (57), and NF-kB (58). Regarding signaling pathways, human

SLFN5 exerts inhibitory effects on lung cancer progression through

the PTEN/PI3K/AKT/mTOR pathway. Collectively, the data

strongly suggest that SLFN5 may play a crucial role in improving

the prognosis of lung cancer patients and has the potential to serve

as a valuable biomarker for predicting patient outcomes.
4.7 SLFN5 and malignant melanoma

Due to the dependency of SLFN5 protein on I-type interferon

(IFN) (21), it is well-established that SLFN5 plays a critical role in

the inhibitory effects of IFNa on the growth and invasion of

malignant melanoma cells. Notably, stable suppression of SLFN5

expression in these cells fails to optimally achieve the inhibitory

effects of IFNa. The induction of human SLFN5 by human IFNa in

malignant melanoma cells suggests its specific involvement in the
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IFNa response pathway. Enhancing the inhibitory effects of SLFN5

expression in malignant melanoma cells may confer a growth

advantage and promote tumor development. Katsoulidis et al. (6),

employing soft agar assays and enhanced colony formation,

demonstrated that stable knockdown of SLFN5 in malignant

melanoma cells leads to increased anchorage-dependent growth.

Additionally, collagen invasion plays a crucial role in melanoma

progression, and the knockdown of SLFN5 also results in

augmented invasion of three-dimensional collagen, indicating that

SLFN5 has a dual role in regulating the invasion and anchorage-

independent growth of melanoma cells.
4.8 SLFN5 and castration-resistant
prostate cancer

Mark et al. (23), employing comparative proteomic analysis,

discovered SLFN5 as a protein regulated by the androgen receptor

(AR) in castration-resistant prostate cancer (CRPC). Mechanistically,

SLFN5 interacts with ATF4 and modulates the expression of LAT1, a

crucial amino acid transporter. Consequently, depletion of SLFN5 in

prostate cancer (CRPC) cells diminishes the levels of intracellular

essential amino acids and disrupts mTORC1 signaling in a LAT1-

dependent manner. This investigation identifies SLFN5 as a novel

regulator of the LAT1 amino acid transporter and a significant

contributor to mTORC1 activity in castration-resistant prostate

cancer. Immunohistochemical analysis of prostate cancer (CRPC)

specimens unveiled a noteworthy association between SLFN5

expression and disease progression, along with a substantial

correlation with an elevated risk of metastasis.
4.9 SLFN5 and ovarian cancer

It is widely acknowledged that ovarian cancer cells have a

propensity for metastasis. Epithelial-to-mesenchymal transition

(EMT) is a crucial step in the metastatic process, facilitating the

detachment of tumor cells from the primary site and their adhesion to

secondary sites (59). Xu et al. (60) investigated the role of the slfn5

gene in ovarian cancer epithelial-mesenchymal transition (EMT) and

its influence on tumor invasion and migration by silencing the slfn5

gene. They observed high expression of the slfn5 gene in human

ovarian cancer cell lines. The study demonstrated that silencing

the SLFN5 gene led to reduced expression of EMT-related proteins

in ovarian cancer cell lines. Specifically, it resulted in decreased levels

of N-cadherin and Vimentin, increased levels of E-cadherin,

and decreased levels of Snail protein. Notably, when the Snail

transcription factor binds to the E-box motif (61), it causes a

reduction in E-cadherin expression (see Figure 2). E-cadherin, an

EMT-related protein, is a characteristic protein involved in mediating

cell-cell interactions within the epithelial phenotype (62). N-cadherin

and Vimentin proteins are often used as tumor markers for

identifying the mesenchymal phenotype (63). SLFN5 expression

levels increase with the malignant tumor grade and reach their

peak in ovarian tumors (13). Moreover, elevated levels of SLFN5
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expression are significantly associated with poor prognosis in ovarian

cancer patients, and targeting SLFN5 has been found to inhibit

ovarian tumor growth both in vitro and in vivo (60). However, the

observed anti-tumor effects resulting from SLFN5 depletion are

partially attributed to its interference with cell cycle progression.

This suggests that cell cycle dysregulation is a distinct characteristic of

ovarian tumors, as well as several other types of cancers (60, 64).

Consequently, SLFN5 has been identified as a novel promoter of S-

phase progression, potentially broadening the repertoire of available

cell cycle inhibitors (65, 66).
5 Conclusions

In conclusion, the research on the regulatory mechanism of

SLFN5 expression has achieved good results in recent years, such as

the breakthrough in the study of the pathway through which SLFN5

affects tumor development, the proposed inhibition of MT3-MMP

expression by SLFN5 through the AKT/GSK-3b/b-catenin pathway

to inhibit the migration and invasion of cancer cells, and SLFN 5

regulation of LAT 1-mediated mTOR activation in depot resistant

prostate cancer regulates LAT 1-mediated mTOR activation, among

other findings. More convincing studies have been carried out at

affecting reversible epithelial and epithelial-mesenchymal

transition; and research ideas have been clarified in studying the

effects of SLFN 5 on different tumors. However, it cannot be ignored

that there are still a large number of problems to be solved in the

study of SLFN5, such as the lack of research on the regulatory

mechanism and effect of SLFN5 in gastric cancer and glioblastoma,

and the lack of research on the effect of SLFN5 as a biomarker of

chemotherapy and a potential target of antitumor drugs in the

clinic, on the one hand, it is because the effect of SLFN5 is not

universal, and has not the same effect on different types/subtypes of

cancers, on the other hand, it is not universal. On the one hand,

SLFN5 is not universal, and has different mechanisms of action for

different types/subtypes of cancers and different effects on cancers,
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and part of the mechanism of SLFN5 has not yet been clarified and

is in the early stage of research; on the other hand, there is no clear

research that can show whether SLFN5 is easy to mutate and

whether it is stable when put into the production of drugs.
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