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The clinical management of oral cancer is often frequented with challenges that

arise from relapse, recurrence, invasion and resistance towards the cornerstone

chemo and radiation therapies. The recent conceptual advancement in oncology

has substantiated the role of cancer stem cells (CSC) as a predominant player of

these intricacies. CSC are a sub-group of tumor population with inherent

adroitness to self-renew with high plasticity. During tumor evolution, the

structural and functional reprogramming persuades the cancer cells to acquire

stem-cell like properties, thus presenting them with higher survival abilities and

treatment resistance. An appraisal on key features that govern the stemness is of

prime importance to confront the current challenges encountered in oral

cancer. The nurturing niche of CSC for maintaining its stemness characteristics

is thought to be modulated by complex multi-layered components

encompassing neoplastic cells, extracellular matrix, acellular components,

circulatory vessels, various cascading signaling molecules and stromal cells.

This review focuses on recapitulating both intrinsic and extrinsic mechanisms

that impart the stemness. There are contemplating evidences that demonstrate

the role of transcription factors (TF) in sustaining the neoplastic stem cell’s

pluripotency and plasticity alongside the miRNA in regulation of crucial genes

involved in the transformation of normal oral mucosa to malignancy. This review
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illustrates the interplay between miRNA and various known TF of oral cancer

such as c-Myc, SOX, STAT, NANOG and OCT in orchestrating the stemness and

resistance features. Further, the cross-talks involved in tumor micro-

environment inclusive of cytokines, macrophages, extra cellular matrix,

angiogenesis leading pathways and influential factors of hypoxia on

tumorigenesis and CSC survival have been elucidated. Finally, external factorial

influence of oral microbiome gained due to the dysbiosis is also emphasized.

There are growing confirmations of the possible roles of microbiomes in the

progression of oral cancer. Given this, an attempt has been made to explore the

potential links including EMT and signaling pathways towards resistance and

stemness. This review provides a spectrum of understanding on stemness and

progression of oral cancers at various regulatory levels along with their current

therapeutic knowledge. These mechanisms could be exploited for future

research to expand potential treatment strategies.
KEYWORDS

cancer stem cell niche, miRNA, oral cancer, oral squamous cell carcinoma, oral
microbiota, stemness, transcription factor, tumor microenvironment
1 Introduction

Oral Squamous Cell Carcinoma (OSCC), a subcategory of Head

and Neck Cancer (HNC), arises from the mucosal lining of a wide

range of anatomical regions in the oral cavity (1). World Cancer

Research Fund International - 2020 ranked lip and oral cavity

cancers as the 16th most prevalent and exemplified a global estimate

of approximately 3,77,700 cases (2). Etiologically, Oral Cancer (OC)

is linked with tobacco consumption, viral infections due to Human

papillomavirus (HPV), Epstein–Barr virus (EBV) (1). Furthermore,

Herpes Simplex Virus (3), and fungal infections particularly with

Candida albicans (4) may also be attributed to oral tumorigenesis,

however, there is a significant dearth in literature substantiating the

contributory role of such infections in OC. The five-year disease-

free survival rate is 80% in the case of intraoral carcinoma without

metastasis, while, with regional node involvement, it reduces to

40%, and further reduces to 20% with distant metastasis. The

majority of deaths occur within the first 5 years due to metastasis,

which is alarming (5).

Currently, the cornerstone therapies to manage OSCC include

surgical interventions, chemotherapy, Radiotherapy (RT), or a

combination of these modalities. Despite recent advancements in

the diagnosis and therapeutic strategies, there persist major clinical

challenges owing to drug toxicity profile, tolerability issues, patient

relapse, and emerging therapeutic resistance. The complexity of the

situation is amplified due to the aggressive and invasive nature of

the disease (6). The application of novel immunological therapies is

not yet explored completely and is often accompanied by challenges

to counter immune evasion (1). Foremost, the inability to target

Cancer Stem Cells (CSCs) is the underlying cause of the majority of

the challenges encountered in therapeutic management (7).

Conventional chemotherapy primarily aims at the apoptosis of

highly proliferating cells. Although this approach is successful in
02
eliminating the large proportion of tumor mass, the dormant CSCs

manage to survive (8). These quiescent cancer cells give rise to

several subclones with genetic similarities but differing

functionalities. The evolutionary competition among these

subclones leads to tumor heterogeneity, progression, and

endurance to resist hostile conditions imparted by various

therapeutic modalities (8–10).

Discrete anatomical regions harboring CSCs within the

microenvironment of tumors are termed “niche” which

encompasses tumor cells, endothelial and stromal cells, ECM,

signaling molecules, and blood vessels (11). This region influences

the regulatory elements that govern the key features and functions

of CSC. This CSC niche is surmised to be modulated by intrinsic

elements, such as Transcription Factors (TF) capable of cell

reprogramming, and other extrinsic players of the Tumor

Microenvironment (TME) (12). Moreover, TFs’ have shown their

influential role on remodeling of ECM (an essential component of

the CSC niche) in favor of stemness, alongside cell communication

pathways (13) and cell’s behavior and responses to external cues

(14). The proliferation of typical stem cells is precisely regulated by

cross-talks with their physiological niche, however, CSC displays

aberrant interactions and enters the mode of the abnormal self-

renewal process enabling their uncontrolled growth. Moreover, the

difference between the stem cell niche as observed in the normal

physiology and pathological conditions influence the CSCs’

intrinsic properties such as transitioning into other cell states or

being latent for a prolonged course of time or spreading to proximal

and distant organs.

In malignancy, the CSC niche favors the stem cells to

circumvent the stringent regulators of proliferation or

programmed cell death via augmenting the recruitment of TME

components such as cytokines, endothelial cells, immune cells,

Mesenchymal Stem Cells (MSC), secreting growth factors and
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tumor-associated fibroblasts, which are crucial for nurturing the

self-renewal property of CSC. In other words, this niche, preserves

the core stemness features of CSC, maintains their plasticity, shields

them from the immune system, and promotes their metastatic

potential (12, 15, 16).
1.1 Stem cells in oral cancer

CSC is a small proportion of tumor mass with characteristic

properties of stem cells specifically self-renewal, differentiation

capacity, and pluripotency. Regardless of its minor fraction, CSCs

exhibit remarkable tumorigenicity in comparison to other

subgroups within the tumor mass. CSCs are surmised to manifest

from either normal or progenitor stem cells through a series of

transformation and reprogramming processes, or they may emerge

from differentiated cells as a result of genetic and epigenetic changes

during the course of malignancy development (17–19). In OC, stem

cells play a major role in tumor development and progression. Thus,

signifying the intricate structure of tumor mass, involving CSCs

(capable of asymmetric cell division and self-renewal), transiently

proliferating progenitor cells with multi-division potential, and

non-contributory differentiated cells (20). Numerous markers are

utilized to identify CSCs in HNC. These markers not only facilitate

CSC isolation but also govern essential biological functions,

including cell proliferation, invasion, self-renewal, and survival.
1.2 Isolation and characterization
of OC stem cells

Researchers have documented the effective isolation of the CSC

population in OSCC by employing a range of cell surface markers,

including but not limited to CD98, CD133, CD44, and ALDH1 (21–

24). In addition, certain CSCs exhibit differential expression of

proteins resembling those involved in the regulation of embryonic

stem cell functions, notably OCT4, NANOG, and SOX2, which

serve as markers for CSCs in OSCC (25). However, it’s important to

acknowledge that, there is no single, specific marker that clearly

defines CSCs. Instead, multiple markers are employed in

combination to identify CSCs. This underscores the inherent

heterogeneity in the CSC population (26, 27).

Multiple investigations have revealed distinct CD44 expression

patterns between cancer stem cells and their non-cancer stem cell

counterparts across various solid tumors (28). Isolation of these

CD44-positive (CD44+) CSC subgroups has been effectively

achieved in HNC using flow cytometry sorting with CD44

antibodies (29, 30). CD44 is a multifaceted trans-membrane

glycoprotein with its primary binding affinity towards

hyaluronan. CD44 facilitates cell proliferation and survival by

activating the MAPK and P13/Akt pathways (24, 31). Along the

same line, other stem cell marker CD98+ subgroups exhibit high

expression levels of genes associated with the cell cycle and DNA

repair (21). CD133 involved in angiogenesis has been linked to a

negative prognosis in OC (23). While ALDH1+ cells contribute to

the development, metastasis, and resistance to therapy in HNC (32).
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CSCs exhibit enhanced self-renewal capabilities when cultivated

within non-adherent tumor spheres, using ultra-low binding plates

to foster undifferentiated growth of these self-renewing stem cells

(33). The quantity and growth patterns of tumor spheres are

indicative of the self-renewal potential within a particular culture

of diverse cancer cells, thus offering valuable information regarding

the presence of CSC. Consequently, within the scientific

community, the tumor sphere formation assay has emerged as a

widely adopted method for the isolation of cancer stem cells from

diverse populations of cancer cells. This method leverages the

unique characteristics of CSCs for their selective separation.

Notably, tumor sphere-forming cells identified in various

prominent tumor types and within cultured cancer cell lines

exhibit distinct attributes associated with CSCs. These

characteristics are significantly more prominent when compared

with the features identified in their adherent monolayer

counterparts, which have traditionally been classified as non-

cancer stem cells (34). Thus, tumor spheres derived from OSCC

cells exhibit increased stemness features along with elevated levels

of pluripotent transcription factors and stem cell markers such

as Lin28, NANOG, KLF4, OCT4, SOX2, CD44, and ALDH1

respectively in comparison to their attached monolayer

counterparts (35–38).

Overall, this comprehensive review embarks on multifaceted

interplay which is claimed to regulate the OSCC stemness pertinent

to the initiation, progression, and resistance. At the outset, the

mechanism of intrinsic factors that govern the CSC

microenvironment is delineated by presenting the cross-talks

between TF and miRNA. Also, the contribution of extrinsic factors

in the maintenance of OSCC stemness is elucidated through the

interplay observed in the Extracellular Matrix (ECM), and conditions

such as hypoxia, neovascularization, inflammation and infection. In

addition, a precise amalgamation of avant-garde therapeutic

strategies to address the real-world challenges is appraised. This

compilation of complex roles may open novel avenues in the future

to address the challenges and opportunities in confronting OSCC.
2 Intrinsic factors governing
OSCC stemness

The cellular state and identity of any given cell are primarily

determined by transcription profile and regulation of such profiles

forms the major aspect in controlling gene activity. The intricate

pattern of gene translation is led by the complex orchestration of

regulatory elements such as TFs, modulators of epigenetics, and

noncoding RNAs. Any mistune in the network leads to the

development of malignant conditions and other diseases (39). TFs

are a class of proteins that are capable of binding to specific

enhancer/silencer/promoter sequences on DNA that are involved

in transcription regulation. They also influence the formation of

transcription initiation complexes via the enrolment of cofactors

and RNA polymerases to their specific sites (40). In normal

physiological conditions, the determination of stem cells to

undergo differentiation or self-renewal is predominantly governed

by the intrinsic regulatory mechanisms of TFs (41). These
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established roles along with overlapping salient features between

normal and cancerous stem cells bolster the analysis of TFs in

malignancy. Indeed, the repercussion of dysregulated TFs

expression in cancer can be epitomized by the development of the

cancer hallmarks by endowing stemness characteristics to CSC (16,

42, 43). Thus, comprehending the cellular interactions of TFs is

significant for understanding the malignant progression.

In conjunction with TFs, miRNAs co-regulate the activity of the

genes. It is also an intriguing fact that TFs and miRNAs influence the

expression of each other. Further, the observed positive correlation

between the complexity of TF’s regulation of a gene and the propensity

of the same gene being governed by a miRNA strengthens the TFs-

miRNA interplay. The dynamic operations of these regulators in

connection with feedback and auto-regulatory loops co-ordinates

various cellular events. As observed in normal stem cells, the self-

renewal and pluripotency of CSCs are also regulated by the intricate

TFs-miRNAs reciprocity, and understanding their interplay in the

acquisition of stemness characteristics provides a better comprehension

of driving factors of resistance and tumorigenicity (44).

Despite frequent deliberations about TFs in malignant conditions,

only a few are recognized to be linked withOSCC. This section presents

the interplays of TFs: NANOG, OCT, c-Myc, SOX and STAT with

miRNA in OC. Figure 1 depicts TFs-miRNA network.
2.1 NANOG-miRNA network in OSCC

NANOG is an important element of the TF ensemble with a

characteristic homeodomain that is expressed during early human

development (45). It plays a role in the self-renewal and
Frontiers in Oncology 04
preservation of ground-state pluripotency of embryonic stem

cells. Diverse expression patterns of NANOG in embryogenesis,

for instance, the elevated expression in embryonic stem cells and

reduced expression in primitive endodermal cells are largely

governed by an activin/SMAD signaling pathway.

NANOG is silenced in mature and differentiated cells. The

mechanism of NANOG pertinent to maintenance of pluripotency

of undifferentiated cells is not clearly comprehended, however, it is

presumed to repress the genes that lead to differentiation. Also, this

TF is believed to activate the OCT4 gene among others, which helps

in the upkeep of an undifferentiated state resulting in over-

proliferation and rapid spread (46–48).

Of interest, OSCC studies have shown higher expression of

NANOG in the CSC subpopulation (49). Additionally, higher levels

of NANOG and OCT4 have been correlated with advanced cancer

stages and lower survival rates among patients in both OSCC and

Pulmonary adenocarcinoma (35, 50). Some of the acknowledged

factors governing NANOG expression include activation of STAT3,

Hedgehog signaling pathways, and micro-environmental

conditions favoring hypoxia (51–53).

In this section, the impinging roles of various miRNAs in

regulating NANOG expression in OSCC are conferred.

Patel S et al. (54), investigated the characteristics and underlying

mechanisms of CD44+ CSC-like OSCC subpopulation in view of

their distinct capabilities to grow anchorage-independent along

with a high degree of self-renewal potential. The results indicated

a positive association between CD44 and NANOG expressions and

speculated miR-542-3p and miR-34a as their prominent regulators.

Another study in HNC, inclusive of OSCC cell lines by Lu YC

et al. (55), established the diverse role of miR-520b in regulating the
FIGURE 1

Depicts TFs-miRNA network. TF-miRNA network in Oral Cancer: Regulation of key transcription factors (SOX4, SOX2, Nanog, STAT3, and cMyc, red
circle) by the indicated miRNAs. Color code (Magenta- inhibitory; Green-stimulatory; Yellow-unknown) indicates role of the miRNA on TF
expression. Arrowhead: ↑ points the direction of the effect.
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anti-malignant properties such as augmenting cell susceptibility to

radiation and chemotherapy, restricting the cell movement and

limiting the formation of CSCs. It was also demonstrated that the

formation of spheroid cells and expression of NANOG were

suppressed, thus indicating the prospective governing role of

miR-520b in OSCC cancer stemness.

In addition, the investigation led by Cheng-Chia Yu et al. (56),

demonstrated a significant reduction in let-7a expression, while, the

levels of NANOG/OCT4 was observed to be increased in HNC

tissues as compared to adjacent non-cancerous tissues. This inverse

association was significantly observed in recurrent and nodal

metastatic HNC status as compared to their expression in the

parental tumors.

The meticulous work of Bourguignon LY et al. (57), untangled

the possible role of NANGO/STAT3 signaling in promoting

chemo-resistance using HSC-3, a human OSCC cell line. The

authors illustrated that the binding of hyaluronan, a matrix

glycosaminoglycan ligand to CD44 promoted the formation and

nuclear localization of the NANGO/STAT3 complex. The resultant

complex enhanced the expression of the miR-21 gene and the

production of mature miR-21. This showed a downstream

inhibitory function on protein expression involved in

chemotherapy-induced programmed cell death (PDCD4).

Thereby contributing to chemo-resistance.
2.2 OCT4-miRNA network in OSCC

OCT4 is observed to be expressed in early embryonic stages.

Within the early embryo, this TF is expressed in totipotent and

pluripotent cells of the blastocyst inner cell mass and epiblast,

respectively, which possess the ability to differentiate into all types

of the embryo proper (58). In recent times, researchers have

observed OCT4 expression in tumor cells and not that of normal

somatic tissues (59). Additionally, studies have demonstrated the

close association of OCT4, with SOX2 and NANOG in

orchestrating cellular reprogramming. In the context of OSCC,

the presence of OCT4 has been associated with a significant increase

in tumor transformation, tumorigenicity, invasion, and metastasis.

Thus, it may be speculated that OCT4 may have an extended role in

the regulation of epithelial-mesenchymal transition (EMT) and its

potential significance as a marker for CSC (60).

Ghuwalewala S et al. (61), studied the impact of miR-146a in

CD44high and CD24low groups within OSCC cells and primary HNC

tumors. An increase in the levels of miR-146a was observed, which

enhanced the stemness characters by stimulating CD44high and

CD24low groups. Further mechanistic analysis revealed stabilization

of b-catenin by miR-146a with a simultaneous reduction in E-cadherin

and CD24. It was also demonstrated that the aberrant expression of this

miRNA had an influential role on OCT4.

Another study by Juan-Song et al. (62), examined the relative

relation between OCT4 and miR-155. The results revealed an

increased expression of miR-155 in OSCC tumor samples

concomitantly with that of OCT4.
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2.3 c-Myc-miRNA network in OSCC

c-Myc serves as a classical TF as well as a global regulator of

chromatin structure through histone acetylation (63). This TF is

versatile in regulating an array of cellular processes inclusive of

protein biosynthesis, metabolism, cell cycle regulation, and cell

adhesion in normal physiological conditions (64). Whilst,

compelling evidence from research studies demonstrates an

upsurge of c-Myc expression in 80% of the OSCC (65) and self-

renewal of tumor stem cells (66). Moreover, overexpression of this

TF is correlated with poor prognosis (67). This section of the review

highlights the shared relation observed in the c-Myc-miRNA axis

pertinent to OSCC.

Numerous studies have elucidated the downregulation of miR-

145 in different cancers and this miRNA is reported to exhibit a

down-regulatory effect on c-Myc. Subsequent examination of its

putative function in OC revealed that the silencing of miR-145 as an

attributing factor to evasion of tumor suppression and thus leading

to tumorigenesis.

This fact is further confirmed by Shao Y et al. (68), wherein,

restoration of miR-145 in Tca8113 cells exhibited substantial

growth suppression by impeding cell proliferation, while re-

expression of the same was observed to promote cell cycle arrest

and apoptosis. Thus, miR-145’s tumor suppressive role is mediated

via its negative feedback on c-Myc. These findings are linear with

other cancer types, for instance, colon and non-small cell

lung cancer.

miR-1294 is another regulatory mediator that targets c-Myc.

Wang Z et al. (69), revealed a negatively correlation of miR-1294

with c-Myc levels. Consequently, reduced levels of miR-1294 is

linked to unfavorable prognosis of OSCC.

miR-let-7a, has been confirmed to control diverse signaling

cascades in tumors. The tumor-suppressive characteristics of this

miRNA is widely quoted in earlier studies and the downregulation

of which could enhance the proliferation and migration of tumor

cells. Luo C et al. (70), showcased miR-let-7a downregulation in

OSCC along with overexpression of c-Myc.

The function of miR-9/9-3p in the advancement of malignancy

is often debatable owing to its tumor promoter or suppressor role in

solid tumors. Elevated expression of miR-9 in primary breast cancer

cells has endowed metastatic potential (71), conversely, miR-9-3p

overexpression is correlated with reduced rates of cell proliferation

of hepatocellular carcinoma cells (72). Online with the latter, in

OSCC, miR-9 overexpression diminished cell proliferation along

with metastatic potential and colony-forming ability. Subsequent

cell stage analysis revealed G0/G1 suppression (73). Similar to miR-

9, miR-184 also demonstrates controversial roles in malignancy.

Ryan DG et al. (74), demonstrated the expression of miR-184 in the

epithelial cells of the germinative zone using an animal model.

However, this has been less explored in human malignancy

conditions, the first report on aberrant expression in OSCC was

reported by Wong TS et al. (75), Their study revealed the

antiapoptotic and proliferative functions of miR-184 in tongue

squamous cell carcinoma. The roles of both miR-9 and miR-184
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in malignant conditions were attributed partly due to inhibitory and

stimulatory effects on c-Myc expression, respectively.

The potential targets of miR-31 were studied by Jung JE et al.

(76), in Drosophila melanogaster and OSCC cell line models. The

study confirmed the association of miR-31 in the maintenance of

human Wntless mRNA, which is a key regulator of Wnt signaling.

Furthermore, downregulation of two important transcriptional

targets of Wnt signaling, namely cyclin D1 and c-Myc were

observed. This suggests the possible role of miR-31 in governing

the cell cycle and proliferation of OSCC cells.

In another preclinical animal model, a reduced miR-139-5p was

showcased to augment proliferation and invasion of OSCC via

WNT-responsive elements such as c-Myc, cyclin D1, Bcl-2, and

CXCR4 (77).
2.4 STAT-miRNA network in OSCC

STAT belongs to a family of dormant cytoplasmic TFs, which

upon activation in response to various extracellular polypeptides

regulate gene expression (78). In pathological conditions,

oncoproteins induce a persistent transformation of latent STAT

to its active state, via tyrosine kinase signaling pathways. This

dysregulation leads to uncontrolled growth mediated via

abnormal expression of Bcl-xl, cyclin D1, c-Myc, and others, thus

causing neoplasm. In conjunction with this evidence, EGFR-

mediated constitutive activation of STAT3 leads to tumor

advancement and apoptotic dysregulation in squamous cell

carcinoma (79, 80).

Another notable causative factor for angiogenesis could be

related to a perpetual active state of STAT3 followed by an

upsurge in vascular endothelial growth factor stimulation. Taken

together, recent findings provide validating facts explaining the

STAT3’s role in cancer and the abrogation of its constitutive active

state provides a new targeted strategy in cancer therapy. This

section primarily focuses on the regulatory axis of STAT and

miRNAs by direct or indirect involvement of regulatory

components such as JAK1, SOCS1, and PIAS3 (81). STAT3 in its

constitutive active and overexpressed state has found its role in

disease progression, resistance and as well as enhancing the stem

cell features by modulating the transcription of various downstream

target genes, for example, extracellular vesicles derived from CSCs

promoted the stemness and chemoresistance via PI3K/mTOR/

STAT3 signaling in OSCC (82).

Several studies comprehending the dysregulation patterns of

miRNA in malignant conditions have concluded the overexpression

of miR-21 (14). The study conducted by Zhou X et al. (83), on

human OSCC tissues observed a co-expression of miR-21 and

STAT3. Furthermore, mechanistic analysis of suppression of miR-

21 and STAT3 co-expression by employing STAT3 inhibitor

revealed an upsurge in tumor suppressive phosphatase and tissue

inhibitor of metalloproteinase expression. Thus asserting the

oncogenesis mediated via STAT3/miR-21 pathway.

Zhuang Z et al. (84), carried out the most detailed clinical and in
vivo analysis of miR-204-5p and elucidated its onco-suppressive

role in HNC inclusive of OSCC. This study correlated a loss of miR-
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204-5p with the stimulation of Epithelial to Mesenchymal

Transition (EMT) and STAT signaling pathways which govern

tumor initiation and metastasis. miR-204 directly targets the

signaling proteins involved in stemness such as SNAI2, SUZ12,

HDAC1, and JAK2. A reduction in miR-204-5p expression exerts a

stimulatory effect on the formation of the SNAI2/PRC2/HDAC1

repressor complex, resulting in a further reduction of miR-204-5p

levels. Additionally, in the course of the transcriptional process,

STAT3 displayed interaction with SNAI2/PRC2/HDAC1 repressor

unit to suppress miR-204-5p. Thus, resulting in a feedback loop

governing the stemness.

Chang SM et al. (85), proposed STAT3 as a possible target of

miR-125b and delineated the shared mechanism of MALAT1 a long

non-coding RNA, miR-125b and STAT3 axis in OSCC condition.

This research revealed the oncogenic role of the aforesaid axis being

attributed to the over-expressed state of MALAT1 alongside

upregulated STAT3 and repressed miR-125b. Thus, an inverse

association was noticed between miR-125b and STAT3.

The ambivalent role of miR-944 has been observed in various

malignant conditions. For instance, in cervical cancer miR-944 has

a tumorigenic nature by targeting HECW2 (HECT domain ligase

W2) and S100P binding protein (86). Conversely, in colorectal

cancer it exhibits a tumor-suppressive role via inhibiting cell growth

and progression by targeting GATA binding protein (87). In OSCC,

Peng HY et al. (88), studied the complex mechanism of miR-944/

CISH/STAT3 axis in an inflammatory microenvironment. The

results revealed an upsurge in miR-944 leading to a concurrent

downregulation of CISH, which is an important immune response

mediator. Thus, directing the oncogenic role of miR-944 in OSCC.

It was also evident that the miR-944-mediated silencing of CISH

enhanced the pro-inflammatory gene expression directed by

STAT3 activation.

Let-7 family is a prominent member of matured miRNA family.

In general, they are tumor suppressive by abrogating stemness

characters, such as differentiation and regeneration of CSC.

Accordingly, their reduced expression in malignant conditions

explains the disease progression (89). In OSCC, Li X et al. (90),

elucidated the inhibitory role of let-7a on STAT3.

Huang WC et al. (91), focused on untangling the miR-365-3p/

EHF/keratin 16-axis mechanism to discern its role in OSCC

metastasis and drug resistance. Findings established an intrinsic

link between keratin protein KRT16 with integrin b5 subunit and c-
Met which resulted in the activation of Src/STAT3 signaling in

promoting cell invasion and metastasis. Furthermore, to this, miR-

365-3p was found to target ETS homologous factor by modulating

KRT16 and opposed the aforesaid oncogenic signaling. This study

evinced a decreased miR-365-3p expression and elaborated on the

stimulation of STAT3-mediated discrete signaling pathways and

regulation of stemness characters of cancer cells.
2.5 SOX-miRNA network in OSCC

SOX modulates the DNA-protein interaction owing to its high-

mobility group domain and is fundamentally involved in various

cellular signaling events of neoplastic conditions. In OSCC,
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overexpression of SOX2 has been shown to enhance invasiveness

and its ability to grow independently of anchorage, thus, signifying

its involvement in fostering stem cell-like traits (92).

The study by Wei D et al. (93), revealed the tumor suppressive

property of miR-199A-5p in OSCC. It primarily suppressed the

oncogene SOX4 and thus restrained cell mobility and invasion.

Further, the mechanistic analysis revealed its influence on the EMT

process largely by reducing the E-cadherin expression and

concurrently increasing the levels of other cell migratory proteins

such as N-cadherin, vimentin, and fibronectin.

Shi Z et al. (94), explored the role of miR-146a in OSCC through

a functional analysis which revealed a proportionate decline in miR-

146a expression with the advancement of tumor stages. Subsequent

evaluation demonstrated that the experimental elevation of miR-

146a expression downregulated the SOX2. Overall miR-146a was

found to have metastatic suppressive properties.

Chia Yu CC et al. (95), noticed decreased expression of miR-204,

particularly in OSCC-derived ALDH1+ CSCs. Overexpression of this

miRNA in the in vitro experimental settings displayed repression of

cancer stemness and tumor growth. This functionality was attributed

to its binding affinity towards slug and SOX4 which resulted in

reduced expression of these TFs in OSCC stem cells.

Zhuang Z et al. (96), analyzed the differential gene expression in

OSCC tissue samples. The results defined TP63 (particularly

DNp63) as the candidate gene that was linked with tumor

development. This candidate gene was functionally associated

with the suppression of miR-138-5p. The aforesaid cross-talk

mechanism with DNp63 was considered to indirectly modulate

the genes associated with stemness such as SOX2, CD44, NOTCH1,

and KLF4. The study conducted by Yang J et al. (97), observed a

reduced expression of miR-133b in OSCC and confirmed its inverse

association with SOX4.
Frontiers in Oncology 07
3 Extrinsic factors governing
OSCC stemness

In recent times, the notion of cancer ecology has emerged,

viewing cancer as an evolutionary ecological process. The growth

of cancer cells is contingent upon interactions with elements in the

TME, involving a mutual exchange of substances that facilitate

mutualism and co-evolution. Furthermore, the progression of

malignancy is regarded as an ecological invasion (98). Cross talks

occurring in the CSC niche pertinent to the elements recruited

from TME such as fibroblasts, growth factors, determinants

of EMT, inflammatory and immune components, hypoxic

features and angiogenesis mechanisms are delineated in detail.

Figure 2. illustrates the mediators and pathways governing oral

tumorigenesis and stemness in the TME.
3.1 Cross-talks involving ECM components

ECM is a non-cellular network of cross-linked macromolecules

comprising glycoproteins, collagens, and proteoglycans which

forms a crucial supramolecular scaffold. It offers numerous

valuable cues that influence tumor development and

metastasis (99).

3.1.1 Cancer-associated fibroblasts
CAFs are vital stromal cells present in the TME recruited by

tumor-secreted factors. They are involved in the synthesis and

remodeling of ECM components, which in turn affects tumor

progression (100). CAFs expressing Lysyl Oxidase, a copper-

dependent amine oxidase (101), and a-Smooth Muscle Actin (a-
FIGURE 2

Illustrates the mediators and pathways governing oral tumorigenesis and stemness in the TME. Cross talks in Oral CSC niche: Recruitment of
fibroblasts, growth factors, determinants of EMT, inflammatory and immune components from TME; hypoxic features; angiogenesis mechanism;
mediators and pathways governing oral tumorigenesis and stemness in the TME.
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SMA), were found to augment proliferation, migration, invasion, and

EMT processes in OSCC cells. The underlying interplay was

characterized by the upregulation of vimentin and N-cadherin,

down expression of E-cadherin, and cross-linking of collagen

leading to increased matrix stiffness causing ECM remodeling via

phosphorylation of the FAK pathway. This pattern of expression also

contributed to increasing tumor differentiation and poor patient

prognosis (102). Besides the FAK pathway, matrix stiffness and

transcription of tumor cells are linked to elevated AMPK levels and

were further stabilized by Integrins (ITGAV or Integrin aV, to be

more specific), showcasing ITGAV-FAK-AMPK-Autophagy

signaling axis as a worthy target for future therapeutic approaches.

Thus, it is clear that fibroblasts induce stromal autophagy, creating a

protumorigenic niche for cancer development (103).

3.1.2 Growth-regulated oncogene alpha
A study analyzed the role of GRO-a derived from oral

submucous fibrosis-associated fibroblasts in OSCC development.

GRO-a, a member of the CXC family was found to be upregulated

in dysplastic oral keratinocytes and promoted the proliferation,

migration, and anchorage-dependent growth of these precancerous

cells by enhancing the EGFR/ERK signaling and F-actin

rearrangement. Additionally, cancer stemness was established by

increased expression of NANOG. This infers that GRO-a facilitates

oral malignant transformation attributing to oral tumorigenesis

(104). Another study observed elevated levels of GRO-a and tumor-

promoting interleukins corresponding to the expression of

angiopoietin-like protein. This can in turn induce CAF-like

phenotypes within the stromal fibroblasts of OSCC cells and

increase the levels of CAF markers, a-SMA and FAP, making this

a potential quarry for targeted therapies in the future (105).

3.1.3 Transforming growth factor b
TGFb is a cytokine secreted within the ECM. This intricately

controls a plethora of biological mechanisms during carcinogenesis

and metastasis. TGFbmediates antiproliferative properties and acts

as a tumor suppressor in the course of early tumorigenesis, while, at

advanced stages, it acts as a tumor promoter cytokine assisting in

metastatic progression via an autocrine TGFb loop (106). TGFb-1,
via phosphorylation of SMAD2, was found to stimulate MMP-2

and MMP-9 with the aid of the MT1-MMP/MMP2 axis. Activation

of MMP9 could potentially contribute to the proteolysis of the

matrix which could further support the invasion of OSCC cells

(107). TGFb generates slower-cycling squamous cell carcinoma

stem cells and also mediates tumor invasiveness, cell

dissemination, and aberrant differentiation of these cells by a

non-genetic paradigm. These slow-cycling cells have further

shown to develop resistance towards traditional chemotherapy

agent cisplatin, by preventing apoptosis of these malignant cells.

Further, TGFb expression can markedly enhance glutathione

metabolism by activating p21, which stabilizes NRF2 and

enhances not only chemoresistance but also metastasis and

survival of these CSCs. These findings open new avenues for

design and development of chemotherapeutics that might

circumvent drug resistance (108).
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3.1.4 Factors influencing EMT
EMT is a vital course in tumorigenesis where a polarized epithelial

cell can undergo a myriad of biochemical changes to transform into a

mesenchymal cell phenotype. This transformation results in increased

invasiveness, migratory capacity, resistance towards apoptosis, and

generation of ECM elements within the tumor (109). Several TFs

influence the EMT process, for instance, SOX2 was found to enhance

EMT traits along with stemness properties such as invasiveness,

anchorage-independent growth, and xenotransplantation

tumorigenicity among CD44 and ALDH1-rich OSCC cells. SOX2

expression was also responsible for increasing resistance towards

radiation therapy and cisplatin, making SOX2 a good therapeutic

target (92). Conflictingly, CD44 positivity was found to decrease

linearly with increasing cancer cell differentiation, leading to an

increased Tumor Budding Activity (TBA) and a smaller Cell Nest

Size (CNS), two key features driving the EMT process. This altered

CD44 expression was in favor of high OSCC aggressiveness and

unfavorable epithelial cell transition (110). Similarly, the ectopic

expression of SOX8 was found to initiate EMT and stemness

properties. This was characterized by elevated BMI1, SOX2, OCT4,

and ABCG2 markers within cisplatin-resistant OSCC cells by means of

the FZD7-mediated Wnt/b-catenin pathway, significantly contributing

to poor prognosis and increased chemo-resistance (111). NFATc3, a

member of TF family was found to be upregulated in ADLH1-rich

OSCC CSCs. Herein, NFATc3 demonstrated binding with OCT4, a

stemness factor, that harbored the self-renewal properties and tumor

sphere formation along with increasedmigration capacity. Additionally,

NFATc3 expression conferred enhanced cisplatin resistance in these

OSCC cells. This study unveiled the NFATc3-OCT4 axis as a novel

pathway underlying the CSC/EMT features, oral tumorigenesis, and

chemo-resistance. Prospective drug research can unearth potential

therapeutic targets underlying the aforesaid interplays (112).
3.2 Cross-talks involving inflammatory
cytokines and immune complexes

Cytokines are tumor cell secretomes involved in aberrant cell

differentiation, proliferation, metastasis, angiogenesis, and survival

alongside promoting interactions between the cells. They assist in the

recruitment of multiple immune cells, thereby triggering immune-

mediated cancer cell neutralization. Tumor-Associated Macrophages

(TAMs), mast cells, dentritic cells and T-cells are some of the immune

cells which are vital components of the tumor microenvironment

dictating tumorigenesis, cancer progression and stemness. Mast cells

and dentritic cells have been involved in modulating the

microenvironment (TAM and lymphocytic recruitment) and helping

neoplastic cells evaded the immune system. However, TAMs are one of

the major immune cells involved actively in promoting tumor

development and progression (113). This section sheds light on some

of the cross-talks of key pro-tumor cytokines with the OSCC niche.

3.2.1 Interleukins
IL-6 and IL-8 are the two predominant interleukins expressed

in HNC (114). A research carried out by Hsu PC et al. (115),
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correlated the overexpression of IL-6 and IL-8 with the promotion

of invasiveness of OC cells via phosphorylation of the STAT3

signaling pathway. Additionally, these cytokines were considered

to initiate the EMT process featured by reduced E-cadherin and

augmented vimentin expression within these cells. Overexpression

of IL-8 can result in enhanced cancer stemness and tumor

aggressiveness. This was in agreement with the study conducted

by Peng CY et al. (116),. This study unveiled that Let-7c was

significantly downregulated in OSCC cells. This in turn enhanced

the IL-8 overexpression, attributing to the self-renewal capacity of

these tumors. Additionally, this pattern of expression was also

responsible for increased resistance towards chemo-radiation with

cisplatin. Lee CR et al. (117), assessed the differential expression of

around 25 cytokines in oral tumor spheres and linked their

interdependency with the Jumonji domain-containing protein 6

(JMJD6) which is a histone arginine demethylase protein. Amongst

the studied cytokines, IL-4 was found to be significantly increased

and directly correlated to JMJD6 modulation, leading to its

increased expression. This high JMJD6 expression mediates oral

carcinogenesis, anchorage tumor growth, and migration, and

augmented CSC properties of self-renewal and colony formation.

JMJD6-regulated CSC phenotype was established by upregulation

of genes associated with CSC such as FGF4, Gli1, Gli3, IL-4,

Lin28A, Lin28B, OCT4, Zeb1, and Zeb2. These results revealed

that JMJD6 regulated IL-4 expression via binding to IL-4 promoter

in CSC, signifying a novel CSC governing process involving the

JMJD6-IL4 axis. Intriguingly, increased JMJD6 expression also

exhibited resistance towards traditional chemotherapy agents such

as doxorubicin, methotrexate, and etoposide.

3.2.2 Tumor necrosis factor alpha
TNF-a is an inflammatory cytokine which takes part in the

maintenance of various cellular signaling processes (118). TNF-a is

one of the most abundant pro-inflammatory cytokines followed by

CXCL-8 in the oral MSC secretome, which could potentially mediate

tumor development (119). Tumor associated macrophages (TAMs)

play a vital role in the production of TNF-a which can be associated

with increased stemness in OC (120). Similarly, CSC expressing high

levels of CD44 were found to significantly elevate TNF-a secretion

along with other inflammatory cytokines such as Interleukins (IL-

1beta, IL-10, IL-12) and angiogenic factors (Angiopoietin-1 & 2,

VEGF, and bFGF) owing to increased oral tumor stemness (121).

TNF- a was reported to increase the proliferation capacity by

constantly elevating the key stemness TFs such as KLF4, Lin28,

NANOG, and OCT4 in HPV-immortalized oral keratinocytes. On a

similar note, this cytokine maintains CSC properties such as

expression of surface markers (CD44high/CD24low), increased

migration, self-renewal capacity, and anchorage-independent

growth, which could promote the malignant growth of OC. A

novel activation of the TNFa/miR-203/miR-200c axis was evinced

to promote the aforesaid CSC characteristics. Herein, the

microRNAs: miR-203 and miR-200c were downregulated, in turn

triggering the Notch signaling pathway. In the context of therapeutic

failure, TNF-a expression was interrelated with increased resistance

towards cisplatin and RT (122).
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3.2.3 Chemokines
Chemokines are subtypes of cytokines with ambivalent

potential as they are part of the tumor inflammatory process,

involved in neoplasia alongside recruitment of various tumor-

associated immune cells (123). Multiple chemokines and their

receptors interact with each other and the TME components to

mediate various clinical facets of cancer development, progression,

and stemness (124, 125).

In general, chemokines mediate the infiltration of CD8+T cells

in the TME thereby, displaying an anti-tumor effect. In HNC and

OSCC, the following chemokines: CCL5, CCR5, CCR2, CXCR3,

and CXCL9 were found to be downregulated. This repression is

negatively linked with YKT6 gene overexpression, which is

presumed to be due to modifications in the DNA methylation

levels and copy number variation in this gene. This differential

YKT6 gene expression was reported to result in reduced infiltration

of CD8+T-cell in the tumor niche. Furthermore, patients with copy

number amplification of YKT6 gene demonstrated a reduced CD4

+T cell and B cell infiltration (specifically in HPV-positive cohorts),

reflecting that this genetic aberration may be linked with the

remodeling of the immune microenvironment in HNC/OSCC.

Immune dysregulation in the TME of this sort could potentially

favor malignant progression, recurrence of tumors, and poor

patient prognosis (126). CXCL8 is another pro-inflammatory

cytokine that was found to be a vital component in the

propagation of Oral Cancer Cells (OCC) (119). CCL2 is a major

player in proliferation, migration, invasion, and tumor growth, via

phosphorylation of NF-kB and STAT3 pathways. Production of

CCL2 was majorly from CAF and its high expression among OCC

was the reason for the CAF-OCC cross-talk. CCL2 upregulation

was responsible for ROS production and vice-versa, involving the

PI3K/Akt/mTOR pathway, leading to elevated levels of cell cycle

proteins (cyclin D, cyclin E, and CDK4) and ultimately, oral

carcinogenesis (127). CAF-expressed chemokines such as CCL17

and CCL22 were both found to upregulate Treg infiltration within

the OSCC microenvironment, favoring an immunocompromised

tumor background (128). CCL18 is another chemokine that is

found to be upregulated in OSCC cells and is responsible for the

promotion of EMT via overexpression of Slug protein (an EMT-

associated TF). In addition, cancer stemness was enhanced by

expression of OCT4 and Bmi-1 alongside tumor sphere formation

within ALDHhigh+ and CD133-expressed cancer cells. All of these

cascades were ascribed to mTOR pathway activation (129).

CCL21 and CCR7 were upregulated in OSCC cells and their

interaction was found to induce EMT via loss of E-cadherin and

gain of vimentin & N-cadherin, further enhancing the invasion,

proliferation, and migration. Concurrently, CSC-related markers

such as ALDH1A1, BMI, CD44, CD133, and OCT4 were

upregulated, directly suggesting that the CCL21/CCR7 axis was

responsible for increased OSCC stemness and chemo-resistance

towards cisplatin, elucidated via activation of the JAK2/STAT3

pathway (130). Certain eotaxins (selective eosinophil

chemoattractant), for instance, CCL11 (Eotaxin-1) showed

enhanced interaction with CCR3 resulting in increased eosinophil

infiltration, leading to a tumor-associated tissue eosinophilia
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condition in the OSCC niche. However, the functions of eosinophils

in the oral tumor background needs to be further investigated (131,

132). Another chemokine, CCL22 was found to be overexpressed in

tongue cancers. Its increased interaction with CCR4 led to

enhanced recruitment of TAMs (mostly, M2-type), Treg, and Th2

cells with a suppressed CD8+T-cell infiltration. This altered

immune behavior exhibited an increased proliferative index and

poor overall survival rate (133).

3.2.4 Tumor-associated macrophages
Infiltration of TAMs in the tumor background has not only

been correlated with tumor progression (134), but has also

contributed to cancer stemness and poor treatment outcomes.

TAMs are typically maintained in an M2-polarized state and

are also involved in the remodeling of the ECM and

immunosuppression in the TME (135).

Hsieh CY et al. showcased the infiltration of TAM into the

TME. These macrophages were responsible for the secretion of

various interleukins, IL-1b being the predominant one. Increased

IL-1b secretion within the TME is believed to upregulate ICAM1

expression, which enhances cancer stemness. IL-1b was also

reported to activate superoxide dismutase 2 and inhibit catalase,

thereby modulating the ROS levels intracellularly and further

activating ICAM1 expression. Upon ICAM1 activation,

mesenchymal markers such as fibronectin, N-cadherin, and

vimentin were observed to be elevated whereas, epithelial marker

(E-cadherin) was suppressed, reinforcing the increased EMT

features. Further, the IL-1b-SOD2/CAT-ICAM1 pathway is

exemplified to contribute to chemoresistance towards docetaxel

(136). TAM markers, CD68 and CD163 were highly expressed in

OSCC samples in comparison to normal oral mucosa and dysplastic

cell samples. Expression of stem cell markers such as ALDH1,

CD44, and SOX2 was directly related to CD68 and CD163

positivity. The presence of these stem cell markers directly

affected the tumor stage and pathological grading but the

expression of the TAM markers did not have any influence on

these tumor characters. However, expression of CD68 and CD163

were remarkably related to the aggressive behavior of OSCC,

including nodal involvement. Significant expression of CD163

was linked with an unfavorable overall survival in patients, and

thereby serves as a potential diagnostic and prognostic marker in

OSCC patients (137).

M1-like TAMs have also been shown to uphold the malignant

progression of OSCC cells by modulating the CSC characteristics.

An important correlation amongst M1-related markers (CD68,

CD80 and CD86) and elevated levels of EMT-related markers

(Ki67, CD10, CDH2, TWIST1, VIM, and SNAI1) was identified.

Additionally, MME and MMP14, the CSC markers, were also found

to be sharply increased, indicating the regulation of the EMT/CSC

process of OSCC cells. Similarly, IL-6 was markedly secreted from

these macrophages and exhibited a significant correlation with

CD80 and CD86, thus regulating M1-like TAM functions such as

migration, invasion, and colony as well as microsphere formation

via stimulation of the JAK/STAT3 pathway. Additionally, STAT3

activation enhanced the transcription of Thrombospondin-1
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(THBS1) in OSCC cells, which promoted a positive feedback

mechanism among M1-like TAMs and OSCC cells displaying

mesenchymal/stem-like phenotype (138, 139).
3.3 Cross-talks in hypoxic and glycolytic-
laden microenvironment

The canonical hypothesis on the effect of hypoxia on malignant

cells is thought to morphologically constrain them. Surprisingly,

they adapt and transform into a more aggressive state by

intensifying neoplastic drivers. The hypoxic environment is much

more prevalent in rapidly proliferating neoplastic cells due to the

growing metabolic demands. However, their adaptive “Warburg

effect” stratagem enables them to survive in the most hostile

oxygen-deprived conditions (140). The Cancer Genome Atlas

dataset revealed that OSCC, a subset of HNSCC, is the most

hypoxic type of cancer among various other malignancies. OSCC

manifests with substantial necrotic areas, in which CSC resides in

acidic and hypoxic conditions (141, 142). There are also reports to

indicate that hypoxia fosters cell migration and CSC stemness

(143). The adaptive mechanism involves the fine interplay

mediated by Hypoxia Inducible Factor (HIF), unfolded protein

reaction, mTOR signalling, and Autophagy. Dong W et al. (144),

focused on comprehending the putative oncogenic role of the

Special AT-rich sequence-binding protein 2 gene (SATB2) in

OSCC under hypoxic conditions. An increase in the assemblage

of autophagosomes, the transformation of microtubule-associated

protein light chain – LC3-I to LC3-II, and an upsurge in the Beclin-

1 expression with stemness markers such as OCT4, SOX2, NANOG

were observed. Additionally, silencing of SATB2 demonstrated

suppression of colony-forming ability led by hypoxia. These

findings provide a vital linkage between stemness with hypoxia in

OSCC. In line with this, an experimental study by Chatterjee R et al.

(145), concluded the concomitant upregulations of the Sonic

Hedgehog pathway (Shh-Gli-1) and the preponderance of

hypoxia in OSCC.

Another study by Duan Y et al. (146), showed that hypoxia

augments Bcl-2/Twist1 interaction by inducing and amplifying Bcl-

2 binding to Twist1, thereby facilitating the EMT process. Further, it

was observed that the rate of nuclear translocation of these factors

was higher in tumor cells under hypoxic conditions. This would

synergistically promote the transcription of downstream target

genes resulting in a sequence of alterations in cell phenotype

remodeling, migration, invasion, and tumor growth. Further,

Marconi GD et al. (147), showcased the interaction between

certain transcriptional genes, c-Myc, and HIF. This c-Myc-HIF

interlink collaborated with oncogenic signaling pathways such as

Akt/mTOR, Notch signaling and ERK/MAPK. This resulted in

altered cell cycle, cell metabolism, ribosome biogenesis, and

genomic stability in oncogenesis. The observed pathophysiological

re lat ionships corroborate the stemness prevai l ing in

hypoxic conditions.

Expression of HIF-1a has been linked to hypoxia-induced

oxidative stress mediated via ROS generation in OSCC cells.
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Further, the expression of 4-Hydroxynonenal, a product of lipid

peroxidation, was also evinced. Increased oxidative stress was

considered to promote the EMT process, facilitating tumor

migration through enhanced phosphorylated ERK activity.

Additionally, there was elevated B-catenin colocalization in the

OSCC cells’ nuclei. Another striking finding in this study was the

contribution of the upregulated Shh/Gli-1 signaling axis and

survivin overexpression in further mediating the EMT process,

acquiring stemness properties associated with CD133 and

ALDH1 overexpression, maintaining the CSC phenotype, and

facilitating ROS production in these hypoxic OSCC cells (116).

Hypoxia enhances the expression of a transcriptional protein

namely SATB2 which promotes OSCC tumor development and

stemness. SATB2 overexpression was further linked to hypoxia-

induced autophagy characterized by increased LC3-I, LC3-II, and

Beclin-I levels. Additionally, SATB2 influenced the OCT4, SOX2,

and NANOGmediated stemness, invasive and migratory properties

of these cells. Overall, this study concluded that the knockdown of

SATB2 could be a promising therapeutic approach to downregulate

these stemness and tumorigenic properties of OSSC cells, by

inducing cell cycle arrest (G0/G1) and apoptosis even under

hypoxic conditions (144). Conversely, ROS-mediated ER stress

was claimed to be beneficial in inducing apoptosis within OSCC

cells (148).

Glycolysis provides the necessary energy required by cancer cells

to undergo proliferation and regulate apoptosis (149). Per2, a vital

gene involved in glucose metabolism in various cancers (including

OSCC), was found to enhance glycolysis. Downregulation of this

gene increased the levels of key glycolytic rate-limiting enzymes such

as hexokinase, pyruvate kinase, and lactate dehydrogenase and

thereby, inhibited apoptosis and facilitated the proliferation of

OSCC cells via the PI3K/Akt pathway (150). Another study

identified the role of enhanced HIF-1a and mTOR expression in

initiating glucose metabolism within OSCC cells. Additionally,

GLUT1 and hexokinase 2 levels were found to be significantly

increased in these cells, indicating a potential involvement of the

PI3K/Akt/HIF-1a pathway in oral tumorigenesis by promotion of

glycolysis and gluconeogenesis (151). Overexpression of GLUT1 not

only correlates with glycolysis but also with enhanced hypoxia and

angiogenesis in the preliminary stages of OSCC development. Co-

expression of GLUT1 and OCT 3/4 is regulated by stem cells in these

infant phases of OC development and has a direct correlation with

unfavorable tumor differentiation and patient prognosis (152).

Glycolysis was also responsible for facilitating the EMT in OSCC

cells which was characterized by elevated vimentin & snail and

reduced E-cadherin expression. Stemness was also maintained due

to enhanced CD44, NANOG, and CD133 expressions. These findings

are suggestive of the pro-tumorigenic roles of glycolysis in oral tumor

development, migration, and poor patient prognosis (153).
3.4 Cross-talks influencing angiogenesis

Marconi GD et al. (147), demonstrated the significant

expressions of Bcl-2, c-Jun, c-Myc, ERK 1/2, pERK1/2, HIF-1a,
MMP-9, and VEGF proteins among untreated OSCC cell samples
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in comparison to cells treated with doxorubicin. The aforesaid

proteins are allied with angiogenesis, hypoxia, inflammation, and

enhanced migration, invasion and survival. Among the suspected

proteins, a vital interplay identified between Myc-HIF-1a could

offer a conducive microenvironment for the growth and stemness of

these OSCC cells. Incorporating doxorubicin was considered to

downregulate the pathways activated by c-Myc, which might reduce

these tumorigenic features and present c-Myc as a potential

therapeutic target. THBS1 was found to stimulate various Matrix

Metalloproteinases (MMPs) such as MMP3, MMP9, MMP11, and

MMP13 partly via the integrin signaling and coordinate OC

invasion. Additionally, MMP-9 was associated with angiogenesis

in OC (154, 155). Another study found that OSCC-associated

vascular endothelial cells showed exaggerated CD44 expression

which was associated with increased proliferation and

angiogenesis. CD44 expression was in turn responsible for the

elevation of ECM proteins such as TGFb and MMP9, which

further enhanced the fusion of these endothelial cells with ECM

components to promote tumor neovascularization. Even though the

exact mechanism underlying CD44 mediated angiogenesis is not

well established, it can definitely be taken into account that CD44

positivity can serve as a good diagnostic biomarker to potentially

direct the initiation of anti-angiogenic therapies (156). Aberrant

VEGF and CD44 expression in OSCC cells could also contribute to

radioresistance. The relationship between these two markers could

also pave a path towards the possible mechanism dictating this

radioresistance. Hence, combining VEGF or CD44 inhibitors with

RT would be an acceptable option for achieving a better treatment

outcome (157).
4 The impact of oral microbiota on
OSCC tumorigenesis

Current research findings have acknowledged the involvement

of various infectious agents in tumorigenesis. In healthy status, the

microbiome shares a sophisticated homeostatic balance with their

human hosts, a phenomenon that is increasingly referred to as

normobiosis. However, any perturbation to this eclectic microbial

composition could lead to dysbiosis which is often related to the

transition from healthy to diseased conditions (158). For instance,

dental caries and periodontitis are considered as microbial

dysbiosis-associated diseases (159). Furthermore, it has been

demonstrated that disrupted oral microbiota could mediate the

fulfillment of the major hallmarks of cancer. Thus, of late within the

scientific community, there is a heightened emphasis on

comprehending the contribution of oral microbes in the tumor

development. Viruses such as EBV, hepatitis B & C virus, human T-

cell leukemia virus-1, Kaposi sarcoma-associated herpesvirus,

Merkel Cell polyomavirus, and Simian 40 virus have been

correlated in neoplasia (160). Amongst bacteria, it is a well-

established fact that Helicobacter pylori has a significant relation

with various gastrointestinal cancers (161). Addressing the

roadblocks in decoding the multifaceted mechanisms of OSCC is

also correlated with microbiomes. Earlier studies utilizing culture

and biochemical characterization have demonstrated an abundance
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of C. albicans, aerobes, and anaerobes on the tumor surfaces in

comparison to the healthy mucosal surface (162). The impinging

role of microbes in OSCC progression is attained by virtue of

distorting the host cell proliferation and apoptosis equilibrium,

immune dysfunction, and affecting the host metabolism. Some of

the acknowledged carcinogenic mechanisms observed in infectious

conditions are DNA alterations caused by bacterial toxins as well as

due to the reactive oxygen and nitrogen intermediates produced by

the host. When these damages surpass the cell restoration, they may

cause mutational changes and thus leading to cancerous conditions.

b-catenin signal transduction is another frequently observed target

of microbes resulting in the upregulation of genes that normally

take part in cell proliferation. Inflammatory conditions engendered

due to the infection, mediate the signaling pathways involving NF-

kb and STAT3 (163). This section mainly involves examining the

influence of the oral microbiome in the acquiescence of stemness in

OSCC. Figure 3. demonstrates the mechanisms of selected oral

microbes in oral tumorigenesis and stemness.
4.1 Influence of Porphyromonas
gingivalis in OSCC

P. gingivalis, a gram-negative oral anaerobe magnifies chronic

periodontitis to an aggressive OSCC (164). The aforementioned fact

was reinstated by Sayehmiri F et al. (165), through their meta-

analysis revealing that the existence of microbe increases the risk of

advancement of carcinoma by more than 1.36 times. Interference

with tissue integrity followed by disruption of the host cell’s

immune response such as instigating cell proliferation, and
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and cometabolite generation are the key onco-pathological

mechanisms mediated via P. gingivalis (166).

This section appraises the migratory and invasive potential of

prolonged exposure of P. gingivalis on OSCC cells. Ha NH et al.

(167), observed EMT subsequent to repetitive infection of OCC by

P. gingivalis, which was characterized by reduced expression of

epithelial marker, Cytokeratin 13; and upsurge of mesenchymal

markers such as N-cadherin and a-SMA, alongside TFs such as

snail, slug, and twist. OSCC cells infected with P. gingivalis also

exhibited a higher degree of migratory potential. Further, an

intriguing mechanism of chemo-resistance conferred by P.

gingivalis on OSCC cells was evinced. Herein, P. gingivalis slowed

down the proliferation of OSCC cells which accounted to higher

levels of cell cycle inhibitor, p21 and reduced levels of cell cycle

progression molecule, cyclin D1. Since, non-proliferative state cells

are insensitive to a number of chemotherapeutic agents, P.

gingivalis-infected OSCC cells exhibited chemoresistance with

paclitaxel treatment. In agreement with the fact that EMT and

chemoresistance correlate with cancer stemness, this study

demonstrated the overexpression of CSC markers such as CD44

and CD133 with repeated P. gingivalis infection. Subsequent

analysis of cytokine profile in P. gingivalis infected OSCC cells

was carried out to capture the association of EMT with cytokines.

This revealed the overexpression of IL-8. Later, the involvement of

MMPs in cancer migration and invasion was examined, which

demonstrated a substantial upregulation of MMP-1 and MMP-10

in P. gingivalis infected OSCC cells. Further, upon studying the

influence of IL-8 on MMP, it was observed that IL-8 selectively

increased the release of MMP-1 and MMP-10. By infecting OSCC
FIGURE 3

Demonstrates the mechanisms of selected oral microbes in oral tumorigenesis and stemness. The possible mechanisms by which oral bacteria
contribute to oral carcinogenesis and stemness; Color code of mechanism representation: Porphyromonas gingivalis mechanism (purple color),
Streptococcus mutans (teal blue), Human papillomavirus (orange), Epstein-Barr virus (magenta).
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with P. gingivalis, this study simulated the TME of OSCC cohorts

with chronic periodontitis and showcased the outcome of

periodontitis in the development of OC at the molecular status.
4.2 Influence of Streptococcus
mutans in OSCC

Given the fact that oral microbiota demonstrate a key

association with the advancement of OC, the increased scrutiny

of a wide range of microbes disclosed the carcinogenic potential of

Streptococcus species.

For instance, presence of S. anginosus was observed in human

oral and pharyngeal cancer biopsy samples (168). This observation

was reinforced by several research studies (168, 169) signifying this

species as a promising non-invasive biomarker to aid in early

detection of oropharyngeal cancer (170). In case of S. mitis, there

were controversial reports on its association with OSCC (171, 172).

This section focuses on the tumorigenic potential of S. mutans in

OSCC. Tsai MS et al. (173), investigated the microbiome diversity in

oral biofilms of OSCC patients and healthy controls to delineate the

potential link between the enriched organisms with OSCC. The study

revealed a higher species richness and a substantial difference in the

overall microbiome composition in OSCC biofilms as compared to

control. Subsequent linear discriminant analysis captured S. mutans to

be differentially enriched with more abundancy in OSCC condition,

amongst the observed pool of Streptococcus microbiome. Additionally,

DESeq2 analysis demonstrated a substantial difference in S. mutans

uncovering its role in OSCC. For further precision, qPCR displayed an

ample amount of 16S rDNA pertinent to S. mutans in cancer samples

signifying the high frequency of incidence and abundance of this

species in carcinoma. Moreover, the levels of this microbe of interest

were found to be enhanced in the biofilms of patients with gross tumor

than those devoid of the same. Post this, DNA extraction from the

OSCC samples coupled with qPCR revealed the significance of S.

mutans in locally advanced carcinoma compared to early stage,

indicating its association with OSCC prognosis. Similarly, the greater

prevalence of S.mutans in cancer tissues was also associated with a poor

disease-control contributing towards tumor aggressiveness.

Consecutive experimental research involving 4NQO- induced

oral-tongue cancer in mouse correlated the S. mutans infection with

enhanced glucose uptake by the lesions, Myeloid-Derived

Suppressor Cell (MDSC) recruitment and risk of developing

invasive carcinoma.

Moreover, in vitro wound healing assays utilizing S. mutans-

infected human OSCC cells demonstrated an enhanced EMT-

linked features such as increased b-catenin and MMP-9 levels,

lowered E-cadherin expression, and higher levels of CSC markers

such as CD44 and ALDH1 along with noticeably increased invasive

potential. Additionally, the microbial infection is also reported to

potentiate lung metastasis.

S. mutans infection-induced autophagy caused IL6 expression

which is evinced by attenuation of the later post treatment with 3-

methyladenine, an autophagy inhibitor. Additionally, in vitro IL6

suppression reduced the expression of EMT markers in OSCC cells

infected with S. mutans in addition to weakening cell invasion.
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The relationship between tumor growth and IL6 signaling

studied in orthotopic xenograft model demonstrated that S.

mutans infection greatly increased glucose uptake, which is

connected to accelerated tumor growth and EMT alterations.

Conclusively, it is acknowledged that S. mutans infection

contributes to OC development and progression with its potential

role in enhancing the levels of IL-6, EMT-related, and CSC-related

proteins besides, MDSC recruitment.
4.3 Influence of human papillomavirus
in OSCC

HPV, especially HPV-16 infection is reported as a significant

etiological factor contributing to Oropharyngeal Squamous Cell

Carcinoma (OPSCC) in developed countries. Moreover, the

American Joint Committee on Cancer staging system in their

recent revision distinguished HPV-positive and HPV-negative

OPSCC as discrete entities possessing unique molecular

characteristics and tumor features, with the former demonstrating

a better prognosis. Deriving hints from the above established role of

HPV in OPSCC, the current section focuses on elucidating its

influence on the disease biology of OSCC (174).

Lee SH et al. (175), investigated the virulence augmenting role of

HPV-16 in the HPV-negative OSCC cell lines. Initially, HPV-16

whole genome was transfected in OSCC cell lines (UM6, SCC105,

UM10b, SCC66) devoid of HPV to assess the promotion of malignant

phenotype. This revealed that HPV-16 E6 and E7 were expressed in

the transfected cell lines. Viral transfection imparted a robust

anchorage-independent growth ability, colony-forming efficiency,

and malignant histomorphology with invasive features in OSCC

cells. Later, xenograft tumor assay in nude mice displayed a

dynamic increase in tumorigenicity in HPV-transfected animals.

Subsequent tumor sphere formation assay showcased the self-

renewal property of HPV-negative OSCC on exposure to high-risk

HPV. This underscores the presence of stemness features mediated

through elevated expression of c-Myc, Bmi1, KLF4, OCT4, and

NANOG and associated self-renewal capacity. Besides, flow

cytometry revealed a dramatic increase in the ALDH1 population,

a crucial CSC marker. Transwell migration assay and matrigel

invasion assay displayed a noteworthy enhancement in migration

and invasion properties respectively, accentuating the stemness

characters in the HPV-16 transfected group.

Further, miRNA expression profiling of HPV-16 transfected

OSCC cells revealed a consistent downexpression of miR-181a and

miR-181d. These results demonstrated that HPV16 increased

tumor development and CSC phenotype among HPV-negative

OSCC cells by transcriptionally subduing miR-181a/d. Novel

therapies may be aimed at restoring the expression of miR-181a/d

to abrogate HPV-induced oral carcinogenesis.
4.4 Influence of Epstein-Barr virus in OSCC

There are compelling evidences to showcase the association

between EBV and malignant conditions, however, their
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carcinogenic role is still under investigation. EBV-positive

individuals are often associated with presence of infection in

pharyngeal lymphoid tissues which serve as a crucial source of

the virus (176). Kis A et al. (177), found that 73.8% of OSCC patient

samples were supportive for presence of Latent Membrane Protein-

1 (LMP-1), a marker of most EBV-related malignancies, compared

to the controls (19.1%). The study by Jiang R et al. (178), is based on

the fact that the relationship between EBV and OC is much sporadic

and its role as a carcinogen is still ambiguous. The study examined

the expression level of Cytokeratin 19 (CK19) an intermediate

epithelial filament protein that serves as an epithelial stem cell

marker. It was demonstrated that expression levels of CK19 were

remarkably higher in EBV-infected dysplastic epithelium in

comparison to negative ones and the same was observed in the

case of infected and non-infected OSCC conditions. These findings

of higher transcript levels of CK19 in EBV-positive conditions

within similar grade of dysplasia or malignant differentiation is

highly intriguing.
5 Stratagems in targeting pathways
involved in OSCC stemness – a
therapeutic perspective

Surgery, chemotherapy and radiation therapy have always been

the main pillars of oral cancer therapy since the early 20th century,

with the former being practiced since the medieval times. Over the

last two decades, targeted therapies (such as cetuximab or afatinib)

and immunotherapies (such as pembrolizumab or nivolumab) have

been incorporated into the standard treatment guidelines given the

improvement in patient survival (179). However, resistance towards

traditional therapies has always been a big challenge in cancer

treatment, in addition to poor affordability towards novel agents

given their varied availability and high cost. As mentioned earlier,

OSCC cells are programmed to enhanced tumorigenesis,

progression and stemness via activation of multiple cell signaling

cascades such as JAK/STAT3, ERK/MAPK, PI3K/Akt/mTOR, Wnt/

b-catenin, Notch etc. These conduits can serve as excellent

therapeutic targets going ahead which can possibly overcome

such therapy related issues.

This section sheds light on the possible therapeutic approaches

that aim to downregulate some of these pathways involved in oral

cancer development and stemness. Table 1. summarizes the drug

candidates and their possible mechanisms that target the above-

mentioned signaling pathways to reduce oral carcinogenesis,

progression and stemness features.
5.1 JAK/STAT3 signaling

JAK/STAT pathway is a well-known mechanism involved in

mediating vital downstream events of cellular communication and

functions. This pathway constitutes a rapid membrane-to-nucleus

signaling module and induces the expression of important

mediators of cancer and inflammation (180). As described earlier,
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properties and chemoresistance within OSCC cells via the CCL21/

CCR7 axis, making this cascade a potential therapeutic target (130).

MPT0B098 is a novel microtubule inhibitor that has been shown to

inhibit the JAK2/STAT3 pathway in multiple cancers. In OSCC

cells, this agent was found to induce apoptosis and cell cycle arrest

by promoting the accumulation of suppressor of cytokine signaling-

3 protein, further facilitating the ubiquitination and degradation of

JAK2 and TYK2, promoting to the loss of STAT3 activity.

Hindrance of STAT3 activity led to sensitization of OSCC cells

towards MPT0B098 cytotoxicity, confirming that STAT3 is a vital

mediator of drug resistance in oral carcinogenesis. Moreover,

conventional drugs like 5-Fluorouracil (5-FU) and cisplatin

showed significant augmentation of OSCC cells when combined

with MPT0B098, rather than using this novel inhibitor alone or just

the 5-FU/Cisplatin dual chemotherapy, making this novel

combination therapy a promising therapeutic option (181).

Additionally, MPT0B098 was also found to reduce hypoxia-

induced EMT due to the destabilization of HIF-1a by

downregulating vimentin and N-cadherin and by the partial

expression of EMT-activating TFs such as SNAI2/Slug and Twist.

MPT0B098 was further able to suppress hypoxia-induced EMT via

inhibition of TGF-b/Smad signaling and by interfering with FAK-

mediated actin cytoskeleton rearrangement (182). Tyrphostin

AG490, a selective inhibitor of JAK2/STAT3 was found to

abrogate the proliferation, migration, and EMT process of

OSCC via inhibition of the NIR1-CCL18 axis, by ultimately

downregulating the JAK2/STAT3 pathway (183). Honokiol, a

herbal constituent that possesses various anti-tumor and anti-

angiogenesis properties, was found to inhibit tumor sphere

formation in oral CSC-like OSCC cells by impeding the JAK2/

STAT3 pathway activity. This herbal remedy was also responsible

for inducing apoptosis within these cells via the inactivation of the

anti-apoptotic Bcl-2 protein and conversely increasing the

expression of pro-apoptotic Bax proteins. Further, migration of

these OSCC cells was also reduced due to a substantial

downregulation in the IL-6 levels, in turn suppressing the JAK2/

STAT3 signaling (184).
5.2 ERK/MAPK and PI3K/Akt/
mTor signaling

Honokiol was found to further eliminate the CSC-like OSCC

properties by downregulating the Akt and ERK signaling (184).

OTX008, a selective Galectin-1 (Gal-1) inhibitor, was found to

abolish the protumorigenic properties of Gal-1 in OSCC cells. This

agent was found to reduce the OSCC cell viability in a dose-

dependent manner via induction of the MAPK pathway,

following the FOS gene regulation (185). OTX008 has been found

to reduce oral tumorigenesis with minimal toxicity and increase the

overall tumor oxygenation by normalizing vascularization, in

comparison to Bevacizumab. Certain cell lines (SQ20B) that

exhibit p53 mutation enables them resistant towards

chemoradiation. Consecutive mutations within EGFR further

regulates rich Akt signaling associated with enhanced tumor
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development. Given that OTX008 can reduce tumor hypoxia, the

oxygen-abundant microenvironment can serve as a good medium

to increase radiation-induced oxidative killing of the OSCC cells.

Administering chemotherapy in this course of OTX008-mediated

oxygenation window can also potentiate drug penetration or

diffusion and overall tumor coverage (186). U0126, a MEK

protein inhibitor, and LY294002, a PI3K/Akt inhibitor, were

found to reverse the EGF-induced migration and reduced MMP-9

levels in the OSCC cells but did not affect the phosphorylated Akt

and ERK protein levels (187). However, in another study, U0126

and disulfiram were found to reverse EMT by reducing vimentin
TABLE 1 Clinical targets.

THERAPY
CANDIDATE

TARGET PATHWAY/
SIGNALING

INVOLVED IN
CANCER STEMNESS

MECHANISM

MPT0B098
[181,182]

JAK2/STAT3
↑ Apoptosis

↑ Cell cycle arrest
↑ Effectiveness of 5-FU

and Cisplatin

TGF-b/SMAD ↓ Hypoxia-
induced EMT

Tyrphostin
AG490 [183]

JAK2/STAT3
↓ Tumor Proliferation
↓ Tumor Migration

↓ EMT

Honokiol [184]
JAK2/STAT3

AKT
ERK

↓ Tumor Migration
↓ Apoptosis

↓ Survival/Proliferation
of CSC

JAK Inhibitors
(Ruxolitinib,
Tofacitinib)

[202]

JAK/STAT ↓ Tumor
Aggressiveness

↓ OSCC Stemness

OTX008
[185,186]

MAPK ↓ Tumor Proliferation

AKT

↓ Tumor hypoxia
↑ Efficacy of radiation

and penetration
of chemotherapy

U0126 [188]

MEK ↓ Tumor Migration

TGFb/ERK/Snail ↓ EMT

LY294002 [187] PI3K/AKT ↓ Tumor Migration

Disulfiram
[188,148]

TGFb/ERK/Snail
↓ EMT

Not specified
↑ UPR and ER stress
↓ Tumor Proliferation

↑ Apoptosis

PI-828 [189]

PI3K/AKT/mTOR

↓ Tumor Proliferation
and Colony Formation
↑ Cell cycle arrest (G0/

G1 phase)
↑ Apoptosis and

Autophagy
↓ Tumor migration,

invasion
and angiogenesis

PI-103 [189]

↓ Tumor Proliferation
and Colony Formation
↑ Cell cycle arrest (S

phase)
↑ Apoptosis and

Autophagy
↓ Tumor migration,

invasion
and angiogenesis

PX-866 [189]

↓ Tumor Proliferation
and Colony Formation
↑ Cell cycle arrest (G2/

M phase)
↑ Apoptosis and

Autophagy

(Continued)
TABLE 1 Continued

THERAPY
CANDIDATE

TARGET PATHWAY/
SIGNALING

INVOLVED IN
CANCER STEMNESS

MECHANISM

↓ Tumor migration,
invasion

and angiogenesis

BKM120
(Buparlisib)

[190]

↓ Tumor Proliferation
↑ Radiosensitivity

BYL719
(Alpelisib) [190]

↓ Tumor Proliferation
↑ Radiosensitivity

AZD2014
(Vistusertib)

[190]

↓ Tumor Proliferation
↑ Radiosensitivity

Niclosamide
[193] Wnt/b-catenin

↓ Self-renewal capacity
and CSC enrichment

EMT
ECM remodeling

↓ Tumor migration,
invasion

↑ Apoptosis
↑ Chemosensitization
towards Cisplatin

ICG-
001 [194,195]

↓ EMT
↓ Migration of CSCs

Celecoxib
[199,200]

NOTCH

↓ Tumor
Differentiation/Grade

↓ EMT
↓ Migration of CSCs

and recruitment
of MDSCs

DAPT [201,196]

↓ Tumor Proliferation
↓ Stemness properties
when combined with

Docetaxel, Cisplatin and
5-FU

g-secretase
Inhibitors
(LY411575,
RO4929097)

[202]

↓ Notch activation
↓ Tumor

Aggressiveness
↓ OSCC Stemness
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levels, elevating E-cadherin expression, and reducing p-ERK protein

levels via inhibiting TGFb/ERK/Snail signaling pathway,

irrespective of SMAD4 expression. Overall, this study indicates

that disulfiram was found to reduce invasion and migration (in
vitro) while it inhibited tumor growth and metastasis (in vivo) in
these OSCC samples, paving a path for more studies in the future

for clinical use (188). PI-828, PI-103, and PX-866 are PI3K

inhibitors that were found to significantly abrogate OCC

proliferation and colony formation. All three agents were found

to induce cell-cycle arrest: PI-828 in G0/G1 phase, PX-866 in the

G2/M phase and S-phase, and PI-103 in S-phase. There was an

induction of apoptosis, autophagy, and reduction in the migratory,

angiogenic, and invasive properties of these OSCC cells upon

exposure to these agents. These were characterized by the

downregulation of VEGF, Bcl-2, NF-kB, COX-2, P110a, Pan-Akt,
total mTOR, and p-mTOR, predominantly in cells treated with PI-

103. To add on, pNF-ĸB/p65 was found to be accumulated more

within the cytoplasm of the treatment-sensitive cells than in the

nucleus, revealing a reduced protein translocation state and its

degradation. These results suggest a promising role of these PI3K

inhibitors in OSCC patients by disrupting the PI3K/Akt/mTOR

signaling (189). BKM120 (Buparlisib) and BYL719 (Alpelisib) are

two other PI3K inhibitors. Buparlisib and Alpelisib were both found

to inhibit OC growth in a dose-dependent manner but only

Buparlisib showed superior activity against radioresistant OCC in

comparison to Alpelisib. When RT was combined with both these

PI3K inhibitors, there was significant radiosensitization achieved in

all OSCC cells when compared to RT exposure alone, which was

confirmed by reduced colony formation. Further, when AZD2014

(Vistusertib), a competitive mTOR inhibitor was combined with RT

and either BKM120 or BYL719, there was profound inhibition

among the radioresistant OSCC cells when compared to the

previous dual-combinations and even with AZD2014 with RT.

These triple combination therapy options can dysregulate the

PI3K/Akt/mTOR pathway, resulting in an intense anti-tumor

effect against radioresistant OSCC cells (190).

Hypoxia or altered glycosylation can activate the Unfolded

Protein Response (UPR), a homeostatic mechanism in protein

synthesis that predisposes OSCC cells to increased ER stress

(191). In this context, disulfiram was shown to facilitate apoptosis

and decrease the proliferation of OSCC cells by activating the UPR

and ER stress (148).
5.3 Wnt/b-catenin signaling

The Wnt/b-catenin pathway in multiple cancers is known to

facilitate cell proliferation, differentiation and stem cell self-renewal

capacity which also regulates response towards various therapies

(192)). Niclosamide, an anthelmintic drug, reduced the self-renewal

ability of ALDH+ OSCC cells. This agent was also responsible for

deregulating the EMT process, ECM remodeling, migration, and

invasion of these malignant cells, which were characterized by

elevated E-cadherin and TIMP2 levels while, vimentin, Snail, c-

myc, MMP2, and MMP9 were reduced in a dose-dependent

manner. The anti-cancer effect of niclosamide was mediated by
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the downregulation of the Wnt/b-catenin signaling, which

downregulated b-catenin, Cyclin D1, DVL2, and p-GSK3b
proteins in the ALDH+ treated cells. Stemness features were

further suppressed which was demonstrated by reduced SOX2,

OCT4, and NANOG expression. Most importantly, niclosamide

reduced the cisplatin-induced OC stem cell enrichment, enhanced

the sensitization of cisplatin among ALDH+ OSCC cells, and

induced apoptosis within these cells (193). ICG-001, a small

molecule inhibitor, interferes with OSCC cell growth by

inhibiting the b-catenin and cAMP-responsive element binding

(CREB)-binding protein (CBP) activity by increasing their cytosolic

localization from the nucleus. Genes dictating Wnt/b-catenin
signaling (CCND2, CDK1, DKK1, LEF1, SKP2, and WNT5B) and

cell survival/proliferation (BIRC5, CCNE1, CCNE2, CCNB1,

CCNB2, CDKN3, and CDCA7) were found to be significantly

downregulated in the treated OSCC cells. Treatment with ICG-

001 drastically reduced the EMT process within these OSCC cells,

exhibiting a higher E-cadherin and lower vimentin expression. This

agent selectively targeted stem cells expressing CD24, CD29, and

CD44 and eliminated their metastatic potential by downregulating

the b-catenin/CBP activity. Notably, patients who show the

presence of the aforementioned signature genes were confirmed

to have better activity with this anti-cancer therapy, directly

correlating to overall survival (194, 195).
5.4 Notch signaling

Notch signaling pathway was also responsible for enhancing the

OC stemness characterized by ALDH1, CD44, CD133, SOX2, and

Slug expression. DAPT, a gamma-secretase inhibitor when

combined with traditional agents such as docetaxel, cisplatin, and

5-FU, showed a significant reduction of these CSC properties via

blockade of the Notch1 pathway (196).

Notch signaling has been found to initiate OSCC carcinogenesis

by increasing the proliferation, migration, and stemness properties

of these cells by communicating with various components of the

TME (197, 198). This section presents the role of Celecoxib (CXB)

in dysregulating Jagged-1/Notch pathway and thereby conferring a

robust anti-tumor effect.

CXB is known to regulate the Cyclooxygenase-2 (COX-2) levels

involved in mediating various tumor-related immune cells such as

MDSC, TAM and Tumor-Endothelial Cells in the oral TME. The

selective COX-2 inhibitor was coalesced with Chitosan (CS)/Fucoidan

(FCD) to form a mucoadhesive nanoparticle formulation with a

comparatively lower toxicity profile. This CXB-CS/FCD combination

showed remarkable results in terms of reduction in the COX-2

expression among these tumor-associated immune cells. This was

accompanied by a reduction of Arginase/Inducible Nitric Oxide

Synthase levels, proliferative markers such as IL-6, TGFb levels, and

stemness markers such as CD44 and ALDH, via downregulation of the

Jagged-1/Notch signaling. Overall, these cells showed reduced

histologic tumor grade, EMT, and metastatic potential, concomitant

with lessened immune cell activation, recruitment, and

immunocompromised tumor background, with special regard to

these features in the CD33+/11b+MDSCs. These important findings
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support the vital anti-cancer immunotherapy potential of such novel

drug preparations in comparison to the traditional CXB therapy, in

targeting the pro-tumorigenic MDSCs and exemplifying these

mucoadhesive nanocarriers in OSCC treatment (199).

CXB has shown good activity earlier as a part of the oral triple-

metronomic chemotherapy in platinum-resistant OC patients. This

Phase II trial demonstrated that CXB 200 mg/day BID when

combined with erlotinib 150 mg/day OD and methotrexate 9 mg/

m2/week had improved progression free survival and OS when

compared to those receiving weekly chemotherapy with docetaxel

or the best supportive care (200). DAPT was found to inhibit OCC

growth in combination with low-dose trixton-100, a cell permeation

enhancer, by dysregulating the Notch1/HES1 signaling pathway

(201). Ghosh S et al. have portrayed the role of Notch signal

activation towards Cisplatin resistance in OSCC stem cells.

Contrarily, Notch signal inactivation was associated with a

potentially fatal upregulation of the JAK-STAT pathway resulting

in increased tumor aggressiveness, stemness, and an unfavorable

prognosis. However, stemness was maintained in both the Notch-

active and inactive cells, along with the spontaneous coexistence of

both the cell states in OSCC. These findings were in support of the

antitumor activity of JAK-inhibitors such as Ruxolitinib and

Tofacitinib, both of which reduced the hostile tumor proliferation

and stemness, in addition to the downregulated Notch-signaling.

The addition of g-secretase inhibitors like LY411575 or RO4929097
helps oral CSCs maintain the Notch-inactive state and following

them with the above JAK inhibitors could be a potential therapy

option (202). Silencing novel pathways like the FAS-ERK-JAG1-

NOTCH1 axis could also result in decreasing the OSCC stemness

and the risk of pulmonary metastases, making this a good target for

advanced therapies in the future (203).
6 Discussion

The review provides a comprehensive overview of stemness

influencing factors that are widely spread across cellular processes.

The highlighted cross-talks under different sections are of

paramount importance in targeting the OSCC stem cells, the very

seed of the malignancy that up-holds promising solutions in

confronting OSCC (204).

The initial portion of this review illustrates major dysregulated

interplays between TFs-miRNA to confer heightened insights on

their roles in determining stem cells’ phenotypical characters. The

essence of this section is believed to fetch futuristic miRNA-targeted

therapeutic strategies in OSCC. One such strategy in targeting the

dysregulated TFs-miRNA network is via negating the ectopic

expressions of miRNA in the neoplastic cells with the

employment of miRNA mimics/inhibitors to impede the levels of

oncogene expression (205). For example, the 2017 clinical trial

NCT02369198 was based on testing the TargomiR, minicells loaded

with miRNA mimics, aimed at targeting EGFR. The mimics were

designed to compensate for the loss of the miR-16 family in

malignant pleural mesothelioma (206). Of interest in this review,

dampening the effect of oncogenic TFs could reduce the stemness

features in OSCC. In addition to their utility as a monotherapy in
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cancer, miRNA mimics have also secured their position in

combination therapies with standard chemotherapy agents and

RT. miRNA mimetics that interact with the same targets as that

of standard therapy may act as adjuvants to reduce the dose and

toxicity of these conventional therapies (207, 208).

Additionally, the elucidated TME extrinsic factors in this review

provide a plethora of cross-talks that are essential for nurturing and

survival of CSCs. This fact opens up an abundant source of targets that

may be utilized in encountering the stemness features of OSCC. For

instance, inhibitors of Hedgehog and Notch pathways have exhibited

substantial advancement in the preliminary stage of clinical trials (209).

The translational success of these targets requires a panoramic view, as

signaling pathways are complex and follow a nonlinear fashion. The

pathways are interconnected with influential cross-talks that regulate

various stemness signaling cascades. One such incident could be

witnessed in the interplay between PI3K and Notch signaling

pathways that lead to the amplification of CSC features and

resistance gained towards PI3K inhibitors. Such interactions are

often attributed to the observed clinical treatment failures of triple-

negative breast cancer (210). The TME interplays also comprehend the

underlying mechanism of drug resistance. 5-FU and Paclitaxel were

found to have no therapeutic effects over malignant squamous cells due

to TGFb-1 given the development of a quiescent state, especially in the

G1 phase of the cell cycle in HNC cells (211).

The review also continues to ascribe various roles of oral

microbiota in the acquaintance of stemness in OSCC. The studies

presented in this section provide the avenue for future investigation

to explore the molecular interaction evinced between commensal

microbes in the oral cavity and the premalignant/malignant TME

for better treatment approaches in OSCC. In conclusion, this review

delivers a broad horizon of stemness governing factors for future

research and promising solutions for OSCC treatment challenges.
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Glossary

OSCC Oral Squamous Cell Carcinoma

HNC Head and Neck cancer

HPV Human papillomavirus

EBV Epstein–Barr virus

CSC Cancer Stem Cell

TF Transcription Factors

TME Tumor Microenvironment

MSC Mesenchymal stem cell

EMT Epithelial to Mesenchymal Transition

ECM Extracellular Matrix

FCD Fucoidan

CAF Cancer-associated fibroblast

GRO-a Growth-Regulated Oncogene alpha

TGFb Transforming Growth Factor b

SMA Smooth muscle actin

TGFb Transforming Growth Factor b

JMJD6 Jumonji domain-containing protein 6

TNF-a Tumor necrosis factor alpha

TAM Tumor associated macrophage

OCC Oral Cancer Cell

OC Oral Cancer

UPR Unfolded Protein Reaction

HIF Hypoxia Inducible Factor

CS Chitosan

THBS-1 Thrombospondin-1

MMP Matrix Metalloproteinase

RT Radiotherapy

Gal-1 Galectin-1

MDSC Myeloid-Derived Suppressor Cell

OPSCC Oropharyngeal Squamous Cell Carcinoma

CK19 Cytokeratin 19

CXB Celecoxib

UPR Unfolded Protein Response

CBP cAMP-responsive element binding-binding protein

SATB2 Special AT-rich sequence-binding protein 2

5-FU 5-Fluorouracil
F
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