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Introduction: The high incidence of breast cancer (BC) prompted us to explore

more factors that might affect its occurrence, development, treatment, and also

recurrence. Dysregulation of cholesterol metabolism has been widely observed

in BC; however, the detailed role of how cholesterol metabolism affects chemo-

sensitivity, and immune response, as well as the clinical outcome of BC is

unknown.

Methods: With Mendelian randomization (MR) analysis, the potential causal

relationship between genetic variants of cholesterol and BC risk was assessed

first. Then we analyzed 73 cholesterol homeostasis-related genes (CHGs) in BC

samples and their expression patterns in the TCGA cohort with consensus

clustering analysis, aiming to figure out the relationship between cholesterol

homeostasis and BC prognosis. Based on the CHG analysis, we established a

CAG_score used for predicting therapeutic response and overall survival (OS) of

BC patients. Furthermore, a machine learningmethod was adopted to accurately

predict the prognosis of BC patients by comparing multi-omics differences of

different risk groups.

Results: We observed that the alterations in plasma cholesterol appear to be

correlative with the venture of BC (MR Egger, OR: 0.54, 95% CI: 0.35-0.84,

p<0.006). The expression patterns of CHGs were classified into two distinct

groups(C1 and C2). Notably, the C1 group exhibited a favorable prognosis

characterized by a suppressed immune response and enhanced cholesterol

metabolism in comparison to the C2 group. In addition, high CHG score were

accompanied by high performance of tumor angiogenesis genes. Interestingly,

the expression of vascular genes (CDH5, CLDN5, TIE1, JAM2, TEK) is lower in

patients with high expression of CHGs, which means that these patients have
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poorer vascular stability. The CAG_score exhibits robust predictive capability for

the immune microenvironment characteristics and prognosis of patients

(AUC=0.79). It can also optimize the administration of various first-line drugs,

including AKT inhibitors VIII Imatinib, Crizotinib, Saracatinib, Erlotinib, Dasatinib,

Rapamycin, Roscovitine and Shikonin in BC patients. Finally, we employed

machine learning techniques to construct a multi-omics prediction model

(Risklight),with an area under the feature curve (AUC) of up to 0.89.

Conclusion:With the help of CAG_score and Risklight, we reveal the signature of

cholesterol homeostasis-related genes for angiogenesis, immune responses,

and the therapeutic response in breast cancer, which contributes to precision

medicine and improved prognosis of BC.
KEYWORDS

Mendelian randomization, breast cancer, immune microenvironment, cholesterol
homeostasis, prognosis prediction, machine learning method
1 Introduction

According to the World Health Organization (WHO) report in

2021, breast cancer (BC) has become the most prevalent tumor in

the world with the increasing incidence (1). Attribute to the

progress of surgical treatment and the application of

immunotherapy, its survival rate is also higher than other tumors,

but there is still a high recurrence rate, and the recurrence rate of

patients who receive postoperative radiotherapy can reach 15%

within 10 years (2). Therefore, it is particularly important to explore

techniques and biomarkers for early identification and prevention

of recurrence.

In addition to the effects at the genetic level, some studies have

pointed out that the disruption of cellular cholesterol levels’

dynamic balance can lead to cancer occurrence and a series of

diseases (3). Elevated serum cholesterol is associated with the risk of

melanoma, prostate cancer, endometrial cancer, non-Hodgkin’s

lymphoma, and breast cancer (3–5). Hypercholesterolemia has

been identified as a comorbidity of obesity, becoming an

independent risk factor for breast cancer in postmenopausal

women. Dysregulation of cholesterol homeostasis can also lead to

ferroptosis resistance, thereby increasing tumor tumorigenicity and

metastatic capacity (6). However, most current studies have focused

on determining the role of serum cholesterol or liver cholesterol in

the progression and prognosis of BC (7, 8), while neglecting the

involvement of cholesterol homeostasis-related genes (CHGs)

in tumorigenesis.

Furthermore, the tumor microenvironment (TME) has

garnered increasing attention (9). Tumor growth environment is

a complex tissue environment, which is closely related to tumor

growth, invasion, metastasis, and other functions. Under the

induction of tumor cells, stromal cells in TME lead to increased

angiogenesis and immune escape of tumor cells. The mechanism of

immune cells such as T cells and tumor-associated macrophages

(TAMs) involved in this process has attracted many scholars to
02
explore, which means that TME can become a potential therapeutic

target (10). At the same time, it has also been found that

intracellular cholesterol metabolism has an important impact on

the tumor-inhibitory effect of CD8+ T cells (11). However, the

precise mechanisms underlying the interaction between TME and

cholesterol metabolism as well as tumor immune evasion

remain elusive.

Hence, we conducted a comprehensive analysis of the

expre s s ion o f CHGs and i t s impac t on the tumor

microenvironment (TME), disease progression, treatment

response, and prognosis in breast cancer (BC) patients.

Leveraging CAG_score and multi-omics machine learning

techniques, we developed a robust model that accurately predicts

both prognostic risk and immunotherapy efficacy for BC study will

contribute to enhancing the rationalization of immunotherapeutic

approaches in breast cancer.
2 Materials and methods

2.1 Mendelian randomization analysis

To assess the potential connection between cholesterol and the

risk of breast cancer, genetic data on cholesterol (met-a-307, sample

Size 7,813, number of SNPs 2545,608)and breast cancer(ieu-a-1132,

ER+ Breast cancer (Oncoarray), sample size 833691, number of

SNPs 10680275) were searched and obtained from the IEU Open

GWAS project(https://gwas.mrcieu.ac.uk/). The data then were

briefly collated and subjected to a two-sample Mendelian

randomization (2-SMR) analysis. Mendelian randomization-Egger

(MR-Egger) method analyses were the main way performed along

with the inverse variance-weighted (IVW) method analysis,

Weighted-median method analysis, Weighted mode method

analysis and Simple mode method analysis (12).
frontiersin.org

https://gwas.mrcieu.ac.uk/
https://doi.org/10.3389/fonc.2023.1246880
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1246880
2.2 Download of the BC dataset and
acquisition of cholesterol homeostasis-
associated genes

The basic information on breast cancer RNA sequencing

transcriptome data, CNV files, somatic mutation data, and

clinicopathologic data were acquired from the publicly available

TCGA database (http://xena.ucsc.edu/). Microarray dataset

GSE58812 was downloaded from the GEO database (https://

www.gov/geo/). A total of 1324 breast cancer samples were

analyzed in this study. 1097 patients with a survival time greater

than 30 days and 120 normal tissue samples were selected from the

TCGA-BRCA cohort. The GSE58812 cohort contains 107 samples

of breast cancer patients. The 73 Cholesterol homeostasis genes

(CHGs) and 36 Angiogenesis genes (AAGs) were retrieved from the

MSigDB team (Hallmark Gene set) as indicated in Table S1.
2.3 Consensus clustering analysis of CHGs

9 CHGs were obtained with univariate Cox regression (UniCox)

analysis. Consensus clustering was used to identify different

cholesterol homeostasis-related patterns by the k-means

algorithms with 1000 repetitions (13). The distinction in clinical

characteristics between the C1 and C2 groups was assessed using a

Chi-square test. Differences in the biological function of these

patterns were investigated using Genetic Set Variable Analysis

(GSVA) (14). OS time and OS state of various modes were

compared using the Kaplan-Meier method (15). Additionally, we

explored the association between molecular patterns of cholesterol

homeostasis genes, clinical features, and survival differences.
2.4 Landscape of tumor immune
environment in different subgroups of
breast cancer

The “Estimation” R package was used to present the proportion

of immune cells and stromal cells in BC by analyzing gene

expression, which can further calculate the tumor purity (16).

Abundance of 23 specific immune cell subtypes was measured in

tumors with the CIBERSORT algorithm to reveal the infiltration of

immune cells (17). We predicted the sensitivity of immunotherapy

by comparing the expression levels of several immune checkpoints

among different subgroups. Moreover, the degree of immune cell

infiltration in tumor and normal samples was determined by single

sample Gene Set Enrichment Analysis (ssGSEA analysis) (18).
2.5 Identification of DEGs and cholesterol
homeostasis-related genes

Using the “limma” package, we acquired DEGs for breast cancer

in the TCGA dataset. DEGs should comply with the | log2 fold change

(FC) | ≥ 0.5, p< 0.05. Pearson correlation analysis was used to obtain

genes that were related to Cholesterol homeostasis, with |cor|≥ 0.6.
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2.6 Prognostic score of
cholesterol homeostasis

A CAG_Score was established to quantitatively evaluate the

state of cholesterol homeostasis for individual BC patients. Firstly,

we performed uniCox analysis and multi-factor Cox analysis

(mulCox) for CHG-related genes to search for which has

significant prognostic value. Then, we integrated OS time, OS,

and gene expression data with the “glmnet” package and

developed the CAG_Score by the Lasso Regression Algorithm (19).

CAG score =  o
n
Coefficient of geneðnÞ �  Expression of gene ðnÞ

The median CAG_score was adapted to classify breast cancer

patients into low-risk and high-risk groups.
2.7 Construction of cholesterol
homeostasis relevant nomograph

A CAGs-related nomograph was established to describe the

clinical features and risk score of BC patients, as well as the clinical

prediction of 3-year,4-year, and 5-year survival status. Calibration

curves were generated to identify the accuracy of the

predictive effect.
2.8 Drug sensitivity analysis and
quantitative RT-PCR

The IC50 of commonly used clinical drugs was numerically

analyzed by the “pRRophic” package in order to compare the

chemotherapy effects of different risk groups (20). Total RNA of

breast cancer cells (MDA-MB-231, MCF-7, SKBR-3) and normal

breast cells (MCF-10A) were prepared by TRIzol reagent (Thermo

Fisher Scientific, Waltham, USA). cDNA was synthesized with

TOROIVD qRT Master Mix kit (TOROIVD, shanghai, China)

according to the manufacturer’s instructions. The qRT-PCR was

performed using the TOROGreen qPCR Master Mix kit

(TOROIVD, shanghai, China) on the ABI 7500 real-time

fluorescence quantitative PCR system (Thermo Fisher Scientific).

All sequences of primers used are shown in Table S2.
2.9 Development of a multi-omics
machine learning model to predict the
prognosis and microenvironment of
breast cancer

The TCGA cohort was divided into a training cohort (n=824)

and a test cohort (n=206) randomly. We defined BC prognostic risk

markers as characteristic mRNA, lncRNA, and miRNA in the

TCGA cohort. Screening for characteristic mRNAs, miRNAs, and

lncRNAs based on high-risk score and low-risk score, for each type

of data, the top 100 most relevant features were retained as BC-

specific risk markers according to the P-value. Then, we performed
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lasso regression for further feature filtering and reduced the number

of markers to 20 for each type of data. With 20 makers per

molecular layer, we created a risk predictor of each single

molecule layer with three machine learning models, such as Light

GBM, Logistic regression, and Random forest (21). Finally, based

on 60 BC-specific markers from three data types, we developed a

LightGBM model (RiskLight) to distinguish breast cancer patients

with different prognostic risks associated with dysregulated

cholesterol homeostasis.
2.10 Statistical analysis

In the statistical analysis, p<0.05 was considered statistically

significant. The t-test is used for the analysis of normally distributed

data, while the Wilcoxon rank sum test is used for the analysis of

abnormally distributed data. In addition, Pearson correlation

analysis or Spearman analysis was used to describe the

relationship between two numerical variables. The above

algorithms are all implemented in R Software (version 4.1.2).
3 Results

3.1 Clinical and mutations data of CHGs
in BC

The flow chart of the research design is shown in Figure 1. To

evaluate the role of cholesterol in the occurrence of breast cancer,

the Mendelian randomisation-Egger (MR-Egger) method was used

first in the main MR analysis, as the detailed results are presented in
Frontiers in Oncology 04
Figure 2A (MR Egger, OR: 0.54, 95% CI: 0.35-0.84, p<0.006). This

means that cholesterol levels may be a risk factor for breast cancer.

We obtained 73 genes for cholesterol homeostasis from the MSigDB

database and verified the expression levels of 73 CHGs in tumor

specimens and normal control in the TCGA-BC cohort (Figure 2B).

63 CHGs had differential expression (Figure 2C). Correlations

between 73 CHGs were analyzed with the String website (Table

S3). Protein interaction network (PPI) was constructed by

Cytoscape software to explore the interactions between CHGs

(22). And we identified SCD, PPARG, CTNNB1, FDPS, LDLR,

ACSS2, FDFT1, FADS2, HMGCR, SREBF2, ACTG1 and HMGCS1

as the vital genes of cholesterol homeostasis (Figure S1). We

calculated the CNV mutation rate of CHGs, Figure 2D shows the

results. In addition, we determined the incidence of SNV of 73

CHGs in BC, and 142 out of 981 BC samples (14.46%) showed

mutations, which indicated that the mutation rate of 73 CHGs was

less than 1% (Figure S2).
3.2 Generation of cholesterol homeostasis
subgroups in BC

Generation of a subset of genes related to cholesterol

homeostasis regulation in BC to reveal the relationship between

cholesterol homeostasis regulation and tumorigenesis. 1097 BC

patients of TCGA-BC were included in this study, and uniCox

analysis revealed 9 CHGs with prognostic significance

(Figure 3A). To determine the relationship between CHGs

expression patterns and BC subtypes, consensus cluster analysis

was used to classify BC patients according to prognostic genes.

When the clustering variable was 2, BC patients were well divided
FIGURE 1

Flow chart of research design.
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into the C1 group (n=510) and the C2 group (n=587) (Figure S3).

PCA analysis showed significant subpopulation differentiation in

samples (Figure 3B). KM analysis revealed that cluster C2 showed

a worse prognostic status (Figure 3C).The clinical features

distinguishing the C1 and C2 groups are presented in Table S4.

In addition, the relationship between gene expression and clinical

features of the two clusters was shown in Figure 3D. The heatmap

indicated that the expression level of CHGs had a significant

correlation with the clinical characteristics, and the genetic

characteristics of the C2 subcluster were associated with distant

tumor metastasis. The biological functions and signaling pathways

of tumor cells were compared by the GSVA algorithm, and the

findings showed that the C2 subcluster performed obvious

immune pathway characteristics, lipid metabolism, and sterol

metabolism-related pathways were down-regulated, and cancer

metastasis-related pathways were significantly different as well

(Figure 3E). This suggests that dysregulation of cholesterol

metabolism is closely associated with tumor immunity and the

development of tumors.
Frontiers in Oncology 05
3.3 Characteristics of the TME in
different subgroups

Investigating the infiltration extent of 23 human immune cells

in both clusters by the CIBERSORT algorithm (Figure 4A), we

found that the content of Macrophage M0, Macrophage M1,

activated Dendritic cell and T cell include activated CD4 positive

memory T cell, helper T cell, gamma and delta T cell were

significantly higher in group C2, whereas Plasma cell,

macrophage M2, resting dendritic cell mast cells behaved in an

opposite way. Inter-individual differences in 23 immune cells were

assessed by the “ssGSEA” algorithm and the number was generally

higher in the C2 group (Figure 4B). The TME scores exhibited that

patients in cluster C2 had a higher abundance of immune and

matrix components (Figure 4C). In addition, PD-1, PD-L1, and

CTLA-4 were shown a similar increase in cohort C2, which

represents the critical expression status of the immune

checkpoints (ICP) (Figure 4D). Meanwhile, the correlation

analysis between CHGs and immune cells displayed that FBXO6,
B

C D

A

FIGURE 2

The result of Mendel randomized model and the Molecular Characteristics of CHGs in BC. (A) Association between cholesterol and ER+ breast
cancer risk overall.MR-analyses are derived using random effect Ivw, MR-Egger, weighted median and mode.(MR Egger, OR: 0.54, 95% CI: 0.35-
0.84, p<0.006). (B) Distribution of CHGs between BC and normal tissues. (p>0.05 -; p< 0.05 *; p< 0.01 **; p< 0.001 ***). (C) Volcano map of 63
DEGs (log2 fold change. (FC)|≥0.5, p-value<0.05). (D) Incidence rate of CNV gain, loss, and non-CNV among CHGs.
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SEMA3B, GSTM2, and CXCL16 were correlated with immune cell

abundance (Figure 4E).
3.4 Potential biological activity of
cholesterol homeostasis gene, correlation
analysis between CHGs and angiogenesis

The Pearson correlation algorithm was applied to analyze

CHGs, resulting in 510 highly correlated DEGs (Figure 5A).
Frontiers in Oncology 06
Functional enrichment analysis of these DEGs was then

performed to demonstrate the potential biological activity of

cholesterol homeostasis genes. KEGG and GO analysis revealed

an enrichment of cancer and metastasis-related pathways as well as

blood vessel development and sterol metabolism, which suggested

that cholesterol homeostasis is closely related to angiogenesis

(Figures 5B, C). To reveal the association between cholesterol

homeostasis and angiogenesis, we obtained 36 angiogenic genes

(AAGs) fromMsiGDB and explored the correlation between CHGs

and AAGs. The results were as expected, especially when
B

CD

E

A

FIGURE 3

Cluster analysis of cholesterol homeostasis subgroups. (A) Univariate Cox regression (uniCox) analysis for CHGs (p<0.05 is considered significant).
(B) PCA analysis showed the distribution of the two clusters. (C) Survival curve between different clusters. (D) Expression of prognostic genes and the
presentation of clinical features in different clusters. (E) The heatmap of biological function and signaling pathway in two groups.
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ANTXR2, GPX8, and AVPR1A were strongly associated with

angiogenesis (Figure 5D).

Subsequently, we examined the expression of AAGs in groups

C1 and C2 (Figure 5E), as well as in tumor and normal tissues

(Figure S4); however, a significant discrepancy exists. The GSVA

algorithm was used to evaluate the cholesterol homeostasis score

(CHG score) and angiogenesis score (AAG score) of TCGA BC
Frontiers in Oncology 07
samples based on 73 CHGs and 36 AAGs. And cholesterol

homeostasis scores were positively correlated with angiogenesis

scores in the TCGA-BC cohort (Figure 6A). Moreover, the

cholesterol homeostasis score and angiogenesis score were

compared between the C1 and C2 groups. We found that patients

in the C2 group had a worse prognosis with higher cholesterol

homeostasis score and angiogenesis score (Figure S5). The
B

C D

E

A

FIGURE 4

Characteristic of TME in two BC subgroups. (A) Abundances of 23 infiltrating immune cells in two BC subpopulations. (B) Enrichment score of 23
immune cells for each BC sample by ssGSEA analysis. (p>0.05 -; p< 0.05 *; p< 0.01 **; p< 0.001 ***). (C) Expression levels of immune checkpoints
(PD-1, PD-L1, and CTLA-4) of different subgroups. (D) Immune infiltration scores for different groups. (E) Correlation of clustering genes with 23
immune cells.
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correlation between vascular stability and cholesterol homeostasis

score was also validated in addition. The abundance of genes related

to vascular stability (CDH5, CLDN5, TIE1, JAM2, TEK) indicated

that the group with a lower cholesterol score had higher vascular

stability (Figures 6B-F), while low vascular stability often promotes

cancer growth (23–27). All the findings were verified in the

GSE58812 cohort (Figures 6G-L).
3.5 Development and validation of the
prognostic CAG_score

Considering that cholesterol homeostasis is closely connected

with angiogenesis, we developed a prognostic CAG_score based on
Frontiers in Oncology 08
genes related to cholesterol homeostasis. The BC patients were

randomly assigned to the training cohort (n=731) or the test cohort

(n=366). We performed UniCox analysis of 786 cholesterol-related

genes, and 49 DEGs with prognostic significance (logFC>0.5,

P<0.05). Subsequently, LASSO and multi-Cox analyses were

performed on 49 DEGs to establish the most suitable prediction

model. We set the Lambda value to 0.00298971135072249 and

finally obtained 7 genes (Figures 7A, B).

CAG_score = −0:21106035029347 ∗ZMYND10 − 0:262724856118755 ∗GBP1−

0:522741360511683 ∗DSCC1 + 0:465453655395411 ∗MRPL13 + 0:16530191756177 ∗

YWHAZ + 0:617851278765801 ∗  TCP1 + 0:147920101131816 ∗  TAGLN2

In the scoring model established by CAGs, we found that higher

scores were associated with a worse survival rate and higher
B C

D

E

A

FIGURE 5

Correlation analysis of CHGs and angiogenesis. (A) Acquisition of cholesterol homeostasis-related DEGs (log2 fold change (FC)|≥0.5, p-value<0.05).
(B, C) GO and KEGG enrichment analyses of cholesterol homeostasis-related DEGs among two subgroups. (D) Correlation analysis of CHGs and
AAGs. (E) Expression levels of 36 AAGs between C1 and C2. *p < 0.05; **p < 0.01; ***p < 0.001; ****p< 0.0001.
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mortality rate (Figures 7C, D). The model genes also showed a trend

with increasing CAG_score (Figure 7E). To evaluate the robustness

of the CAG_score, we compared the CAG_score from the test to the

whole cohort, and the results showed an excellent performance of

the CAG_ score in assessing the prognosis of BC patients

(Figures 7F, S6). Figure S7 shows the distribution of CHGs and

AAGs in the two CAG_score clusters. We found significant

differences in gene expression in both groups.
3.6 Construction of a nomogram to predict
patient prognosis

Through the analysis of clinical indicators, we established a

nomogram to predict 3, 4, and 5-year OS in BC patients

(Figure 7G). The calibration curve shows that the method has a

high forecasting accuracy (Figure 7H). Meanwhile, the R package

“Rms” was conducted to integrate data on survival time, survival

status, and 6 characteristics, and a nomogram was built using the

Cox method to assess the prognostic value of these characteristics in

a sample of 1030. The overall C-index of the model was:

0 . 7 8 3 4 3 7 2 9 0 9 1 5 7 6 2 , 9 5%C I ( 0 . 7 4 0 7 5 4 6 4 4 5 1 2 0 8 9 -

0.826119937319435), p value=1.00165584281093e-38.
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3.7 Assessment of TME characteristic in
different groups

As mentioned above, CAG_score was positively correlated with

the abundance of Macrophage M0, Macrophage M2, Plasma cell,

and activated Dendritic cell, while CD8+ T cell, T cell gamma delta,

activated or dormant CD4+ memory T cell, B memory cell,

regulatory T cell, activated NK cell, macrophage M1 were

negatively correlated with CAG_score (Figure 8A). In addition,

there was a direct correlation between the CAG_ score and the TME

score (Figure 8B). We explored the relevance between prognostic

marker genes and 23 immune cells. We concluded that T cells and

Macrophages are closely associated with the selected genes

(Figure 8C). Furthermore, We evaluated the expression of ICPs in

groups of different prognostic features. Figure 8D shows that the

expression of 24 ICPs was inconsistent in both risk subgroups. The

low-risk group showed a higher level of ICPs expression.
3.8 Drug sensitivity analysis

It is a meaningful research direction to select and guide the

appropriate immunotherapy regimen for the patient (28). To
B C

D E F

G H I

A

J K L

FIGURE 6

Analysis of the correlation between cholesterol homeostasis and vascular stability. (A) Association analysis of cholesterol homeostasis score and
angiogenesis score. (B-F) Association between expression levels of vasostability genes and cholesterol homeostasis scores. (G-L) Validation of the
above results in the GEO 58812 queue.
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examine the role of CAG_scores in clinical diagnosis, we evaluated

the IC50 for 138 Common drugs in TCGA-BC patients. The results

showed that BC patients with higher CAG_ scores were more

sensitive to the AKT inhibitors VIII and Imatinib, while patients

with low CAG_ scores responded better to Crizotinib, Saracatinib,

E r l o t i n i b , Da s a t i n i b , Rapamyc in , Ro s cov i t i n e and

Shikonin (Figure 9A).
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3.9 The results of qRT-PCR in several
breast cancer cell lines

We detected the RNA expression of the CAG_score genes in

breast cancer cell lines. Our results indicate that all genes were

highly expressed in MDA-MB-231, MCF-7 and SKBR-3 cell lines

(Figures 10A-H), which was consistent with our prediction.
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FIGURE 7

Construction of the CAG_score. (A, B) The LASSO analysis and determine the optimal LASSO settings. (C, D) Survival curves for groups and
comparison of risk scores for different clusters. (E) Distribution of the risk score and BC patients. Dot plot of survival status. Heat maps of 7
cholesterol homeostasis-related gene expression of high- and low- risk groups. (F) ROC curve of the training group, the AUC values of 1, 3 and 5
years were 0.77, 0.73 and 0.70, respectively. (G) A nomogram for predicting the 3-, 4-, and 5-year OS for BC patients in TCGA cohort.
(H) Calibration curves of the nomogram.
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3.10 Multidimensional data features
for different risk groups and
multi-omics machine learning to
build prognostic models

We have demonstrated the significance of metabolic

regulation associated with cholesterol homeostasis as an

immune micro-environmental factor in our study. To further

identify molecular signatures associated with prognostic risk at

the multi-omics level, we conducted an analysis of associations

between three molecular layers (mRNA, miRNA, lncRNA) and

high-low risk for each type of data, the top 100 most relevant

features were retained as BC-specific risk markers according to

the P-value (Figure S8A). We used the Light GBM framework to

integrate multi-omics features to develop high- and low-risk
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prediction models as a way to emulate the tumor micro-

environment in which cholesterol homeostasis is dysregulated.

As a result, the three risk predictors based on the single molecular

layer performed well in predicting high and low risk in the test

cohort (AUC=0.8491 for the mRNA model, AUC=0.7939 for the

lncRNA model, and AUC=0.7970 for the miRNA model)

(Figures 11A, C, E). We also compared the superiority of

random forest and logistic regression models with the

Lightgbm model (Figures 11B, D, F). The results show that all

three algorithms exhibit consistent results. Finally, we integrated

3 risk predictors, based on the LightGBM algorithm combined

with multi-omics data to develop an integrated model (Risklight)

for predicting cholesterol homeostasis-related risk patterns.

Risklight is superior to all risk predictors based on single

molecular layers (AUC=0.89) (Figures 11G, H).
B C

D

A

FIGURE 8

TME analysis of different risk score groups. (A) Correlations between CAG_score and immune cell types. (B) Immune infiltration scores for different
groups. (C) Association of prognostic model genes with 23 immune cells. (D) Expression levels of 24 immune checkpoints in different subgroups. **p
< 0.01; ***p < 0.001; ****p< 0.0001.
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4 Discussion

Locoregional and systemic therapies of BC have progressed

substantially over the past years, at the same time, precision

treatment has become a major focus on the treatment of BC. Since

the importance of developing effective therapies has been noticed, it is

still necessary to define the risk factors of BC and exploit this

information to formulate chemopreventative strategies and improve

lifestyles that can help to reduce the burden of BC. Although the results

of our MR analysis suggest that cholesterol levels are a risk factor for

BC, the exact mechanism of its occurrence remains unknown. It is still

necessary to investigate the characteristics of cholesterol homeostasis

genes and their potential biological activity in BC.

Our study quantified the cholesterol score of each BC patient’s

sample by utilizing a set of cholesterol homeostasis genes and

evaluated different patterns of cholesterol homeostasis in BC. It

showed significant differences in immune infiltration, functional

enrichment, and clinical outcomes in different cholesterol gene
Frontiers in Oncology 12
expression pattern groups. ACT and ICI therapies, as we all

know, are the success of cancer immunotherapy (29). There is no

doubt about that that immune cells, particularly T cells, can be

harnessed to eliminate tumor cells (30). The presence of TIL,

especially CTL, is positively correlated with the survival rate of

various cancer patients (31). Unexpectedly, despite having higher

levels of CD8+T cells, including CTL, the C2 cluster exhibited a

poorer prognosis and stronger features of distant tumor metastasis

with downregulation of multiple metabolisms including sterol

metabolism and fatty acid metabolism. Previous researches show

that cholesterol metabolism plays a critical role in activation,

proliferation, and effector function of CD8+ T cell (32). We imply

that the downregulation of sterol and lipid metabolism reduces the

effector function of CTL, making the C2 subgroup have a poorer

prognosis with high levels of immunity levels (33). Not surprisingly,

the C1 subpopulation has a well-prognostic with low levels of

immune under high levels of sterol and lipid metabolism.

Moreover, cholesterol homeostasis genes FBXO6, SEMA3B,
FIGURE 9

Drug Sensitivity Analysis Prediction of clinically common drug susceptibility in patients with different CAG scores.
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GSTM2 and CXCL16 were associated with immune cell abundance.

In previous studies, FBXO6 and CXCL16 have been shown to be

directly related to immunity. Specifically, FBXO6 has been shown to

impair the survival of alveolar macrophages by enhancing the

degradation of NLRX1 (34), while CXCL16 serves as a critical

ligand for CXCR6 that promotes the survival and local expansion of

effector CTL in the TME (35). However, the exact role of SEMA3B

and GSTM2 in the immune environment is unclear and requires

further elucidated. These findings suggest that targeted regulation of

cholesterol homeostasis may be a novel approach new

immunotherapy in BC.

In addition, cholesterol homeostasis genes (CHGs) exhibit a

strong correlation with the development of vasculature. Tumor

growth necessitates neovascularization to adequately supply rapidly

proliferating tumor cells with oxygen and nutrients (36).. Our study

highlights the robust association between angiogenic genes and three
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specific CHGs: GPX8, ANTXR2, and AVPR1A. Glutathione

peroxidase 8 (GPX8) has been demonstrated as crucial for

maintaining the invasive phenotype in breast cancer (37); however,

direct evidence linking GPX8 to breast cancer tumor angiogenesis is

currently lacking. Hence, further investigation is warranted to explore

the involvement of GPX8 in angiogenesis within breast cancer.

ANTXR2 is a type I membrane protein participant in extracellular

matrix homeostasis (38). Cholesterol depletion induces ANTXR2-

dependent activation of MMP-2 in glioma cells (39). Down-

regulation of ANTXR2 expression inhibits proliferation and

capillary network formation in human umbilical vein endothelial

cells (HUVECs) (40). Vasopressin receptor 1A (AVPR1A) serves as a

pivotal receptor for vasoconstriction (41). Notably, patients with

higher CHG expression scores showed reduced expression of the

cluster vascular stability genes JAM2, CDH5 (VE calcineurin),

CLDN5 (Claudin 5), TIE1, and TEK (TIE2).Under normal
B
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FIGURE 10

(A) The expression levels of CAG_score genes in TCGA BC cohort. (B-H) The mRNA levels of CAG_score genes in breast cancer cell lines. (*P <0.05,
**P <0.01, *** P < 0.001, **** P < 0.0001; ns, nonsignificant).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1246880
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1246880
conditions, the endothelium of mature capillaries is quiescent, stable,

and limits vascular leakage (42). Genetic deletion of JAM2, CLDN5,

and CDH5 significantly increases vascular permeability and leads to

vascular barrier dysfunction (43). Angiopoietin-1 (Ang-1) acts

through its receptors TIE1 and TEK (44), and deletion of TIE1 and

TEK ultimately leads to reduced vascular stability (45). A number of

pathologic disorders can lead to destabilization of the vascular

network, resulting in hyperendothelial permeability, excessive

vascular outgrowth and angiogenesis. In turn, overgrowth or
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aberrant remodeling of blood vessels promotes many diseases,

including cancers (46). Abnormalities in the vasculature and the

resulting microenvironment accelerate tumor progression and lead to

reduced efficacy of chemotherapy, radiotherapy, and immunotherapy

(47).Therefore, we need to focus on the in-depth link between

cholesterol homeostasis and tumor angiogenesis, which may be a

potential node for the treatment of breast cancer.

The development of risk stratification tools concerning cancer

survivorship has become a priority for research in clinical practice.
B
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FIGURE 11

Multi-model comparison based on single molecular plane of characteristic mrna, mirna and lncrna. (A) ROC curve of mRNA risk model (test set,
n=380). (B) Accuracy, KS score, F1 score and Precision of mRNA different risk model. (C) ROC curve of lncRNA risk model (test set, n=380).
(D) Accuracy, KS score, F1 score and Precision of lncRNA different risk model. (E) ROC curve of miRNA risk model (test set, n=380). (F) Accuracy, KS
score, F1 score and Precision of miRNA different risk model. (G) A confounding matrix for predicting patient prognostic risk with multi-omics data
using the test set (N = 380) (H) ROC curve of Risklight (test set, n=380).
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We developed a CAG_ score based on CHGs to predict prognostic

risk and survival time in BC patients. In general, the higher the

CAG_ score is, the worse the prognosis is, combined with a higher

risk of death. The CAG_ score is related to the abundance of T

lymphocytes (CD4+, CD8+ T) and Macrophages. CD4+ T cells

regulate the immune response by producing cytokines (48). CD8+ T

cells kill pathogens or produce inflammatory factors and cell

division molecules (49). With the increase in risk score, the level

of T cells showed a downward trend, which meant the level of

immunity was decreased, and the patients were more vulnerable to

tumors. In addition, the level of M1 macrophages decreased while

the level of M2 increased with the increase of CAG_score. Tumor-

associated macrophages (TAMs) are considered essential tumor-

associated immune cells by promoting tumor growth, invasion, and

metastasis, which contain two subtypes with separate functions

(50). Typically activated M1 macrophages are known to reduce the

survival of tumor cells through direct killing and antibody-

dependent cell-mediated cytotoxicity (ADCC) (51).In contrast,

M2 macrophages, as TAMs in a narrow sense, can inhibit the

immune effect of T lymphocytes and promote tumor angiogenesis,

leading to immune escape and tumor progression (52). The

prediction of TAMs by the CAG_ score was completely

consistent with tumor progression and clinical outcome, which

means CAG_ score has a great ability to predict the status of TME

in BC patients. Therefore, we recommend that risk stratification of

cholesterol metabolism should be considered as a screening test for

further investigation, intervention, and support of tumor.

Immune checkpoint inhibitors have been shown to be effective

in the treatment of a variety of tumors (53). This can be observed a

marked upregulation in the low CAG score group, suggesting that

patients with low CAG scores may be more sensitive to

immunotherapy. Currently, chemotherapy resistance in BC is

getting worse (54). Our study also provides possible susceptibility

drugs for patients with different CAG score groups, which could

facilitate clinical selective medication.

Nevertheless, the molecular pathways involved in the

development of BC have not been elucidated in detail. With

multi-omics data exploration, molecular alterations in three

different molecular layers (mRNA, miRNA, lncRNA) driven by

the tumor microenvironment emerge in different patients.

Combining with multi-omics features and the Risklight tool, we

further developed a model of risk in BC patients associated with

cholesterol homeostasis disequilibrium.

Overall, this study provides valuable insights on the prognosis

of breast cancer patients. Reconsideration of alterations in

cholesterol homeostasis as potential risk factors for tumor

progression is warranted. The intricate relationship between

functional changes in cholesterol homeostasis and tumor

angiogenesis and immune response remains incompletelyated,

necessitating further exploration of the association cholesterol

homeostasis genes and angiogenesis as well as immune response.

In especially, the roles of SEMA3B and GSTM2 in immunity should

be further clarified. Notably, GPX8, a cholesterol homeostasis gene

with unknown implications for angiogenesis but exhibiting a strong

correlation with it, warrants thorough investigation. Additionally, a

more robust prognostic model pertaining to cholesterol must be
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established, incorporating both the actual levels of patients’

cholesterol and those of cholesterol homeostasis genes. This will

significantly enhance the accuracy of breast cancer prognosis

models related to cholesterol, bringing them closer to clinical

research and practice. Finally, we hope that the secrets of

cholesterol homeostasis in breast cancer will increasingly be

revealed. That’s why we started this study.
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