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Chemoresistance often complicates the management of cancer, as noted in the

instance of acute myeloid leukemia (AML). Mitochondrial function is considered

important for the viability of AML blasts and appears to also modulate

chemoresistance. As mitochondrial metabolism is aberrant in AML, any distinct

pathways could be directly targeted to impact both cell viability and

chemoresistance. Therefore, identifying and targeting those precise rogue

elements of mitochondrial metabolism could be a valid therapeutic strategy in

leukemia. Here, we review the evidence for abnormalities in mitochondria

metabolic processes in AML cells, that likely impact chemoresistance. We

further address several therapeutic approaches targeting isocitrate

dehydrogenase 2 (IDH2), CD39, nicotinamide phosphoribosyl transferase

(NAMPT), electron transport chain (ETC) complex in AML and also consider the

roles of mesenchymal stromal cells. We propose the term “mitotherapy” to

collectively refer to such regimens that attempt to override mitochondria-

mediated metabolic reprogramming, as used by cancer cells. Mounting

evidence suggests that mitotherapy could provide a complementary strategy

to overcome chemoresistance in liquid cancers, as well as in solid tumors.
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1 Introduction

Acute myeloid leukemia (AML), driven by uncontrolled

propagation of clones of myeloid origin, comprises a group of

aggressive hematologic malignancies with characteristic genetic or

epigenetic features and distinct clinical presentations. Since 2017,

the U.S. Food and Drug Administration has approved eleven new

drugs or combinatory regimens, and AML’s 5-year overall survival

(OS) rate has been greatly improved (1–11). However, cure rates

differ immensely between various age groups and are impacted by

advanced stages of the disease. While 95% cure rate is expected in

younger patients with non-high-risk acute promyelocytic leukemia,

this is essentially incurable for older adults with refractory or

resistant disease, such as in the case of complex karyotypes (12,

13). Chemotherapy alone, and in some situations, in combination

with hematopoietic stem cell transplantation, remains the mainstay

of AML treatment. However, nonresponse rates could be as high as

20-40% in AML patients (14). Even though the bulk of AML cells

are purged upon initial treatments, therapy-resistant cells, especially

leukemic stem cells (LSCs), persist and drive relapse. Relapsed/

refractory (R/R) AML continues to challenge the medical

community, as the 5-year survival rate here is at a bleak 10%

(15). Treatment failure and relapse in AML patients have prompted

continuous search for additional and synergistic therapeutic

avenues to overcome chemoresistance.

Recent years have seen the development of some targeted

therapies, thanks to the delineation of abnormalities in the

molecular pathways leading to AML. For example, novel

therapeutic options are being tested in AML using inhibitors of

Fms-Like Tyrosine kinase-3 (FLT3), isocitrate dehydrogenase

(IDH), B-cell lymphoma 2 (BCL-2), FOXO3A (a forkhead

transcription factor) inhibitor, or with stabilizers of p53 (3–5, 16–

20). However, these small molecules, as monotherapies,

demonstrate only moderate anti-leukemic activities. Moreover,

the efficacy of these anti-leukemia regimens is limited by the

presence of specific gene mutations and the clonal heterogeneity

of AML cells; especially in R/R AML (21, 22).

Increasingly, multiple evolving data have shown that the altered

bone marrow (BM) niche in AML patients plays a significant role in

disease ontogeny; but also provides opportunities for efficient anti-

leukemia immunotherapies (23). AML immunotherapies include

cancer vaccines, adoptive cell-based therapies and antibody-based

biologics, such as immune checkpoint inhibitors (24–26). However,

these immunotherapies await further fine-tuning in immuno-

phenotyping AML cells, particularly LSCs, to decrease unwanted

on-target-off-leukemia toxicity and escape of minor clones that

drive relapse (27). In addition, the complicated immunological

networks among immune, stroma and leukemic cells within the

AML niche, appear to limit therapeutic impact of most employed

immunotherapies (28).

In the BM microenvironment, AML cells are metabolically

reprogrammed and may use mitochondrial oxidat ive

phosphorylation (OXPHOS) as important energy sources (29). In

addition, mounting evidence suggests that rewiring of energy

metabolism is an important factor underpinning chemoresistance
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in AML (30, 31). The mitochondria-mediated aberrant cellular

processes used by AML have led to studies on therapies

modulating basic (patho)physiological processes, such as cellular

metabolism, nutrient sensing and mitochondrial functionality (32).

Besides intrinsic cellular metabolic factors, intercellular

communications, such as transfer of mitochondria from

mesenchymal stromal cells (MSCs) to AML cells, have also been

shown to be vital for development of chemoresistance (33). To

elaborate the role of dysregulated mitochondria metabolism in the

chemoresistance of AML and to explore the potential therapeutic

targets, we review the aberrant intrinsic mitochondria metabolic

processes and mitochondria trafficking from MSCs to AML as

emerging targets to overcome chemoresistance in AML.

Here, we coin the word “mitotherapy” to collectively refer

regimens that attempt to override the mitochondria mediated

aberrant cellular processes used by AML cells.
2 Mitochondrial metabolic
reprogramming in AML

Metabolic reprogramming in AML cells defines an area of

research more than the conventional “Warburg effect” and

reflects the unique dualistic requirements for mitochondria to

participate in both generation of the cellular energy currency

(adenosine triphosphate, ATP) and de novo nucleotide

biosynthesis by “metabolons” . These “metabolons” are

alternatively termed “purinosomes’ and comprise of dynamic

bodies associated with mitochondria, containing enzymes

underpinning purine biosynthesis (34). These arrangements and

proximity of the purinosome to mitochondria may help facilitate

channeling of intermediates from the tricarboxylic acid (TCA) cycle

(aka Krebs cycle) into the pathways of purine biosynthesis required

for de novo nucleotide generation necessary for AML

blast expansion.

Established links between the purine biosynthesis pathway and

mitochondrial metabolism are important for coordinating energy

metabolism and nucleotide synthesis within the cells. The purine

biosynthesis pathway requires high-energy inputs, which exist in

the form of ATP. ATP is synthesized mainly in mitochondria,

largely through OXPHOS. Moreover, several enzymes involved in

purine biosynthesis are associated with, or localized within

mitochondria, such as phosphoribosyl pyrophosphate

amidotransferase and adenylosuccinate lyase (35). Purine

biosynthesis also generates important metabolic intermediates,

such as 5-phosphoribosyl-1-pyrophosphate and adenosine

monophosphate (AMP), which enter the mitochondrial matrix to

participate in various metabolic pathways (36). The mitochondrial

electron transport chain (ETC) plays an important role in

maintaining cellular redox balance (37). The purine biosynthesis

pathway furthermore involves the utilization of various reducing

equivalents, such as nicotinamide adenine dinucleotide phosphate

(NADPH), which is generated during the pentose phosphate

pathway through the malate-aspartate shuttle linked to

mitochondrial structures. In essence, the mitochondrial ETC
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indirectly supports the redox balance that is clearly necessary for

efficient purine biosynthesis.

When compared with normal hematopoietic progenitors, AML

cells exhibit unique mitochondrial signatures, including higher copy

numbers of mitochondrial DNA (mtDNA), greater mitochondrial

mass, paradoxical dependency on OXPHOS, increased

mitochondrial biogenesis and altered translation systems required

for survival (Figure 1) (38, 39). Relapsed AML cells show enriched

mitochondrial ribosomal proteins and subunits of the respiratory

chain complex when analyzed with mass spectrometry, indicative of

reprogrammed energy metabolism (40). All these features cause

metabolic vulnerabilities in AML cells and should make these cells

more susceptible to agents targeting mitochondrial function.

Mitochondria transfer is another important mechanism

underpinning the higher mitochondrial mass in AML. In a co-

culture system mimicking the BM niche, cultured AML cells

increase their mitochondrial mass up to 14% by transfer of

functional mitochondria from BM stromal cells (41). As a result,

AML cells receiving the transferred mitochondria are less prone to

chemotherapy-induced mitochondrial depolarization, displaying

higher survival rates (41, 42).

Several proteins involved in mitochondrial calcium signaling

are aberrantly expressed and located on the surface of AML cells

and LSCs; these include oxysterol-binding protein (OSBP)-related

proteins (ORPs), transient receptor potential melastatin 2

(TRPM2), and neurokinin-1 receptor (NK-1R). The increased

expression of OSBP-related protein 4 L (ORP4L) in AML cells
Frontiers in Oncology 03
favors the synthesis of inositol-1,4,5-trisphosphate (IP3). This

mediator activates IP3 receptors, leading to Ca2+ release from

endoplasmic reticulum (ER) and enhanced mitochondrial

respiration, which is crucial for LSCs survival. LYZ-81, an

inhibitor of ORP4L, is designed to selectively eradicate LCSs in

vitro and in vivo (43). TRPM2 is a Ca2+-operable, nonselective

cation channel in response to reactive oxygen species (ROS) (44).

High TRPM2 expression is positively correlated with AML

proliferation and survival advantage through modulation of

mitochondrial function, ROS production, and autophagy (45).

NK-1R is a high-affinity receptor for substance P, which has been

shown to be a growth driver in many cancers, including AML.

Blocking NK-1R has been shown to induce apoptosis of AML cells

in vitro and in vivo (46).

AML blasts are also characterized by ROS overproduction,

which can harm redox-sensitive signaling proteins by cysteine

oxidation (47). Studies on the driving factors of mitochondrial

ROS overproduction in AML cells have identified some mutations

in key molecules. For instance, FLT3-internal tandem duplication

(FLT3-ITD) is a genomic marker linked with poor clinical

prognosis. FLT3-ITD-caused ROS overproduction drives defective

DNA damage repair, leading to high mutation burden and the

appearance of new leukemic clones (48). Mutations in IDH1 and

IDH2 genes result in the production of oncometabolite (R)-2-

hydroxyglutarate ((R)-2-HG), exacerbating accumulation of ROS

(49). In turn, ROS stimulates the proliferation of AML cells via an

extracellular signal-regulated kinase (ERK)-dependent pathway and
FIGURE 1

The mitochondrial bioenergetic signature of AML cells. ATP, adenosine triphosphate; Cyt c, cytochrome c; mtDNA, mitochondrial DNA; NAD+,
nicotinamide adenine dinucleotide; OXPHOS, oxidative phosphorylation; Q, coenzyme Q; TCA cycle, tricarboxylic acid cycle.
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phosphorylation of nuclear factor kB (NF-kB) (50). However, to

safeguard the self-renewal capacity, LSCs are special in low levels of

ROS, which apparently results from a combination of low

mitochondrial activity and high ROS-removing capacity, e.g.,

through autophagy pathways (51).

In a comparable manner to the role of cancer stem cells in

mediating drug-resistance, distant metastasis and tumor recurrence

(52), increasing evidence points to a crucial role of LSCs in AML

evolution and chemoresistance, but targeting these cells remains

challenging because of the difficulty in finding reliable phenotype

markers. Moreover, the quiescent state of LSCs render these

refractory to conventional AML therapies (53). It has been found

that LSCs have unique mitochondrial metabolic signatures; these

are different from normal hematopoietic stem cells (HSCs) that rely

more heavily on glycolysis, LSCs demonstrate higher dependence

on OXPHOS over glycolysis for the cellular energy demand (54).

Residual LSCs specifically relying on mitochondrial OXPHOS are

thought to be the major perpetrators responsible for AML

propagation after chemotherapy (55, 56). These findings have

raised possibilities for potential therapeutic interventions targeting

mitochondrial metabolism to overcome LSC-mediated

chemotherapy resistance.
3 Aberrant intrinsic mitochondria
metabolic processes as emerging
targets to overcome chemoresistance
in AML

Given the metabolic reprogramming in AML and the specific

rel iance on OXPHOS in LSCs, target ing the related

pathophysiological processes provides the potential possibilities to

overcome chemoresistance in AML. Here, we review those

strategies targeting IDH2, CD39, nicotinamide phosphoribosyl

transferase (NAMPT) and OXPHOS are putative avenues to

regulate the intrinsic mitochondrial-mediated cellular processes

hijacked by AML cells (Figure 2).
3.1 IDH2

Therapies targeting IDH2 mutations serve as possible

mitotherapy candidates in AML. IDH1 and IDH2 enzymes are

nicotinamide adenine dinucleotide phosphate (NADP+-)-dependent

and oxidatively catalyze isocitrate decarboxylation into a-
ketoglutarate (a-KG) in TCA cycle. In AML, mutations in IDH1

and IDH2 occur in about 5%-10% and 10%-15% of patients,

respectively (57, 58). Common early driver mutations include

certain somatic changes at crucial arginine residues in the

cytoplasmic enzyme IDH1 and its mitochondrial counterpart

IDH2. These mutations cause novel gain-of-function in these

enzymes, catalyzing a-KG to (R)-2-HG conversion (59). The

accumulation of oncometabolite (R)-2-HG poisons ten-eleven

translocation (TET) family enzymes causing genetic instability

and leads to a subsequent block in myeloid differentiation (60).
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Intracellular (R)-2-HG also inhibits Jumonji-C histone

demethylases, resulting increased DNA and histone methylation

(61), which reprograms the transcriptional state driving the survival

of drug-resistant AML cells (62).

By lowering (R)-2-HG content, IDH-mutant specific inhibitors

(IDHi) can induce the differentiation of AML cells, yet they have

limited clinical efficacy as a monotherapy (63). When combined

with agents that inhibit epigenetic DNA modification such as

histone methylation, IDHi exhibits a synergistic effect on AML

neoplasm. The first-in-class oral drug Enasidenib (AG-221/CC-

90007) is a selective inhibitor of IDH2 mutant enzymes. The Phase

1/2 study showed that median OS in R/R AML patients was 9.3

months. For the 34 (19.3%) patients with complete remission (CR),

OS was 19.7 months (4). IDHi combinations with hypomethylating

agents may confer additional clinical benefits over either of these

therapies alone. In an open-label, Phase 1b/2 clinical trial at 43 sites

in 12 countries (AG221-AML-005), 50 (74%) patients in the

combination group of enasidenib plus azacitidine achieved an OR

rate higher than that in 12 (36%) patients of the azacitidine

monotherapy group, suggesting the improved outcome by this

combination for the newly diagnosed AML patients with mutant

IDH2 (64). It was recently reported that a 60-year-old patient with

refractory AML, with IDH2 mutations, achieved CR in response to

the triple combination of enasidenib, azacytidine, and BCL-2

inhibitor venetoclax (65). A trial examining IDHi in combination

with chemotherapy for newly diagnosed AML or myelodysplastic

syndrome EB2 with an IDH1 or IDH2 mutation is currently

ongoing (https://clinicaltrials.gov/, NCT03839771).
3.2 CD39

Wildly expressed on vascular endothelial cells, immune cells

and tumor cel ls , CD39 (ecto-nucleoside triphosphate

diphosphohydrolase-1) is the dominant and rate-limiting

ectonucleotidase that hydrolyzes ATP and adenosine diphosphate

(ADP) to adenosine monophosphate (AMP) (66). Under normal

physiological conditions, the metabolic homeostasis of the purine

pool is maintained through the salvage pathway to reuse the

released purine nucleobases in the form of adenine, guanine, and

the hypoxanthine base of inosine monophosphate during the

breakdown process of nucleic acids (67). In the absence of CD39,

with the limitation of free purine nucleobases, the salvage pathway

will need to shift to the de novo synthesis pathway. Besides the

higher energy cost, this metabolic shift also pays a higher price given

the increased consumption in amino acids (i.e. glutamine, glycine,

aspartate) and additional metabolites (i.e. formate and carbon

dioxide) when compared to the salvage pathway (35). In addition

to its role in purine metabolism, our colleagues and we have used

genetic, pharmacological, and immunological methods to

demonstrate the therapeutical potential of CD39 as a potential

“novel immune checkpoint”, as in tumor immunotherapy (68–72).

In murine AML models, we have documented the importance

of Cd39 on the engraftment and invasiveness of TIB-49 tumor cells.

The acquisition of Cd39 via trogocytosis from host BM niche onto

otherwise Cd39-non-expressing TIB-49 cells resulted in decreased
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survival of mice inoculated with cancer cells (73). CD39 is also

notably expressed in human AML and likely contributes to

chemoresistance (74). In cytarabine-resistant leukemic cells from

both AML cell lines and patient samples, CD39 expression is

upregulated. Compared with that in newly diagnosed patients,

CD39 activity also increases in AML patients on chemotherapy.

The intrinsic chemoresistance of AML blasts is at least partly

contributed by CD39-mediated activation of the P2RY13-cAMP-

PKA pathway and the ATF4 axis, triggering mitochondrial ROS

production and OXPHOS activity that leads to chemoresistance

with heightened antioxidant defenses by AML cells (74).

Thus, targeting CD39 offers a new promising therapeutic

strategy to restore metabolic vulnerability in drug-resistant AML

cells, at least in part by selectively dampening OXPHOS.

Pharmacologic inhibition of CD39 ectonucleotidase activity by
Frontiers in Oncology 05
POM-1 suppresses mitochondrial reprogramming and enhances

the sensitivity of AML blasts to cytarabine (74). Monoclonal

antibodies (mAb) neutralizing CD39 ectonucleotidase activity,

such as ES002023 (Elpiscience Biopharma, Ltd.), SRF617 (Surface

Oncology) and TTX-030 (Tizona Therapeutics), have been

developed to boost extracellular ATP anti-tumor responses and

curb the immunosuppressive effects of adenosine in tumors.

Monotherapies with anti-CD39 mAbs or in combination with

other immunotherapy and/or chemotherapy are in the early stage

of clinical trials in advanced and metastatic solid tumors (https://

clinicaltrials.gov/, NCT05075564, NCT04336098, NCT04306900

and NCT05177770). The role of these anti-CD39 mAbs in AML

has not been tested and elucidated.

Instead of blocking CD39 ectonucleotidase activity, our

colleagues and we have glyco-engineered anti-mCd39 antibodies
FIGURE 2

Emerging mitochondrial-targeted treatments or “mitotherapies” directed at aberrant intrinsic mitochondria metabolic processes in AML. (A) The
accumulation of intracellular (R)-2-HG, catalyzed by mutant IDH1 and IDH2, increases DNA and histone methylation, associating with
chemoresistance in AML. (B) CD39 promotes mitochondrial biogenesis and drives OXPHOS via ATF4 and a P2RY13-cAMP/PKA signaling, resulting in
the intrinsic chemoresistance in AML cells. (C) NAD+ drives OXPHOS by activating the NAD+-dependent catabolism of amino acids and fatty acids.
NAMPT inhibitors decrease mitochondrial activity and increases apoptosis in AML cells. (D) Inhibitions of OXPHOS cause altered oxygen
consumption rates and decreased ATP production and have synergistic effects with anti-leukemia therapeutics. ADP, adenosine diphosphate; ATP,
adenosine triphosphate; Cyt c, cytochrome c; IDH, isocitrate dehydrogenase; IDHi, inhibitors to IDH-mutant proteins; mut, mutant; NAD+,
nicotinamide adenine dinucleotide; NAMPT, nicotinamide phosphoribosyl transferase; OXPHOS, oxidative phosphorylation; Q, coenzyme Q; (R)-2-
HG, (R)-2-hydroxyglutarate; TCA cycle, tricarboxylic acid cycle.
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(aCd39 mAb) to promote Fc receptor interactions. This approach

thereby augments antibody-dependent cellular cytotoxicity and

promotes trogocytosis. These mAbs promote anti-cancer

responses by depleting Cd39-positive myeloid suppressor cells

and inhibiting angiogenesis in murine colon cancer models (75).

The anti-hCD39 antibodies, PUR001 (Purinomia Biotech), exhibit

similar anti-tumor mechanisms in vivo, and are in Phase I clinical

trial (https://clinicaltrials.gov/, NCT05234853).

To explore the efficacy of such glyco-engineered aCd39 mAbs

in AML therapy, we established TIB-49 aggressive AML models in

mice. Current data showed that pretreatment with glyco-engineered

aCd39 mAb effectively boosted daunorubicin chemotherapy

cytotoxicity (73). The effects of aCd39 mAb on AML cell

mitochondrial metabolic reprogramming are now under

detailed investigation.
3.3 NAMPT

Nicotinamide adenine dinucleotide (NAD+) is a metabolite that

plays a role in maintaining the mitochondrial membrane potential.

NAD+ is also central to energy metabolism as a coenzyme for redox

reactions, carrying electrons from one reaction to another.

Moreover, NAD+ is an indispensable cofactor for NAD+-

dependent enzymes in non-redox reactions, such as sirtuins,

CD38 and poly(ADP-ribose) polymerases (76). NAMPT is a rate-

limiting enzyme in NAD+ biogenesis. NAMPT overexpression has

been observed in numerous types of cancers, including AML (77,

78). The involvement of NAMPT in multiple key biochemical

processes is the foundation of inhibiting cancer cell NAMPT

activities as a potential therapeutic strategy for AML treatment.

For example, KPT-9274 is a unique p21-activated kinase 4/NAMPT

inhibitor that suppresses the conversion of saturated fatty acids to

monounsaturated fatty acids, resulting in apoptosis of AML cells

(79). In addition, through the depletion of NAD+, KPT-9274 also

stalls mitochondrial respiration and glycolysis, and induces

apoptosis in AML cells regardless of mutation and genomic

subtypes (77). Because of the differences in cellular metabolic

states, LSCs but not normal HSCs and their progenitor cells are

more sensitive to NAMPT inhibition. Therefore, NAMPT

inhibition could be a selective therapeutic strategy targeting LSCs

in AML (79).

It has been reported that NAMPT inhibition sensitizes leukemia

cells for other chemotherapies, and could be a novel strategy to

enhance treatment index (80). Combination of etoposide with

FK866, an NAMPT-specific inhibitor, causes increased death of

leukemia cell lines compared to etoposide alone (80). The group of

Craig Jordan found that nicotinamide metabolism is also involved

in mediating resistance to venetoclax in LSCs from relapsed AML.

These authors investigated the reason for the low response rate of

venetoclax-based regimens in R/R AML patients. By comparing the

metabolic profiles of LSCs from R/R AML patients vs. untreated

patients, they demonstrated that R/R LSCs had a unique metabolic

profile which relied on nicotinamide. In R/R LSCs, NAD+ drove

OXPHOS by activating the NAD+-dependent amino acid and fatty

acid catabolism, and circumvented venetoclax-mediated cytotoxic
Frontiers in Oncology 06
effects (81). Thus, mechanistically, elevated requirement in

nicotinamide metabolism defines a vulnerability point of R/R

LSCs that may be targeted to overcome venetoclax/azacitidine

resistance (81).
3.4 OXPHOS

The heightened dependence of AML cells and LSCs on

mitochondrial metabolism renders them more sensitive to

inhibition of mitochondrial OXPHOS (82). Silencing the

expression of mitochondrial electron transfer flavoprotein (ETF)

A and ETFB leads to increased mitochondrial stress and apoptosis

in AML cells, but has little to no effect on normal human CD34+

HSC cells (83). Targeting ETC complexes in OXPHOS has emerged

as another attractive anti-leukemia strategy.

When treated with intensive induction chemotherapy, AML

patients with strong complex I-dependent respiration and high

expression of mitochondrial proteins are found to have poor

outcome, reduced remission rate and short OS (84). Besides high

TCA cycle intermediates, increased ETC complex I activity is also

found to be one of the mechanisms responsible for the enhanced

mitochondrial oxidative metabolism in AML patients harboring

IDH mutation. OXPHOS inhibitors show synergistic anti-AML

efficacy when combined with IDHi in vivo (85). Mubritinib, a

known inhibitor of ERBB2 (Erb-B2 receptor tyrosine kinase 2),

has been reported to elicit strong anti-leukemic effects in vitro and

in vivo through inhibition of ETC complex I activity (86). IACS-

010759, a highly selective small-molecule inhibitor of Complex I

demonstrates effective inhibition on cell respiration with potent

anti-leukemia effect in pre-clinical AML models (87). The

combination of IACS-010759 with venetoclax shows synergistic

effects in inducing AML cell death (88). A novel synergistic effect

between IACS-010759 and FLT3 inhibitor AC220 (quizartinib) is

also observed in AML cells. This is likely due to a major disruption

of cell metabolism, independent of FLT3 mutation status (89).

IACS-010759, however, is found to have a narrow therapeutic

window with emergent dose-limiting toxicities in two phase I

trials. Also, even at the tolerated doses only modest target

inhibition and limited antitumor activity were observed (90).

Clearly, further drug studies are needed to expand the dose

window and limit normal tissue toxicity before advancing the

translation of these compounds.

In this sense, research has been extended to inhibitors of

Complex II and Complex III that also display anti-leukemia

effects in AML. High activity of mitochondrial ETC Complex II is

found in AML patients with FLT3-ITD mutations. Inhibition of

ETC Complex II enhances apoptosis in FLT3-ITD+ AML cells (91).

Genetic knockdown of the ETC Complex II chaperone protein

SDHAF1 (succinate dehydrogenase assembly factor 1) delayed

AML cell growth in vitro and in vivo. Moreover, Complex II

inhibition induces selective death of AML cells while sparing

normal HSCs (92). Pharmacological inhibition of the

mitochondrial ETC Complex III by antimycin A is also found to

inhibit proliferation and promote cellular differentiation of AML

cells (93).
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In pediatric AML, the activity of both mitochondrial Complex

II and V are significantly elevated in BM mononuclear cells

compared to controls (94). In a scientific report studying the

mtDNA mutational patterns of pediatric leukemic cases from an

endogamous tribal population in Northeast India, non-

synonymous variants in mitochondrial Complex V are found to

be the driving factors for diseases, demonstrating the role of

Complex V in pediatric leukemia development (95).
4 Mitochondria trafficking from MSCs
to AML and addressing related
therapies to overcome
chemoresistance in AML

Multiple mechanisms have been proposed, whereby MSCs,

essential components in BM niche, appear to protect leukemic

cells from multiple therapies. These properties include secreting

pro-survival factors (e.g., cytokines, chemokines growth factors),

providing metabolic substrates as an alternative to glucose (e.g.,

amino acids and fatty acids) and rewiring metabolic programs (96).

Here, we will focus on MSC-related mitochondria metabolic

reprogramming in AML (Figure 3).
Frontiers in Oncology 07
4.1 Mitochondria trafficking from MSCs

MSCs have been documented to transfer their mitochondria to

AML cells in the BM microenvironment (41). One way to quickly

rescue and reboot the biological functions of stressed recipient cells

is horizontal transfer of mitochondria or mitochondrial genomes

from healthy donor cells, in this case, BM MSCs. MSCs are also

believed to protect cancerous cells by regulation of cellular

metabolism during chemotherapies (97). Blocking stromal cells to

AML cells mitochondrial transfer in BM niche was found to

sensitize AML cells to chemotherapy (33). Besides mitochondrial

transfer, MSCs stimulate uncoupling protein 2 (UCP2) expression

in leukemia cells and induce AML cells chemoresistance (98).

Pyruvate is a key metabolite in mitochondria metabolism as it is

at the crossroads of mitochondrial OXPHOS and cytoplasmic

glycolysis. Pyruvate “import” into mitochondria is suppressed by

high expression of UCP2, inducing a “Warburg phenotype” in AML

cells. The uncoupling of mitochondria and associated low ROS

levels engender cellular metabolic states, phenotypically similar to

LSCs. These factors may contribute to the resistance to

conventional chemotherapy. Targeting MSCs may be a novel

therapeutic avenue to overcome chemoresistance.

Cells transfer their mitochondrial cargo to other cells via

various mechanisms. One mechanism is mediated by tunneling
FIGURE 3

Mitochondria trafficking from MSCs to AML and related therapies to overcome chemoresistance (1). MSCs transfer their mitochondrial cargo to AML cells
via various mechanisms, including TNTs, GJCs, extracellular vesicles, and cell fusion (2). Mitochondria trafficking can be further boosted by
chemotherapy. Increased mitochondria contribute to high ROS levels in AML, which in turn promotes mitochondria trafficking from MSCs as a positive
feedback mechanism (3). In AML, high ROS drives genomic instability, leading to chemotherapy resistance. MSCs stimulate the expression of UCP2 in
leukemic cells, which suppresses the import of pyruvate into mitochondria, inducing a “Warburg phenotype”, and reduces the production of ROS,
engendering AML cells to be in a quiescent state and resistant to chemotherapy. a-KG, a-ketoglutarate; AML, Acute myeloid leukemia; BCL-2, B-cell
lymphoma 2; Cx43, Connexin 43; G6P, glucose 6-phosphate; GJCs, gap-junction channels; HK2, hexokinase 2; MPC, mitochondrial pyruvate carrier;
MSC, mesenchymal stromal cell; mtDNA, mitochondrial DNA; NOX2, nicotinamide adenine dinucleotide phosphate oxidases 2; OXPHOS, oxidative
phosphorylation; ROS, reactive oxygen species; TCA cycle, tricarboxylic acid cycle; TNTs, tunnelling nanotubes; UCP2, uncoupling protein 2.
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nanotubes (TNTs), which help cells to “intercommunicate” directly

with each other across lengthier spaces (99). A wide variety of

cellular components of diverse sizes, such as mitochondria,

exosomes, microvesicles, lysosomes, proteins, microRNAs and

even ions can be transferred through TNTs (100). Another

mechanism for mitochondria transport involves gap-junction

channels (GJCs), formed by Connexin (Cx) 43 (Cx43)

hemichannels (101). Through connecting two apposed hexameric

Cx hemichannels, Cx proteins establish GJCs to enable direct

exchange of cellular components between cells or with the

extracellular milieu (102). In addition to these cellular “bridges”,

MSCs can also transfer to recipient cells mtDNA and mitochondrial

per se through secretion of extracellular vesicles (103). Cell fusion is

yet another mechanism used by MSCs for mitochondria exchange,

in which uninuclear cells merge plasma membranes into

multinuclear cells and thus share organelles and cytosolic

components (104). Mitochondria trafficking can be further

boosted by chemotherapeutics routinely used in clinic, such as

cytarabine, etoposide and doxorubicin, and is associated with

increased OXPHOS-derived ATP production (41). AML cells gain

survival advantages and resistance to standard therapy when

equipped with transferred mitochondria as well as other anti-

apoptosis proteins, e.g., BCL-2 family proteins (105).

Therefore, targeting “mitochondria smuggling” fromMSCs into

AML cells forms the basis for novel therapeutic approaches

(mitotherapies) against chemoresistance empowered by donor

mitochondria. As normal CD34+ HSCs are less likely to receive

extra mitochondria, this mitotherapy could have a good therapeutic

window with less side effects (41). Curiously, the surface molecule

CD38 appears to play a critical role in mitochondria transport from

MSCs to AML blasts in the BM microenvironment (106).

Daratumumab, an anti-CD38 mAb approved for the treatment of

multiple myeloma, has been shown to inhibit this process (107).

Targeting NAD+-dependent CD38 may have an additional benefit

intrinsically rooted in the link of NAD biogenesis in mitochondria.

Although many chemotherapeutic agents and conventional anti-

cancer drugs have been identified to reduce TNT formation, such as

cytarabine, daunorubicin, everolimus, cytochalasin D, latrunculin A

and B, metformin, nocodazole CK-666, ML-141, 6-thio-GTP, BAY-

117082, and octanol (108), they nonetheless could trigger negative

effects on basic cellular functions as the actin constituent of TNTs is

also part of the cytoskeleton (99). Miro1 is a Ca²+-sensing adaptor

protein that tethers mitochondria to the trafficking apparatus. This

tethering is abrogated by micromolar levels of Ca2+ binding to

Miro1 (109). Miro1 overexpression in MSCs enhances the transfer

of mitochondria while Miro1 depletion inhibits mitochondria

transfer (110). Disruption of GJCs with carbenoxolone (CBX)

attenuates AML chemoresistance induced by MSCs and

synergizes with cytarabine in vitro and in vivo . CBX ’s

proapoptotic effect on AML cells is in line with the extinction of

energy metabolism (111). Targeting endocytosis mediated by

NAD+-CD38-cADPR-Ca2+ signaling could also be a promising

approach to block mitochondrial transfer (112).
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ROS-mediated “redox signaling” controls basic cellular

functions by modifying the activity and expression of various

metabolic enzymes and transcription factors (113). An important

primary source of ROS in leukemia is generated by NADPH

oxidases (NOX). Over 60% of primary AML blasts are found to

synthesize high levels of ROS by NOX, promoting AML cell

proliferation and survival. Another major source of endogenous

ROS comes from the ETC complex (114). Mitochondria transfer

fromMSCs to AML cells is associated with high ROS levels in AML,

which in turn increase mitochondrial uptake from MSCs as a

positive feedback mechanism (41, 115). The mutant receptor

kinases FLT3, IDH1/2, cKIT and RAS also seem to drive ROS

production in AML cells (116). What’s more, many antioxidant

systems seem to be defective in AML, leading to increased overall

ROS levels (114, 117, 118). However, the intracellular ROS levels

differ in AML cell subpopulations. While bulk AML cells are

characterized by high ROS levels, AML LSCs exhibit low cellular

oxidative status, which results from a combination of low

mitochondrial activity and high capacity of ROS removal (51). In

LSCs, a low ROS level is related to their quiescent state and

resistance to the conventional chemotherapy.

Altered ROS homeostasis has detrimental effects as a

consequence of damage to protein, lipid and DNA; latter leading

to subsequent cell apoptosis, new mutations and leukemic clones

(117). Through activation of kinases and inactivation of protein

tyrosine phosphatases, high-level ROS production drives second

messenger signaling, increased FLT3 signaling, lipid peroxidation

and genomic instability, leading to chemotherapy resistance (116).

High levels of ROS are also suggested to drive leukemogenesis (119).

New therapeutic approaches have been developed to potentially

rectify the imbalance of cellular ROS (116, 120). Antioxidants are

used to counteract the deleterious effects of high ROS in AML. The

natural compound vitamin C (ascorbic acid) has emerged as a

potential anti-proliferative and pro-apoptotic agent on leukemic

cells through epigenetic regulations and scavenge of ROS to prevent

DNA damage (121). Effectiveness remains controversial as

antioxidants may limit the effectiveness of chemotherapy by

protecting malignant cells. Studies also confirm that decreasing

ROS levels may be a double-edged sword in AML treatment. When

applied as a single agent, decitabine induces the activation of NRF2

and downstream antioxidative response. This restrains ROS

generation, leading to decitabine resistance. Adding all-trans

retinoic acid blocks NRF2 activation, resulting in ROS

accumulation and ROS-dependent cytotoxicity (122). A similar

phenomenon is also seen when AML patients are treated with

arsenic trioxide and venetoclax, which cooperatively induce LSC

apoptosis through potentiation of ROS induction (123). Setanaxib

(GKT137831), a clinically advanced ROS-modulating agent, shows

antiproliferative activity and potently enhances the cytotoxic action

of anthracyclines in vitro through enhancing anthracycline-induced

ROS formation in AML cells (124). Furthermore, low levels of ROS
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in AML will facilitate entry of AML cells to the quiescent state and

to become resistant to the conventional chemotherapy (51).

Therefore, close regulation of levels of ROS, as in settings of AML

treatment, need to be carefully studied.
5 Conclusion and future perspective

The growing quest for novel therapeutic strategies together with

continuous elucidation of metabolic pathophysiology in AML might

help explain how blasts and LSCs develop resistance to current

therapeutic regimens. Resistance to chemotherapy appears

secondary to both intrinsic cellular factors and extrinsic

environmental events. Metabolic reprogramming is one of those

intrinsic factors that helps to protect AML viability and

furthermore induces resistance to therapeutic agents. The

interactions between MSCs and AML cells, especially involving

mitochondria transfer from MSCs to AML blasts and LSCs, are

also extrinsic niche-specific events. These pathways possibly further

facilitate chemoresistance.

The successful application of mitotherapy in leukemia will

require normalization of aberrant cellular pathophysiology

processes (e.g., disordered mitochondria metabolism) within

blast cells. Therapeutic strategies that address mitochondria

biology and metabolic reprogramming (mitotherapies) may

provide more specific and potent regimens for AML,

particularly when used in combination with chemotherapy and

potentially also immunotherapy.
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