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İnönü University, Türkiye
Bikash Kumar Paul,
Mawlana Bhashani Science and
Technology University, Bangladesh

*CORRESPONDENCE

Jiangyu Zhang

superchina2000@foxmail.com

Wenjing Chen

chwj1224@foxmail.com

Zhenyu Liu

zhenyuliu@gdut.edu.cn

†These authors share first authorship

RECEIVED 23 June 2023
ACCEPTED 23 October 2023

PUBLISHED 13 November 2023

CITATION

Jiang L, Huang S, Luo C, Zhang J, Chen W
and Liu Z (2023) An improved multi-scale
gradient generative adversarial network for
enhancing classification of colorectal
cancer histological images.
Front. Oncol. 13:1240645.
doi: 10.3389/fonc.2023.1240645

COPYRIGHT

© 2023 Jiang, Huang, Luo, Zhang, Chen and
Liu. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Methods

PUBLISHED 13 November 2023

DOI 10.3389/fonc.2023.1240645
An improved multi-scale
gradient generative adversarial
network for enhancing
classification of colorectal
cancer histological images

Liwen Jiang1†, Shuting Huang2†, Chaofan Luo2, Jiangyu Zhang1*,
Wenjing Chen3* and Zhenyu Liu2*

1Department of Pathology, Affiliated Cancer Hospital and Institution of Guangzhou Medical
University, Guangzhou, China, 2School of Information Engineering, Guangdong University of
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Introduction:Deep learning-based solutions for histological image classification

have gained attention in recent years due to their potential for objective

evaluation of histological images. However, these methods often require a

large number of expert annotations, which are both time-consuming and

labor-intensive to obtain. Several scholars have proposed generative models to

augment labeled data, but these often result in label uncertainty due to

incomplete learning of the data distribution.

Methods: To alleviate these issues, a method called InceptionV3-SMSG-GAN has

been proposed to enhance classification performance by generating high-

quality images. Specifically, images synthesized by Multi-Scale Gradients

Generative Adversarial Network (MSG-GAN) are selectively added to the

training set through a selection mechanism utilizing a trained model to choose

generated images with higher class probabilities. The selection mechanism filters

the synthetic images that contain ambiguous category information, thus

alleviating label uncertainty.

Results: Experimental results show that compared with the baseline method

which uses InceptionV3, the proposed method can significantly improve the

performance of pathological image classification from 86.87% to 89.54% for

overall accuracy. Additionally, the quality of generated images is evaluated

quantitatively using various commonly used evaluation metrics.

Discussion: The proposed InceptionV3-SMSG-GAN method exhibited good

classification ability, where histological image could be divided into nine

categories. Future work could focus on further refining the image generation

and selection processes to optimize classification performance.

KEYWORDS

colorectal cancer, histological images, convolutional neural networks, generative
adversarial networks, histological image synthesis, tissue type classification
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1 Introduction

Colorectal Cancer (CRC) is regarded as one of the most

important malignant gastrointestinal cancers. Owing to the high

incidence and mortality rates, CRC is also the second most common

cancer in women and the third most common cancer in men.

Despite differences in geographical distribution, age and gender, the

global incidence of CRC is expected to increase by 80% by 2035.

Most CRCs are sporadic (7080%), while about one-third of CRCs

have a genetic component (1–3). Fortunately, early detection,

correct diagnosis and appropriate treatment can effectively

improve the survival of patients with CRC. Many studies have

shown that the development of CRC can be effectively determined

by histological image analysis such as a more accurate classification

of histological images (4, 5).

Over the years, researchers have developed a wide range of

methods based on Artificial Intelligence to accurately classify

medical images (6–9). Traditional machine learning approaches

for classifying images contain several steps, which are data

preprocessing, manual feature extraction, manual feature

selection, classification and so on. However, these approaches

require prior domain knowledge and may not generalize well on

test data (10).

Deep neural networks have been proposed and can be used for

the classification of images. Specifically, convolutional neural

networks (CNNs) are multilayered and trained with a back-

propagation algorithm to classify. In medicine, CNNs are used to

classify images to predict clinical parameters and outcomes, and

have attained huge success (11, 12). Zhou et al. (13) introduced a

new attention mechanism into CNN to classify the differentiation

types of histopathological images of colorectal cancer. Kumar et al.

(14) proposed a lightweight and less complex CNN framework to

improve the classification performance of colorectal tissue. Khazaee

et al. (15) developed a hybrid structure based on deep TL networks

and ensemble learning to detect colorectal cancer.

However, supervised CNN training often requires a large

number of expert annotation data to achieve high accuracy. In

addition to this, only a small set of labeled data is available in many

practical applications due to annotation costs and privacy issues.

Additionally, labels are often unbalanced between grading and

subtypes (16). Thus, an optimal solution is to develop a

generative model to eliminate the issues mentioned above, which

means that the sample size is increased through instances of the

original data.

Traditional transformations like flipping, mirroring, scaling,

and cropping are the most common image augmentation

strategies. However, they do not really introduce new images with

additional information and do not better fill the entire data

distribution (16). Data augmentation with these simple

transformations may not effectively enhance classification

performance. In order to achieve more robust performance, a

large amount of annotated and high-quality training data is

usually required.

Recently, generative adversarial networks (17) (GANs) are

increasingly active and widely used in medical data synthesis

because of their excellent data generation capabilities without
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explicitly modeling probability density functions (16, 18–21).

Augmenting existing medical images can significantly increase the

sample size of the training set. It partly alleviates the problem of

limited sample sizes of medical images due to inherent limitations

such as imaging costs, tag costs and patient privacy (22, 23).

A typical GAN comprises a generator (G) and a discriminator

(D) which are embedded in a competitive process. The

discriminator is expected to perform accurate binary classification

of real/fake images. The generator expects to fake images which are

sufficiently realistic that the discriminator cannot accurately classify

them. The two components are trained iteratively, and the

performance increases alternately. As a result of the game

compe t i t i on , t h e g en e r a t o r ’ s p e r f o rmance c an be

significantly promoted.

However, it is of note that traditional GANs suffer from two

prominent problems which are mode collapse and training

instability. Mode collapse occurs when the generator captures

only a subset of the data distribution, resulting in a lack of

diversity in the generated samples. And the reason for the

training instability of GANs is that when there is no overlap

between the real and fake data distributions, the gradients passed

from the discriminator to the generator become uninformative (24,

25). A number of GAN-variants have been proposed to alleviate

these two problems, such as Deep Convolution Generative

Adversarial Networks (DCGAN) (26), Self-Attention Generative

Adversarial Networks (SAGAN) (27) and Multi-Scale Gradients

Generative Adversarial Networks (MSG-GAN) (25).

Multi-Scale Gradients GAN (MSG-GAN) has been developed

for the production of higher resolution images (25). This

architecture utilizes the idea of progressive neural networks first

proposed in (28) which starts with low resolution 4 × 4 pixels image

and begins to grow with the training progressing for the generator

and discriminator. MSG-GAN alleviates the instability problem by

allowing the flow of gradients from the discriminator to the

generator at multiple scales to generate high-resolution images.

Compared with PROGAN (29), latent spaces of the generator and

the discriminator in MSG-GAN are connected so that more

information is shared between the generator and the

discriminator. To be specific, multi-scale images are sent to the

discriminator and linked to the corresponding main path. The

discriminator can not only view the final output of the generator but

also the outputs of the middle layers. Therefore, the discriminator

becomes a function of the generator’s multiple scale outputs, and

importantly, it passes gradients to all the scales simultaneously.

MSG-GAN can synthesize more realistic and diverse samples,

so we adopt it as the basic framework. However, the images

generated by GANs may have label ambiguity, to be specific, a

generated image of one class is misclassified into another class,

which degrades classification model performance (16). Our goal in

this paper is to enhance the classification performance, thus we

apply a selection mechanism to filter the synthetic images,

guaranteeing that all selected generated images are more credible

and can be classified into some class with certainty.

In this work, we propose a Selective GAN model based on

MSG-GAN (SMSG-GAN) to generate high-fidelity images.

Furthermore, we also employ additional GANs such as DCGAN
frontiersin.org
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and SAGAN for comparison. In order to obtain more realistic and

convincing images, a selection mechanism is proposed to screen

images, which takes advantage of a trained model to filter the

generated images, and the images with higher predicted probability

than the threshold are saved. We both qualitatively and

quantitatively evaluate the proposed SMSG-GAN by performing

colorectal tissue image classification with an advanced CNN

classifier trained on augmented data and applying various

evaluation metrics. Experimental results show that SMSG-GAN

can effectively enhance classification performance and its superior

generation ability.
2 Materials and methods

2.1 Colorectal cancer data

Colorectal cancer is a type of solid tumor as well as a complex

disease. Additionally, Colorectal histological images generally

contain a variety of tissue types and features, which makes it

extra complicated to analyze. Hematoxylin-Eosin (HE) stained

histological images are the main tool used to diagnose CRC and
Frontiers in Oncology 03
determine the stage of CRC. In HE slides of CRC patients, it is vital

to differentiate normal tissues from tumor regions (30). In this

paper, we use the open-access histological data set of nine tissue

classes from NCT-CRC-HE-100K for data augmentation and tissue

classification. The data set is provided by Kather et al. (3), which is

manually delineated single-tissue region in 86 CRC tissue slides,

generating more than 100,000 HE image patches. There are nine

categories including adipose tissue (ADI), background (BACK),

debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle

(MUS), normal colon mucosa (NORM), cancer-associated stroma

(STR) and colorectal adenocarcinoma epithelium (TUM). Images

randomly selected from each category of this data set are illustrated

in Figure 1. We evaluate the accuracy of tissue classification with an

external validation set: the NCT-VAL-HE-7K data set, which

contains 7180 image patches from 25 whole-slide images. The

dimensions of all the images are 224 × 224 × 3 and cropped at a

magnification of 20× (0.5µm/pixel). We used all samples in the

NCT-CRC-HE-100K and NCT-VAL-HE-7K datasets.

The aim of this study is to achieve maximum separation

between different classes in the classification process. To this end,

we utilize t-distributed stochastic neighbor embedding (t-SNE) to

visualize the class separation of the NCT-VAL-HE-7K dataset (31).
FIGURE 1

Example images for each of the nine tissue classes represented in the NCT-CRC-HE-100K data set.
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t-SNE is a nonlinear dimensionality reduction technique that maps

high-dimensional data into twodimensional or three-dimensional

space for visualization purposes. The results of the visualization are

presented in Figure 2. Most tissue classes are found to cluster

together except for ADI and BACK classes. This could be due to the

fact that ADI and BACK classes contain less tissue, making them

easier to distinguish from other classes.
2.2 Proposed methodology

An overall flowchart of the proposed method named

InceptionV3-SMSG-GAN is depicted in Figure 3. InceptionV3-

SMSG-GAN is presented to improve the classification performance

of colorectal cancer histopathological images. To be specific, we take

advantage of MSG-GAN to generate a large amount of training

samples for the downstream classification task, and then use a

selection mechanism to filter the synthesized data. After the

selection, the selected data and the original training set are put

together into the classification network as the training set and

validation set. Taken together, the proposed approach contains two

parts which are selective data augmentation and downstream

classification task. Among them, the selective data augmentation

methodology consists of two stages, namely data generation and

selection, as shown in Figure 4. Note that the SMSG-GAN method

is adopted for each class in turn, here displays the generation for the

ADI class. In the following subsections, detailed information about

each of these stages is provided.
2.2.1 Data synthesis
As illustrated in Figure 4, the proposed SMSG-GAN framework

trains with progressive growth resolution. The intermediate layers

of the generator share features with the corresponding intermediate

layers of the discriminator, which can improve the training

efficiency and quality of the generated images. This sharing

promotes information flow between the generator and the

discriminator, aiding the generator in better understanding the
Frontiers in Oncology 04
data distribution and features, and producing more realistic images.

Besides, sharing features can reduce the number of parameters in

the models, preventing issues such as overfitting from occurring.

The generator of SMSG-GAN outputs generated histopathological

images, while the discriminator outputs the probability that the

given image is real. Furthermore, the generator and the

discriminator in SMSG-GAN consist of seven convolutional

blocks each, enabling them to generate images of varying sizes

simultaneously, resulting in higher-quality images. It is of note that

only images with the highest resolution of 256 × 256 pixels are

adopted. Moreover, the optimization of SMSG-GAN is performed

with respect to a joint loss function forD and G as given in Equation

(1).

ldis(xreal , xfake) = E½R(1 − rf )�  + E½R(1 + fr)�
lgen(xreal , xfake) = E½R(1 + rf )�  + E½R(1 − fr)�

(
(1)

where, rf = D(xreal) − E½D(xfake)�; fr = D(xfake) − E ½D(xreal)�;R(
x)  =  max(x, 0)

where ldis (xreal,xfake) and lgen (xreal,xfake) are the loss of

discriminator and generator, respectively. xreal represents real

images from training data, and xfake denotes fake images that

generator synthesizes.

We utilize a noise vector of 256 dimensions from a standard

normal distribution in the initialization phase. The latent vector is

used as the input of a generator to generate images of different sizes

through a series of layers, and the generated images and real images

of their corresponding scales are fed into the discriminator which

ultimately estimates the reality of the images. A two time-scale

update rule ensures that training reaches a stationary local Nash

equilibrium if the discriminator learns faster than the generator

(32). In light of this, we apply different learning rates for the

generator and the discriminator to achieve better performance.

The generator trained for the nine classes of tissue images is trained

with Adam (lr=0.0001), and the learning rate of the discriminator is

0.0004. Other settings in synthesis experiments are as follows, all

models are trained with the net budget of 100 epochs and the batch

size is set as 8. By applying the above configurations, SMSG-GAN
FIGURE 2

t-SNE of the testing set. Classes: 0=ADI, 1=BACK, 2=DEB, 3=LYM, 4=MUC, 5=MUS, 6=NORM, 7=STR, 8=TUM.
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trains for each class of colorectal tissue separately. After the training

is completed, 5,000 images are generated for each class, increasing

the amount of data for the downstream classification task.

During the synthesis experiment, DCGAN and SAGAN are also

utilized to generate images using the NCT-CRC-HE-100K data set

for further generation comparison. Compared with the original

GAN, DCGAN makes some changes to CNN architecture to

improve the quality of samples and convergence speed. The main
Frontiers in Oncology 05
improvement is to replace the pooling layers in the discriminator

with deconvolution and fractional deconvolution in the generator

(26). The size of generated images in (26) is 64 × 64 pixels, so we

modify the number of the channels in the architecture to synthesize

the same size as the output images of SMSG-GAN. As for SAGAN,

self-attention module and spectral normalization (33) have been

used in both generator and discriminator to enhance performance.

The self-attention module is used to compute the response at one
FIGURE 4

The architecture of the proposed SMSG-GAN. Each orange bar in the generator represents each convolutional block of the generator, similarly, each
indigo blue in the discriminator represents each convolutional block of the discriminator, and the red block represents a convolutional layer with a
kernel size of 1 × 1.
FIGURE 3

Flowchart of InceptionV3-SMSG-GAN.
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location as a weighted sum of features at all locations for a better

balance between the ability to model long-range dependencies and

statistical efficiency. We also change the number of channels in

convolutional layers in the SAGAN architecture and make some

modifications to generate images with a resolution of 256×256

pixels. It is of note that the same configurations as SMSG-GAN are

adopted in the generation experiments of DCGAN and SAGAN.

2.2.2 Selection mechanism for synthetic data
In order to make better use of training data and alleviate the

problem of overfitting during training, data augmentation has

become a commonly utilized method for deep neural network

training. The goal of data augmentation is to augment the

original training set with new samples that follow the original

data distribution. Therefore, a good data augmentation scheme

should generate samples that follow the original data distribution

but are different from the original training set. Conversely, a poor

data augmentation scheme will produce samples that deviate from

the original data distribution, thereby misleading training.

Most data augmentation methods based on GAN directly add

generated images to the training set,whichresults in thevaryingquality

of synthetic images affecting the effectiveness of augmentation.

Accordingly, for the sake of a high-quality synthetic data set, a

filtering mechanism is proposed to make sure that the augmented

samples satisfy the original data distribution. Specifically, we use a

GoogleNet InceptionV3 CNN model (34) trained without any data

augmentationonnine categories of colorectal tissue images,which also

serves as a baseline model in classification experiments, to predict the

class probabilities of synthetic images. After the training, we select

generated images with class probabilities predicted by the trained

model greater than a given threshold a.
Regarding the choice of a, we provide an ablation study in

Section 3.3. The selected images can be confidently classified into

certain classes and thus contain sufficient diagnostic features. In

order to benefit improvement of classification performance, the

selectively generated images are added to the original data

for training.
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2.2.3 Colorectal tissue images classification
For classification experiments, we utilize the InceptionV3

model for classification with the nine classes mentioned in

Section 2.1. During training, we replace the last fully connected

layer presented in the original network architecture with two fully

connected layers which are followed by a rectified linear unit

activation (ReLU) activation function and a dropout layer with

0.5 probability. The ReLU function is a common type of nonlinear

activation that maps negative values to zero and returns the original

value for positive values. The final output of the model is the

probability of the category of the histopathological image. The main

parameters are set as follows: batch size is 64 and epochs is set as 20.

It is also worth noting that the model is trained using stochastic

gradient descent with an initial learning rate of 0.001 after defining

the network structure. During the training process, we implement a

changeable learning rate scheme to further enhance classification

performance:

lrep = lrep−1 � ½1 + cos(p � ep=epochs)
2

� (1 − lr f ) + lr f � (2)

where lr represents the learning rate, and ep is the number of

epochs, we set epochs and lr f to 20 and 0.1, respectively.

2.2.4 Statistical analysis
In order to further demonstrate that the classification results of

the proposed method are not obtained by chance, we utilize the

Paired t-Test. We evaluate the significant difference between the

proposed method and the baseline by calculating the P values of the

Paired t-Test for the classification overall accuracy which are

obtained by the models. All the classification experiments are run

three times with different random seeds, where the best

classification performances for the two models are reported

in Table 1.

Statistical analysis is done in Python (version 3.6) using stats

module from Scipy library (version 1.5.4). P values< 0.05 are

considered to be statistically significant. The P value of the Paired

t-Test is shown in Table 1. Therefore, the proposed method has
TABLE 1 Classification performance of InceptionV3 model for each tissue class.

Baseline(w/o data augmentation) Proposed(with SMSG-GAN)***

Precision Recall Specificity Overall Accuracy Precision Recall Specificity Overall Accuracy

ADI 0.926 0.85 0.984

0.8687

0.984 0.894 0.997

0.8954

BACK 0.955 1.0 0.994 0.967 1.0 0.995

DEB 0.722 0.805 0.985 0.708 0.879 0.982

LYM 0.961 0.965 0.996 0.986 0.978 0.999

MUC 0.945 0.871 0.992 0.963 0.921 0.994

MUS 0.606 0.833 0.951 0.673 0.865 0.962

NORM 0.818 0.869 0.978 0.838 0.880 0.98

STR 0.796 0.390 0.994 0.815 0.430 0.994

TUM 0.903 0.945 0.979 0.908 0.949 0.980
The left side denotes the classification results of InceptionV3 model without data augmentation, which serves as a baseline. while the right side represents the results of the proposed method
which utilizes SMSG-GAN to augment data and then uses InceptionV3 model to classify tissue types. *** denotes significant difference.
The bold values indicate the best performance.
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statistically significantly different classification performance with

the P value of 0.001.
3 Results

In this section, we present the evaluation results of the proposed

methodology. The first experiment was a comparison of

classification training on colorectal tissue images. After the

training of classification, we utilized an additional data set for the

test. The second experiment used various GANs to generate the

nine classes of colorectal tissue images. Furthermore, we also

provided a performance comparison of DCGAN, SAGAN and

SMSG-GAN on generating the nine classes of colorectal tissue

images. The performance comparison was based on measuring

the quality of the synthetic data through several commonly

used metrics.
3.1 Results of classification

We used the InceptionV3 model without any data

augmentation assistance as the basic classification baseline. As for

our approach, selective synthetic data was added to the original

training set for further classification experiments, we also utilized

the same InceptionV3 model used in the baseline to classify the nine

classes of colorectal tissue patches. During the classification

training, we fixed the same parameters as the classification

baseline model. When the training was completed, we utilized the

NCT-VAL-HE-7K data set to evaluate the performance of the

two models.

In order to evaluate the classification performance of the

proposed method, we adopted confusion matrix, precision, recall,

specificity, and overall accuracy. The confusion matrix represents
Frontiers in Oncology 07
the predicted labels of the classifier versus the true labels, larger

values on the diagonal indicate better classification performance. As

for other measures, a larger value means better prediction

performance of the classifier.

The confusion matrices of the evaluation are shown in Figure 5.

Figure 5A shows that the most obvious confusion existed between

MUS and ADI. Furthermore, most misclassifications arose between

the classes MUS and STR as well as between NORM and MUC. As

illustrated in Figure 5B, the number of the class ADI misclassified to

the class MUS decreased significantly, and more images belonging

to the STR category and LYM category were correctly classified.

Taken together, we attained higher values on the diagonal of the

confusion matrix than the baseline.

Table 1 depicts the precision, recall and specificity of each

category, and overall accuracy for all categories in detail. The best

results are in bold. In terms of precision, InceptionV3-SMSG-GAN

yielded more competitive results than the baseline model in most

categories except for DEB. In particular, the precision of the ADI

and MUS classes increased dramatically by 5.8% and 6.7%,

respectively. For recall metric, InceptionV3-SMSG-GAN

displayed significantly better performance in all classes. The recall

of the ADI, DEB, MUC, MUS and STR classes increased by about

4.4%, 7.4%, 5%, 3.2% and 4%, respectively. Additionally, the

proposed method achieved better results than the baseline model

for specificity evaluation metric except for DEB which decreased

slightly by 0.3%. In summary, our approach achieved much higher

overall accuracy with 89.54% and generally got higher values in

most metrics than the baseline model. In most cases, the

classification with SMSG-GAN led to better performance results

than without augmentation of the training data, which

demonstrated that SMSG-GAN was able to enhance the

classification performance of the colorectal cancer tissue.

During training both classification models of colorectal

histological images, we monitored the training loss value which is
A B

FIGURE 5

(A) Baseline. (B) Proposed method. Confusion matrices of the classification results using InceptionV3. (A) represents confusion matrix of the
InceptionV3-based classification without any augmentation, while (B) represents confusion matrix of the InceptionV3-based classification with
selective synthetic data using our proposed method.
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depicted in Figure 6. The Training loss curve depicts convergence

across epochs and demonstrates better anytime performance with

the proposed approach in comparison to the baseline. The loss

values of InceptionV3-SMSG-GAN are lower all the time, which

demonstrated the significance of the proposed method and

better convergence.

To further verify the effectiveness of the proposed method,

ShuffleNetV2 and MobileNetV2 were applied for comparison.

Table 2 shows the overall accuracy of classification performance.

The proposed method achieved the best overall accuracy for all

categories, which is 0.0267 larger than the baseline model, 0.1038

larger than ShuffleNetV2, and 0.0476 larger than MobileNetV2.

We further visualized the internal representations of tissue

classes by using t-SNE on deep layer activation of both methods

and saw a nearperfect separation of the classes in the testing set.

Figure 7 shows that the distributions of features extracted from the

baseline InceptionV3 model for DEB and STR were much more

concentrated, yet each category with InceptionV3-SMSG-GAN was

more separate. This showed that the classification model with data

synthesized by SMSG-GAN learns image features that allowed the

separation of nine tissue classes, which outperformed the

baseline model.
3.2 Results of synthetic colorectal
tissue images

To facilitate a more sufficient training data set to train the

classifier, we synthesized the colorectal tissue images using GANs.

In the training of classification, SMSG-GAN generated 5000 images
Frontiers in Oncology 08
with a resolution of 256×256 pixels for each class of colorectal tissue

images. Xue et al. (16) did some experiments which showed that the

best augmentation performance was achieved when the

augmentation ratio was 0.5, where the augmentation ratio

represents the proportion of the number of generated samples to

the number of original training samples.

Figure 8 shows some of the samples for each class of synthesized

colorectal tissue patches with different GANs. The first column

represents the real image from the training data, and the remaining

columns represent synthesized images by SMSG-GAN, DCGAN,

and SAGAN, respectively. The images SMSG-GAN generated were

enough to achieve a real effect compared with the other two GAN

models. By contrast, the quality of the images DCGAN and SAGAN

synthesized were both extremely unrealistic. The reason might be

that their simple network architecture could not learn the features

of large-scale images completely.
3.3 Ablation study of selective mechanism

To further analyze our proposed SMSG-GAN, we performed an

ablation study of the selection mechanism and compared different

thresholds used in the selection mechanism. We used the same

backbone InceptionV3 classifier with the same hyperparameters

setting in all experiments to make sure differences only come from

the selection mechanism. In Table 3, a = 0 denoted that we utilized

the synthetic images directly without selection for downstream

classification experiments. a = 0.7 indicated that the generated

images with a class probability higher than 0.7 were added to the

original data for further classification. The overall accuracy of
FIGURE 6

The loss value curves for the baseline and proposed method. The orange line represents the classification without data augmentation, and the blue
line represents the classification with selective synthetic data.
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classification is illustrated in Table 3. One can see that either too

small or too large a value of a compromises the advantage of

selection. InceptionV3-SMSG-GAN with threshold a = 0.85

achieved the best performance. Data augmentation can improve

classification performance, with better enhancement achieved when

using the selection mechanism. However, the generated images

have different levels of quality. The diversity decreases if a higher

threshold is chosen, which resul ts in no significant

performance improvement.
Frontiers in Oncology 09
3.4 Quantitative evaluation of
generated images

In order to compare the three GAN models more

comprehensively, we used three evaluation metrics to measure the

quality and diversity of the synthesized images. The details of the

three metrics are as follows.
• Inception Score(IS). The metric is widely used in GANs, the

higher IS is, it indicates that the generator can generate

high-quality samples (35). However, IS also has serious

limitations. It is primarily to ensure that the samples

generated by the model can be confidently identified as

belonging to a specific class and that the model generates

samples from multiple classes, not necessarily to assess the

authenticity of the details or the diversity within the class.

In other words, IS does not penalize a lack of intra-class

diversity, Specifically, if mode collapse occurs in the

generator, the value of the IS might be pretty, but the real

situation is very bad. Thus, it is not sufficient to only use IS

to evaluate the quality of the generated images.
A

B

FIGURE 7

(A) Baseline. (B) Proposed method. Visualization of the class separation based on t-SNE of deep layer activations for the testing data. (A, B) represent
t-SNE of the testing set based on deep layer activations of InceptionV3 (w/o data augmentation) and InceptionV3 (with selective synthetic data
augmentation), respectively.
TABLE 2 Classification performance of the proposed method and other
algorithms.

Methods Overall Accuracy

Baseline 0.8687

ShuffleNetV2 0.7916

MobileNetV2 0.8478

Proposed 0.8954
The bold values indicate the best performance.
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• Frechet inception distance(FID). The FID is used to detect the

intra-class mode dropping. It has been shown to be better

aligned with expert evaluation in assessing the realism and

diversity of the synthesized images (32). The metric

captures the similarity of generated images to real ones,

computing the distance between the feature vector of

generated and real images. Usually, a synthesized image

with good quality should result in a lower FID score.

• Kernel Inception Distance(KID). However, the IS and FID

cannot well process the overfitting problem (36). To

address this problem, the KID was proposed. The KID

can capture higher order statistics and has an unbiased

estimator but has been empirically found to suffer from

high variance, which is a metric similar to the FID (36).

Therefore, we also used KID to evaluate the quality of the

synthetic images. The same as the FID, a lower value means

better quality of synthesized images.
The three metrics mentioned above take a list of feature vectors

extracted from images to compute the distance between

distributions. The image feature vectors are extracted by the pre-

trained InceptionV3 model trained on ImageNet (37). ImageNet is

a large-scale database that is much larger in size and diversity and

much more accurate, containing 12 subtrees with 5247 sets and 3.2

million natural images in total. Although the distribution of natural

images and that of histopathology images are considerably different,

the evaluation metrics may be more accurate when the pre-trained

model used in the metrics train in a tremendous amount of data set

and the data set used in our experiment is relatively tiny compared
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to ImageNet. Hence we eventually did not replace the InceptionV3

model pre-trained on ImageNet with the same model pre-trained

on the NCT-CRC-HE-100K data set.

The results of the reference-based metrics applied to the

evaluation of the synthesized images are listed in Table 4. We

additionally utilized the additional two GANmodels training on the

same data set to generate tissue images for comparison. As shown in

Table 4, In terms of IS, the values in SAGAN were the lowest.

However, the values of IS in these three GAN models were highly

close, which indicated that it was not accurate to evaluate image

quality only with IS to some extent. In terms of the metric of FID

and KID, SMSG-GAN yielded lower values except for the BACK

class compared with DCGAN. Besides, the FID and KID values of

the BACK class were much larger than those of the other classes in

SMSG-GAN. We assumed that the BACK class was so complicated

and didn’t follow any specific mode. Therefore, SMSG-GAN cannot

fully learn its distribution. Some randomly selected images of the

BACK class in original training data are displayed in Figure 9.

SAGAN performed worst in these three metrics with the lowest IS,

the highest FID and KID. Taken together, SMSG-GAN clearly

outperformed the other two GAN models.
4 Discussion

In this study, we proposed a novel method to improve

classification for colorectal tissue images. A simple CNN classifier

trained on the NCT-CRC-HE-100K data set without any

synthesized images reached only 86.87% overall accuracy. when
TABLE 3 Classification results of different thresholds in selection mechanism.

a 0 0.7 0.85 0.95

Overall Accuracy 87.72% 87.24% 89.54% 86.87%
frontie
The bold values indicate the best performance.
FIGURE 8

Results of synthetic colorectal tissue images for each class with different GANs.
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the images generated by SMSG-GAN were included in the original

training data, overall accuracy was significantly improved to

89.54%. We used SMSG-GAN to generate colorectal tissue images

with higher fidelity and fewer artifacts compared to other GANs. As

an additional image quality verification, we tested synthetic images

using three metrics. Lower values in FID and KID metrics SMSG-

GAN got, compared with DCGAN and SAGAN, which

demonstrated that our approach was able to capture real image

features and more similar to the real data. In particular, we

synthesized the nine classes of tissue patches separately. For

further improvement, we applied a selection mechanism to filter
Frontiers in Oncology 11
the generated images that have ambiguous class labels, ensuring the

selected images can conduce to the classification performance. In

general, SMSG-GAN can generate more realistic images, and the

generated images can be used as a training set for classification

tasks, further improving the classification performance of colorectal

cancer tissue images.

A data augmentation strategy was proposed to enhance the

performance of tissue classification, thereby assisting pathologists in

accurately diagnosing colorectal cancer cases. In practice, the

training of CNNs requires an abundant supply of data. However,

factors such as privacy concerns and the high cost of labeling result
FIGURE 9

Samples from the BACK class in the NCT-CRC-HE-100K data set.
TABLE 4 The comparison of quantitative metrics of the proposed model with DCGAN and SAGAN.

SMSG-GAN DCGAN SAGAN

IS ↑ FID ↓ KID ↓ IS ↑ FID ↓ KID ↓ IS ↑ FID ↓ KID ↓

ADI 1.06 74.09 0.07 1.06 371.42 0.43 1.02 384.72 0.44

BACK 1.06 316.14 0.3 1.07 256.72 0.24 1.1 409.42 0.53

DEB 1.07 56.05 0.04 1.09 451.3 0.61 1 315.85 0.39

LYM 1.03 76.97 0.09 1.08 469.42 0.68 1.01 367.01 0.44

MUC 1.06 88.09 0.09 1.06 360.3 0.4 1.03 350.11 0.37

MUS 1.06 57.13 0.04 1.08 403.53 0.48 1 389.03 0.48

NORM 1.07 72.56 0.08 1.06 455.62 0.59 1.02 442.18 0.54

STR 1.05 66.35 0.06 1.04 396.68 0.53 1 311.55 0.39

TUM 1.07 32.14 0.03 1.04 428.99 0.59 1.02 359.47 0.39
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in limited annotated data. The proposed data augmentation strategy

addresses this issue by providing training samples that closely

resemble real data.

Some limitations that need to be addressed in further research are

as follows. First, we did not generalize our method to other datasets.

Second, the SMSG-GAN model in our method was complex, it was

quite a time-consuming process. Hence, a possible direction for future

work is tofind an efficient way to lighten themodel. Besides, wewill do

more research about training parameters to further enhance model

performance. Also, we will explore other variants of GANmodels as a

data augmentation approach to improving the overall performance of

deep networks and applying it to other biomedical datasets.
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