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Estrous cycles are recurring changes in therian mammals induced by estrogen,

progesterone, and other hormones culminating in endometrial proliferation,

ovulation, and implantation if fertilization occurred. In women, the estrous

cycle is the menstrual cycle; but, unlike most mammals, the end of an infertile

cycle is marked by endometrial sloughing and the start of another without an

anestrous phase. Women stop cycling at menopause, while in most mammals,

cycles continue until death. Epidemiologic studies identified menarche,

menopause, births, lactation, and oral contraceptive (OC) use as key risk

factors for ovarian, breast, and endometrial cancers. A composite variable was

created to estimate the number of cycles not interrupted by events that stop

ovulation. Captured by the phrase “incessant ovulation”, repetitive cycles were

first postulated to affect ovarian cancer risk and later extended to breast and

endometrial cancers. These associations could be explained by cumulative

effects of repetitive tissue changes within reproductive organs, immune

consequences of repetitive ovulation through the glycoprotein mucin 1, and

residual effects of past ovulations that enhance ovarian production of

testosterone. The latter two pathways could affect the risk for cancers in other

organs not considered “reproductive”.
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Introduction

Estrous cycles are recurring events in placenta-forming mammals induced by estrogen,

progesterone, and other hormones that culminate in changes to the uterine lining, ovulation,

and support for an implanted zygote if fertilization occurred. Nutritional, environmental, and

genetic factors determine the onset of sexual maturity, which occurs relatively later in animals

with greater longevity and requires a certain body size to be achieved on an allometric scale.

Estrous cycles vary in duration, frequency, and seasonality and, in most mammals, repeat

until death (1). In women, the estrous cycle is the menstrual cycle; but unlike in most

mammals, the end of an infertile cycle is marked by the sloughing of the endometrial lining

and the immediate start of another without an anestrous phase (2). Women are polyestrous
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1240309/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1240309/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1240309/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1240309&domain=pdf&date_stamp=2023-10-06
mailto:dcramer@bwh.harvard.edu
https://doi.org/10.3389/fonc.2023.1240309
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1240309
https://www.frontiersin.org/journals/oncology


Cramer 10.3389/fonc.2023.1240309
with an average cycle length of 28 days repeating until menopause.

Ages at the first and last periods are important landmarks for the

beginning of sexual maturity and the end of reproductive potential.

With average ages at menopause and menarche approximately 51

and 12, the reproductive span is approximately 39 years.

The variable, ovulatory (or menstrual) years, is estimated by

subtracting the age at menarche from the age at menopause (or

current age if the woman is premenopausal) from which time

pregnant, nursing, or using oral contraceptives (or other

hormones stopping ovulation) are subtracted. Lifetime ovulatory

(or menstrual) cycles are estimated by multiplying ovulatory years

by cycles per year, approximately 13, for a cycle length of 28 days.

More ovulatory cycles and greater cancer risk were first linked to

ovarian cancer and later extended to breast and endometrial

cancers. Here, we review the strength of the epidemiologic

evidence for ovulatory years as a risk factor for these cancers,

discuss mechanisms by which they might increase risk, and briefly

examine how these mechanisms could link ovulatory cycles to

cancers in organs not considered “reproductive”.
Reproductive events and risks for
cancers of reproductive organs

Globally, in 2020, it was estimated that breast, endometrial, and

ovarian cancers totaled approximately 3 million new cases and a

million deaths (3). Worldwide, incidence and mortality rates for

breast, endometrial, and ovarian cancers are highly correlated (4);

there is a greater-than-expected number of endometrial and ovarian

cancers that occur after a diagnosis of breast cancer and a greater-

than-expected number of breast cancer(s) after a diagnosis of

ovarian or endometrial cancer (5). This suggests, and is the case,

that ovarian, breast, and endometrial cancers share many common

risk factors, especially related to reproductive events (Table 1).

Later age at menarche reduces the risk for all three cancers (6–

11), but no single pattern of cycle regularity or length appears to

affect risks in the same way. For ovarian cancer, long (>35 days) or

irregular cycles reduce the risk for most histologic types (12).

However, the disorder polycystic ovarian syndrome (PCOS),
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characterized by irregular, anovulatory cycles, does not affect the

risk for ovarian cancer overall (13), while PCOS markedly increases

endometrial cancer risk (14). The evidence is inconsistent about the

effect of irregular cycles and PCOS on breast cancer risk (14–16).

There is unequivocal evidence that the use of oral contraceptives

(OCs) reduces the risk for ovarian and endometrial cancers (17–20).

Some studies (21, 22), but not all (23), suggest that OCs may

increase the risk for breast cancer in premenopausal women. For all

three cancers, childbirth lowers risk (24–33); an earlier age at first

birth reduces the risk for both ovarian and breast cancers (24, 26,

29–34). However, for ovarian cancer, there is evidence that a later

age at and shorter interval since the last birth may lower risk more

than early age at first birth (35), which also appears to be the case for

endometrial cancer (36). Breastfeeding decreases the risk for all

three cancers proportional to the length of breastfeeding (37–41).

Finally, late age at menopause increases the risk for all three cancers

(8, 42–44).

Not included in Table 1 are reproductive events that do not or

would not obviously stop ovulation such as tubal ligation, use of

intrauterine devices (IUDs), and menopausal hormone use. Tubal

ligation is clearly associated with reduced risks for ovarian cancer

(45) and, possibly, endometrial cancer (46), but not breast cancer

(47). IUD use, even if inert (not progestogen-secreting), clearly

reduces the risk for endometrial cancer (48), but limited data

suggest no clear effects on breast and ovarian cancers including

the progestogen-secreting types (49–51). The literature on

menopausal hormones and risks for breast, endometrial, and

ovarian cancers is extensive. At the risk of over-simplification,

estrogen-only preparation increase the risk for endometrial cancer

and certain types of ovarian cancer, while breast cancer risk

principally involves combination therapy. We provide a brief

comment on the types of oral and non-oral hormonal

contraception in relation to ovarian cancer. More contemporary,

lower-dose, combination OCs are associated with a decrease in

ovarian risk but less so for progestogen-only types (52).

Alternatively, based on the equivalent duration of use, Depo-

Provera injections may confer a greater reduction in risk than

combined OCs, possibly related to residual anovulation that may

follow its cessation (53).
TABLE 1 Reproductive events and risk for ovarian, breast, and endometrial cancers.

Hormones and contraception

Factor Ovary Breast Endometrium Ref

Menarche Late age ↓ risk Late age ↓ risk Late age ↓ risk (6–11)

Cycle characteristics ↓ Risk with long and irregular cycles No clear association ↑ risk with irregular cycles (12–16)

Oral Contraceptives ↓ Risk ↑ Risk in younger women ↓ risk (17–23)

Parity ↓ Risk ↓ Risk ↓ risk (24–34)

Age at first/last birth Early first and late last ↓ risk Early first ↓ risk Late first and late last ↓ risk (24, 26, 29–36)

Breastfeeding ↓ Risk ↓ risk ↓ Risk (37–41)

Menopause Late ↑ risk Late ↑ risk Late ↑ risk (8, 42–44)
"↑" indicates increased risk and "↓" indicates decreased risk.
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Estimated ovulatory cycles and risk for
reproductive cancers

While epidemiologic studies of reproductive cancers have

mostly focused on the effects of individual reproductive events,

interest in a composite variable that combines these events has

emerged. Before discussing the evidence linking ovulatory years and

cancer risk, we consider issues related to constructing the algorithm

to estimate them. Yang et al. evaluated 14 algorithms in relation to

ovarian and endometrial cancers (54). They identified five similar

algorithms and, among controls, found a high correlation of

estimates. All five algorithms used ages at menarche and

menopause (or current age) and number of births, while later

models added durations of OC use and breastfeeding, number of

miscarriages and abortions, and cycle length. Rules for linking

anovulatory time with pregnancies varied with some using actual

time pregnant or assigning times depending on the outcome—

commonly 0.75 or 1 year for term pregnancies and 3 months for a

miscarriage or abortion. Women who had a hysterectomy (without

removal of ovaries) prior to menopause were either excluded or

assigned an average age (approximately 50) for the last period.

Women who “always” had irregular periods were either excluded or

placed in a separate category.

Another issue relates to co-variates that should be adjusted for

in estimating the risk for cancers that might be associated with the

length of ovulatory years (LOY). We think it is unnecessary to

adjust for the component variables used in calculating ovulatory

years since these are already part of the variable. Adjusting for

variables that are components of LOY weakens estimates of LOY’s

effect on disease risk (and vice versa) (54). In addition to

demographic factors, the two important variables that should be

considered are body mass index (BMI) and smoking history.

Women with greater BMI report earlier menarche (55); greater

BMI increases the risk for certain histologic types of ovarian cancer

(56), postmenopausal breast cancer (57), and endometrial cancer,

markedly so (58). Current and former smoking is associated with

earlier menopause (59), increased risk for mucinous ovarian cancer

(60), no clear effect on breast cancer risk (61), and decreased risk for

endometrial cancer (62).

Citing a study in which ovarian adenocarcinomas developed in

hens housed to maximize egg production, Fathalla (63) first linked

ovulation to ovarian cancer, coining the phrase “incessant

ovulation”. First, to address the hypothesis, Casagrande et al.

calculated ovulatory years from ages at menarche and last period

minus “protected time” (i.e., births, incomplete pregnancies, and

duration of OC use) (64). More ovulatory years increased the risk

for ovarian cancer and its inverse, protected time, decreased risk.

Additional studies followed confirming the association—some

larger ones are noted here (54, 65–68). Associations are stronger

with invasive serous, endometrioid, and clear cell cancers and

weaker with low-grade or borderline serous tumors and mucinous

cancers (68).

Since ovulatory years are not fully “set” until menopause, this

might suggest that the association with ovarian cancer will be more

apparent after menopause. In fact, the association is stronger in
Frontiers in Oncology
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premenopausal women (67). This is also seen with its component

variables where the protective effects of pregnancies, OC use, and

breastfeeding are stronger in premenopausal than postmenopausal

women (67). Purdie et al. reported that more ovulatory years

accumulated when women were 20–29 carried a greater risk for

ovarian cancer than the number of ovulatory years (in equivalent

categories) accumulated at ages 30–39 or 40–49 (66). This suggests

that more ovulations earlier in reproductive life carry a greater risk

for ovarian cancer occurring before menopause. If so, the

reproductive experiences of these women will have been

subtracted from those of women who develop ovarian cancer

after menopause, accounting for their apparently lower risk with

ovulatory years. This would be an example of the depletion of

susceptible individuals.

There are numerous data that breast cancer risk is increased by

an earlier age at menarche and a later age at menopause (8), and

subtracting the two also predicts risk. Longer total menstrual years

(69) or longer menstrual years prior to a first livebirth (70) was

linked to increased breast cancer risk. A 1984 paper argued that

“sterile” menstrual cycles should be distinguished from total

menstrual cycles by subtracting time pregnant, lactating, or using

OCs to better estimate breast cancer risk (71). Two cohort studies

provide evidence that more “sterile” menstrual cycles do increase

breast cancer risk. One study found that either total cycles or total

cycles prior to a first livebirth significantly increased breast cancer

risk (72). Notably, this study examined the effect of lifetime

menstrual cycles in models that either included or excluded OC

users. The former model was slightly more significant than the

model excluding OC users, suggesting that counting OC use adds to

the protective effect of other factors that prevent ovulation. A

second study confirmed increased breast cancer risk with lifetime

(sterile) menstrual cycles but not with the number of cycles prior to

a first livebirth (73). Both studies adjusted for BMI but not smoking.

The effect of lifetime cycles on types of breast cancer has not been

studied, although the large meta-analysis of the effects of earlier

menarche and later menopause was most apparent for lobular and

estrogen receptor-positive breast cancer (8).

Although PCOS clearly increases endometrial cancer risk (14),

there is good evidence that repeated (but regular) ovulatory cycles

also increase risk. A case–control study by Pettersson et al. found

that a menstrual span of more than 40 years (subtracting births and

OC use) led to a fourfold increase in risk compared to women with

<25 years (74). Additional case–control and cohort studies found

that a longer menstrual span, subtracting at least pregnancies, was

associated with a significantly elevated risk for endometrial cancer

(54, 75, 76). Notably, the last study showed the association

pertained to women with high and low BMI and, also, adjusted

for smoking (76). Although this study tabulated data to illustrate

that a shorter menstrual span is protective relative to a longer one,

their data translate to a nearly identical finding as Pettersson’s study

(74); i.e., 40 or more menstrual years equates with about a fivefold

increase in risk relative to women with <25 menstrual years.

Thus, LOY is a risk factor common to ovarian, breast, and

endometrial cancers. Mechanisms that could explain these associations

could either be organ-specific or based on common pathways.
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Ovulatory cycles: tissue effects

A menstrual cycle is divided into a follicular phase, where

follicle-stimulating hormone (FSH) promotes a cohort of

developing follicles to secrete estrogen and the endometrium

proliferates; ovulation, where the dominant follicle releases its

oocyte associated with a spike in FSH and luteinizing hormone

(LH); a luteal phase, where the granulosa-thecal layer from the

dominant follicle is converted to a progesterone-secreting corpus

luteum and the endometrium is converted to a secretory type; and

menstrual phase, where the endometrium is shed and a new cohort

of follicles selected, if fertilization did not occur (77). The superficial

two-thirds of the endometrium (decidua functionalis) is the zone

that proliferates, undergoes secretory transition, and sheds if no

implantation occurred. The deepest region (decidua basalis) does

not undergo significant proliferation but is the source of

endometrial regeneration after each menses (78). Tissues

undergoing large numbers of cell divisions have a greater

likelihood of DNA replication errors compared to tissues with

less-active divisions. Estimates of the rate of sporadic mutations in

human cells, on the order of 10−7 mutations per gene per cell

division (79), suggest that the number of cells with “first hits” on a

carcinogenic pathway may number in the hundreds for every gram

(approximately 109 cells/g) of proliferating tissue (80). Sporadic

mutations of the PTEN tumor suppressor gene, associated with type

1 endometrial cancer, are observed in almost half of histologically

normal endometria of naturally cycling women (81). While most

OC users do have periods, the endometrium is exposed to progestins

for a longer duration, which may decrease the likelihood of survival

of PTEN mutant clones in the endometrium (82, 83).

The breast also undergoes cyclic changes, especially involving

the terminal ductal lobular units thought to be the source of both

lobular and ductal breast cancer (84). Similar to using morphologic

changes to date the endometrium during a cycle, changes in breast

lobules were considered to correlate with the cycle phase. A study of

surgical specimens from premenopausal women with benign breast

disease not currently using OCs analyzed the degree of epithelial–

myoepithelial distinction, vacuolation, stromal edema, apoptosis,

and mitosis as key features (85). Scores were the highest in the late

luteal phase, indicating a greater degree of proliferation.

Immunohistochemical studies using the Mib-1 antibody to detect

the proliferative marker, Ki67+, confirmed this (86). Ki67+ cells

were also counted in normal breast tissue in Nurses’ Health Study

(NHS) participants with prior biopsies (for benign disease) and

demonstrated that women with higher counts had an increased risk

for future breast cancer (87). These data suggested to Brisken the

direct effects of progesterone (in combination with high estradiol)

on breast epithelium (88). However, progesterone and estradiol

could be acting indirectly through the action of other hormones

elevated in the luteal phase including growth hormone (89). In any

case, exposure to a greater number of luteal phases could explain

why more cycles increase breast cancer risk.

Proliferative changes in the ovary during a cycle primarily

involve stromal, granulosa, and thecal cells that surround

immature oocytes and promote them to develop into mature
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oocytes. However, cancers arising from granulosa, thecal, or germ

cells are relatively rare in adult women in whom the predominant

types are epithelial tumors. The surface epithelium of the ovary was

thought to be the origin of these tumors, and repeated disruption

and repair of this layer with each ovulation might lead to p53

mutations, predisposing to epithelial ovarian cancer where defective

p53 is a hallmark feature (65). However, a subsequent study did not

confirm that those ovarian cancers most clearly linked to a greater

number of ovulatory cycles were more likely to be p53 positive (90).

Nevertheless, surface epithelial disruption and implantation of

endometrial cells shed through the fallopian tubes during menses

might be involved in the pathogenesis of other types of ovarian

cancer such as clear cell and endometrioid (91).

Around the turn of the century, secretory cells in the distal

(fimbriated) end of the fallopian tubes (FTSEC) began to receive

attention as the source of high-grade serous ovarian cancers, the

most common and lethal type (92). A case was made for the

progression of FTSEC with accumulating defective P53 advancing

to lesions called serous tubal intraepithelial carcinoma (STIC) (93).

STIC could rapidly progress to stage III ovarian cancer by shedding

malignant cells into the pelvic cavity to implant. However, rather

than the cyclic proliferation of FTSEC causing precursor lesions,

repeated exposure of FTSEC to follicular fluid (FF) with ovulation

might be the instigating factor. FF contains growth factors,

cytokines, and reactive oxygen species (ROS) capable of inducing

DNA damage (94). In vitro studies demonstrated that exposure of

tubal cells in culture to FF led to the proliferation of FTSEC and P53

accumulation (95), suggesting inflammation as the basis for this

progression. Inflammation as a common pathway for cancer, in

general, was proposed by Cousens and Werb (96) and for ovarian

cancer, in particular, by Sanchez-Pietro et al. (97). This paper was

entitled “Etiopathogenesis of ovarian cancer. An inflamm-aging

entity?” and reviews the broader role of inflammation in ovarian

cancer. However, we point out that the association between

ovulation and ovarian cancer is not a simple reflection of more

ovulations equals greater age, since age was adjusted for in

examining this association.

In addition to the cumulative effects of ovulatory cycles on

tissues specific to the breast, endometrium, and ovaries, there are

mechanisms that offer more general explanations for LOY as a risk

factor for reproductive cancers and, perhaps, other cancers. These

include an immune-based model and a hormonal model.
Ovulatory cycles: immune effects
involving MUC1

An immune-based model involves human mucin 1 (MUC1), a

transmembrane-glycoprotein expressed at the apical cell surfaces of

normal glandular epithelium of many organs including breast,

salivary glands, gastrointestinal tract, pancreas, bladder, prostate,

fallopian tubes, endometrium, and some hematopoietic cells (98).

In cancers arising from ductal epithelium, MUC1 becomes

overexpressed on the entire cell surface, and a less-glycosylated

form of MUC1 is produced. This overexpression favors metastases
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through several mechanisms: dampening immune response;

interacting with other transmembrane proteins, like EGFR; and

engaging cytoplasmic-signaling proteins such as Src and beta-

catenin (99). Elevated levels of MUC1 are associated with poor

prognosis for breast, prostate, ovarian, gastric, bile duct, colon, and

non-small cell lung cancers (99). MUC1 is detected by assays based

on antibodies against various MUC1 epitopes leading to a variety of

names in the literature including CA15.3, DF3 antigen, human milk

fat globule (HMFG) antigen, epithelial membrane antigen (EMA),

polymorphic epithelium mucin (PEM), and episalin (98).

Assays to measure anti-MUC1 antibodies have also been

developed using various MUC1 epitopes associated with tumor-

like MUC1 (100). IgM and IgG anti-MUC1 antibodies have been

identified in patients with various adenocarcinomas, and their

presence has been associated with better prognosis in breast

cancer (101), colorectal cancer (102), non-small cell lung cancer

(103), and pancreatic cancer (104). These observations prompted

interest in immune-based treatments involving MUC1 including

vaccines based on MUC1 epitopes coupled with various adjuvants,

passive immunization with anti-MUC1 antibodies, transfer of

MUC1-specific cytotoxic T cells, and others (105). Most trials

involve individuals with advanced cancer, but at least one trial

involved patients with colon adenomas at risk for colorectal cancer,

demonstrating that high levels of anti-MUC1 IgG could be achieved

with a MUC1-based vaccine except in individuals with evidence of

pre-existing circulating myeloid-derived suppressor cells (106).

Natural antibodies against MUC1 have also been found in

healthy individuals, raising important questions. What events are

associated with the appearance of anti-MUC1 antibodies, and do

these antibodies contribute to successful immunosurveillance of

MUC1+ cancers? Anti-MUC1 antibodies generated in the absence

of cancer appear to be promoted by inflammatory events involving

tissues that normally produce MUC1. These events may include

childhood mumps, puerperal mastitis, and tubal ligation—each

shown to raise anti-MUC1 antibodies and each shown to lower

the risk for ovarian cancer in case–control studies (107–109).

Importantly, there are prospective data from two studies

suggesting that natural antibodies against MUC1 can lower the

risk for ovarian cancer. Data from the NHS showed that women

with higher anti-MUC1 antibodies subsequently had a lower risk

for ovarian cancer developing before age 65 (110), and data from

the EPIC cohort showed that elevated levels of anti-MUC1

antibodies may lower the risk for serous ovarian cancers arising

within 3 years of the blood draw (111). More data on antibody levels

at various times after the event that provokes antibodies are

necessary to support this premise.

Pointing out that the presence of anti-MUC1 antibodies leads to

reduced risk for ovarian cancer, the corollary follows that their

absence may increase the risk for cancer. We have shown that a

greater number of ovulatory cycles are associated with lower anti-

MUC1 antibody levels in three different populations using two

different assays to measure anti-MUC1 antibodies (68, 110, 111).

We previously interpreted this as indicating that repeated exposure

to MUC1 from the endometrium during the luteal phase of cycles

may lead to a downregulation of MUC1 immunity and lower

antibody levels (68), but it is also possible that lower anti-MUC1
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antibody levels with repeated cycles result simply from absence of

those events known to raise antibody levels such as pregnancies and

breastfeeding. In either case, this brings us to the relevance of

MUC1 immunity to the topic of this paper—incessant ovulation. As

a common explanation, immunity related to human mucin 1 could

explain the risk for not only ovarian, breast, and endometrial

cancers but also other MUC1-expressing cancers that have been

targets of MUC1 vaccine trials (104), such as colorectal cancer and

lung cancer, and point to the possible relevance of ovulatory cycles

to their epidemiology.
Ovulatory cycles: hormonal effects

Prospective studies found that the combination of elevated

serum testosterone and estradiol in postmenopausal women

predicts future risk for endometrial, breast, and ovarian cancers

(112–115). Relating this pattern to the number of past ovulations

requires answers to the following questions. What is known about

the hormone-producing potential of the postmenopausal ovary?

What biological events occurring within the ovary during an

ovulatory cycle might enhance later hormone production? Finally,

is there any direct evidence that LOY does, in fact, affect hormone

levels in postmenopausal women?

The answer to the first question comes from studies in which

ovarian veins were cannulated in postmenopausal women at the time

of hysterectomy and/or oophorectomy and levels of sex hormones

coming directly from the ovaries compared with levels in the

peripheral blood (116–118). These studies demonstrated

substantially higher levels of testosterone in the blood from the

ovaries compared to peripheral levels with gradients up to 20-fold

higher and persisting in women even 20 years past menopause.

Cannulation studies were also performed in women with ovarian

and endometrial cancers and women with breast cancer later

undergoing oophorectomy and showed even higher gradients of

hormone levels, especially testosterone, compared to women

without cancer (119–121). Because levels of testosterone and

androstenedione dropped postoperatively (118), the cannulation

studies counter the argument that the adrenals are the primary

source of androgens in postmenopausal women (122). Cross-

sectional studies show that women who had bilateral oophorectomy

prior to menopause have low testosterone levels when compared to

those with intact ovaries (123).

Biological events during an ovulatory cycle that might change

the ovary’s potential for androgen production likely involve the

ovary’s germ cell reserve, the process of follicle maturation, and the

fate of follicles recruited during a cycle but not selected for ovulation

(124, 125). Primordial follicles are oocytes surrounded by a single

layer of pre-granulosa cells. The maximum quota of primordial

follicles, likely more than a million, is established at birth of which

approximately 300,000 remain when puberty begins. During each

menstrual cycle, a cohort of follicles is selected to undergo

maturation involving the growth of the granulosa layer, formation

of a thecal-cell layer, secretion of follicular fluid to form antral

follicles, and selection of, usually, just one to become a Graafian

follicle from which the oocyte will be released. Remnants of the
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dominant follicle then form the corpus luteum, which produces

progesterone to maintain early pregnancy but will regress without a

fertilized oocyte. During a cycle, some follicles that reach the early-

antral stage will become quiescent and remain at that stage as a

more dynamic reserve than primordial follicles. However, the

remainder of those follicles that developed further during a cycle

will undergo apoptosis to become atretic follicles. Follicular atresia

is likely most relevant to the consequences of repetitive ovulation

(126). Evidence that an antral follicle is on the path to atresia is

apoptosis within the granulosa cell layer. Estradiol drops from both

a decrease in granulosa cell number and reduced aromatization of

androgens secreted by thecal cells into estradiol. Thecal cells remain

viable after the disappearance of granulosa cells and retain their

ability to secrete androgens, but their longer-term fate is unclear.

Possibly relevant to the fate of thecal remnants are two related

conditions called ovarian stromal hyperplasia (OSH) and

hyperthecosis (OHT). OSH refers to the nodular or diffuse

proliferation of the stromal cells of the ovary, while OHT is

distinguished by the presence of round to polyhedral theca-lutein-

like cells occurring singly or within nests within a stroma that is itself

proliferative (127). For decades, these conditions have been of interest

in the context of describing ovaries removed from women with

endometrial cancer (128). A link between OSH and breast cancer has

also been reported (129); case reports describe OHT at the edge of

epithelial ovarian malignancies (130). A study that linked elevated

testosterone to OSH involved (premenopausal) women presenting

with hirsutism who had oophorectomy or wedge resection.

Cannulation studies like those described earlier were performed

and revealed elevated testosterone and dihydrotestosterone levels in

the blood from ovaries, especially from ovaries with more extensive

OHT and larger gradients compared to peripheral levels compared to

women without OHT (131).

Given this background, is there evidence that LOY influences

postmenopausal hormone levels? Two studies in the current

literature address this with conflicting results (132, 133). The

most recent paper used data from the NHS on hormone levels

measured in the blood col lected from 1,976 healthy

postmenopausal women in 1990 (133). This study excluded

women who had bilateral oophorectomy but included

hysterectomized women who retained at least one ovary. Age at

menopause was imputed in the latter group. In this study, greater

LOY was associated with higher testosterone as well as greater

estradiol in those women with above-average BMI. This could

reflect the accumulation of functioning stromal and thecal cells

from repeated ovulation that secrete testosterone, which is

converted to estradiol peripherally. An earlier study of 860

postmenopausal women also looked at hormonal levels in relation

to lifetime ovulatory cycles (132). This study did not find a

relationship between the number of cycles and testosterone or

estradiol levels. Adjustment variables, similar to NHS, were used

in this study except that OC use was adjusted for, although it was

already part of the algorithm to calculate cycles. As mentioned

earlier, adjusting for variables that are already components of LOY

weakens estimates of its effect on disease risk. In addition, compared

to NHS, this study was smaller and had a higher percentage of

nulliparous women with lower parity, greater use of birth control
Frontiers in Oncology 06
pills, and more current smokers. Finally, there was a greater

prevalence of hysterectomized women who were excluded in this

study. There are many cross-sectional studies of hormone levels in

postmenopausal women with sufficient data on reproductive

variables to calculate LOY and confirm whether, in fact, more

LOY leads to higher testosterone.

We pointed out that the model involving a link between LOY and

mucin immunity may pertain to cancers in “non-reproductive” organs.

The same may apply to the model involving LOY and sex hormones.

Melanoma may be such a cancer. A large prospective study of

melanoma in French women looked at ovulatory age and found that

postmenopausal women with LOI <33 years had half the risk for

melanoma compared to women with LOI >39 years, RR (and 95% CI

= 0.51 (0.28, 0.91), equating with greater risk for more ovulatory years

(134). Details for constructing the algorithm were not discussed but,

apparently, did not include OC use. An earlier case–control study also

looked at ovulatory years using amore detailed algorithm that included

ages at menarche andmenopause (or current age) reduced by 1 year for

each pregnancy and total years of OC use. This study also found a

greater risk for melanoma associated with longer ovulatory years when

adjusted for subjects’ estimated sunlight exposure (135), suggesting

additive effects involving sun exposure and LOY. Given our contention

that the key effect of past ovulations is on testosterone, this adds

relevance to an experimental study reporting that S91 murine

melanoma cells grow in response to testosterone and that this effect

is modulated by light (136). Additionally, although case reports carry

little scientific weight, one that reported the onset of dysplastic nevi in a

postmenopausal woman who began using a transdermal patch with

testosterone and estradiol that stopped after the patch was discontinued

appears relevant (137).
Summary and discussion

A somewhat unique feature of estrous cycles in women

compared to other mammals includes the sloughing of the

endometrial lining at the end of a cycle in which an oocyte was

not fertilized. This allows estimates of the onset of sexual maturity,

end of reproductive potential, and, in between, the frequency of

presumed ovulatory cycles that were not interrupted by

pregnancies, breastfeeding, or OC use. There are substantial

epidemiologic data that support the premise that more estimated

ovulatory cycles (captured by the phrase “incessant ovulation”)

increase risks for ovarian, breast, and endometrial cancers. One

pathway through which these effects may occur includes cumulative

effects of repetitive tissue changes within reproductive organs with

each ovulatory cycle. In the terminal ductal lobular units of the

breast, proliferative activity is increased during the luteal phase of

the cycle, which could be a key factor in both lobular and ductal

breast cancer. In the endometrium, repetitive shedding and

regrowth of the endometrium may lead to the accumulation of

mutations in the tumor suppressor, PTEN, a marker for

endometrial cancer. In ovaries, the secretory epithelium of the

tubal fimbria, with each ovulation, is exposed to follicular fluid

whose inflammatory properties may induce the proliferation of cells

with defective p53 leading to high-grade serous cancers. Although
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the vagina and cervix also undergo cyclic changes, cancer involving

these organs appears to be dominated by infectious agents.

However, it is possible that tissue changes in other organs could

be affected by repetitive cycles; ovulatory years should be examined

for any cancer in which there are male–female differences

in occurrence.

A second pathway might involve immune events related to

human mucin 1, a transmembrane glycoprotein, expressed at the

apical cell surfaces of normal glandular epithelium of many organs

including the breast, fallopian tubes, and endometrium. In cancers

arising from these tissues, MUC1 becomes overexpressed on the

entire cell surface favoring metastases through several mechanisms

and associated with poor prognosis. Conversely, some patients with

MUC1-positive cancers have anti-MUC1 antibodies; their presence

is associated with better prognosis. Anti-MUC1 antibodies have

also been identified in healthy individuals without cancer, and there

is some evidence to suggest these antibodies may lower the risk of

ovarian cancer. Repetitive ovulation enters the story based on the

observation that more ovulatory cycles are associated with lower

anti-MUC1 antibodies, which are associated with increased risk for

ovarian cancer. It is not clear, however, whether lower anti-MUC1

antibodies seen with more ovulatory cycles reflect immune

downregulation from the cyclic elevation of MUC1 released

during ovulation or menstruation or simply reflect fewer events

like pregnancy and breastfeeding known to produce anti-MUC1

antibodies. This pathway could apply to cancer in which immune-

based treatments involving MUC1 have shown some success

including colon and small cell lung cancers. The role of ovulatory

years in the epidemiology of these cancers should be investigated;

the possibility that immune reactions are related to other mucins

such as MUC16 (CA125) should be considered.

A third pathway involves residual effects of past ovulations that

enhance the postmenopausal ovary’s production of testosterone,

which can then be converted to estradiol in peripheral tissue,

especially in women with greater BMI. This effect may result

from the accumulation of residual stromal and thecal cells

recruited during ovulatory cycles that display greater resistance to

apoptosis than granulosa cells. Two observations support the

relevance of this pathway to explain why more ovulations

increase the risk for breast, endometrial, and ovarian cancers.

First is the observation that a pattern of elevated testosterone and
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estradiol in healthy postmenopausal women is associated with a

greater risk for these cancers. Second, the ovaries of women with

breast and endometrial cancers display patterns described as OSH

and OHT. Like the possible pathway involving the immune effect

related to mucins, this pathway could support a credible link

between more ovulations and cancer in non-reproductive organs

including melanoma in which testosterone may play a role.

In conclusion, the estimation of ovulatory cycles deserves much

greater attention as a factor in the epidemiology of cancer

in women.
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