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Ki67, Her-2, and mutant P53
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nomogram and lymph node
metastasis model for predicting
colorectal cancer progression
and prognosis
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and Huijie Xiao1*

1Department of Gastrointestinal Colorectal Surgery, The Third Bethune Hospital of Jilin University,
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Introductions: Identifying biological markers of colorectal cancer (CRC)

development and prognosis and exploring the intrinsic connection between

these molecular markers and CRC progression is underway. However, a single

molecular tumor marker is often difficult to assess and predict the progression

and prognosis of CRC. Consequently, a combination of tumor-related markers is

much needed. Ki67, Her-2, andmutant P53 (MutP53) proteins play pivotal roles in

CRC occurrence, progression and prognosis.

Methods: Based on the expressions by immunochemistry, we developed a risk

model, nomogram and lymph node metastasis model by R software and Pythons

to explore the value of these proteins in predicting CRC progression, prognosis,

and examined the relationship of these proteins with the CRC clinicopathological

features from 755 (training set) and 211 CRC (validation set) patients collected

from the hospital.

Results:We found that Ki67 expression was significantly correlated with T-stage,

N-stage, TNM-stage, vascular invasion, organization differentiation, and

adenoma carcinogenesis. Moreover, Her-2 expression was significantly

correlated with T-stage, N-stage, TNM-stage, vascular and nerve invasion,

pMMR/dMMR, signet ring cell carcinoma, and organization differentiation.

MutP53 expression was significantly correlated with T-stage, N-stage, TNM-

stage, vascular and nerve invasion, adenoma carcinogenesis, signet ring cell

carcinoma, organization differentiation, and pMMR/dMMR. Increased expression

of each of the protein indicated a poor prognosis. The established risk model

based on the three key proteins showed high predictive value for determining the

pathological characteristics and prognosis of CRC and was an independent

influencer for prognosis. The nomogram prediction model, which was based

on the risk model, after sufficient evaluation, showed more premium clinical
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value for predicting prognosis. Independent cohort of 211 CRC patients screened

from the hospital verified the strong predictive efficacy of these models. The

utilization of the XGBoost algorithm in a lymph node metastasis model, which

incorporates three crucial proteins, demonstrated a robust predictive capacity

for lymph node metastasis.

Discussion: The risk model, nomogram and lymph node metastasis model have

all provided valuable insights into the involvement of these three key proteins in

the progression and prognosis of CRC. Our study provides a theoretical basis for

further screening of effective models that utilize biological markers of CRC.
KEYWORDS

colorectal cancer, Her-2, Ki67, MutP53, immunohistochemistry, tumor marker,
prognosis, machine-learning
Introduction

Colorectal cancer (CRC) is a common malignant tumor of the

lower gastrointestinal tract. Currently, CRC has the third highest

incidence of all malignancies worldwide, and it is a major risk factor

for tumor-related death (1). The occurrence and progression of CRC

are influenced by genetic, environmental, and lifestyle factors, such as

smoking, obesity, lack of physical exercise, and alcohol abuse, as well

as poor dietary habits, including a high-protein diet, a high-fat diet,

excessive red meat intake, and low fruit and vegetable consumption

(2, 3). These external factors act as a catalyst for CRC development,

increasing the burden on economic and health resources.

The occurrence and progression of CRC have garnered

significant attention from clinicians. Accurately reflecting and

predicting the progression and prognosis of CRC can enhance

survival rates and decrease mortality. However, current clinical

practice lacks appropriate tumor markers with high sensitivity and

specificity to comprehensively assess and predict CRC progression

and prognosis. Therefore, it is crucial to identify relevant tumor

markers with high predictive efficacy that are closely associated with

various pathological features and prognosis of CRC.

Recent studies have demonstrated the significant roles of

MKI67, ErbB2, and TP53 genes in the occurrence and

progression of CRC, making them hot topics of research.

Moreover, immunohistochemical detection of Ki-67, Her-2, and

P53 proteins in pathological tissues is a common practice in daily

clinical work. Thus, from a practical standpoint, detecting these

three proteins can provide valuable insights into CRC progression

and prognosis. However, the occurrence and progression of CRC

are complex and multifactorial, involving a number of genes and

signaling pathways. Moreover, there is obvious tumor heterogeneity

and individualized differences among patients with CRC (4).

Therefore, it is often difficult to comprehensively assess and

predict the progression and prognosis of CRC based on a single

molecular tumor marker. As a result, a combination of tumor-

related markers is needed to more comprehensively evaluate and

predict CRC progression and prognosis (5). This approach could
02
help to provide more personalized treatment plans and reduce the

morbidity and mortality rates of CRC. In line with these principles,

we aimed to integrate Ki67, Her-2, and MutP53 proteins to create

clinical models that can more accurately predict the progression

and prognosis of CRC.

The HER2 proto-oncogene encodes human epidermal growth

factor receptor-2 (Her-2), also known as ErbB-2. Various studies

have shown that Her-2 is closely associated with the progression

and prognosis of certain malignancies, such as breast cancer (6) and

gastric cancer (7). HER2 (ERBB2) gene amplification leads to Her-2

protein overexpression, which inhibits tumor apoptosis and

promotes tumor cell invasion, vascular invasion, and lymphatic

metastasis (8). With the progressive exploration of this gene,

researchers have found that the Her-2 protein is closely related to

CRC progression (9). TP53 is an important tumor suppressor gene

that inhibits the development and progression of malignant tumors.

Under normal conditions, the wild-type P53 protein encoded by

TP53 inhibits cell growth and promotes apoptosis. However, TP53

is highly susceptible to mutations, and P53 proteins translated from

mutated TP53 loses its function of regulating cell growth and

apoptosis, thus promoting cancer cell proliferation (10). Ki67, a

proliferating cell-associated antigen, is an indicator of the

proliferative capacity of cells, and it is encoded by MKI67. The

higher the expression of Ki67, the stronger the proliferative ability

of cancer cells (11). The above evidence suggests that Ki67, Her-2,

and mutant P53 (MutP53) proteins are closely related to the

occurrence, progression, and prognosis of CRC.

In this study, we aimed to identify a method to more

comprehensively assess the progression and prognosis of CRC

based on Ki67, Her-2, and MutP53 proteins. We developed a risk

model based on the expression of these proteins, as well as a

nomogram prediction model based on the risk model, to evaluate

the prognosis of patients with CRC. Additionally, we utilized the

XGBoost algorithm to construct a model for lymph node metastasis,

enabling us to accurately assess and predict the risk of CRC lymph

node metastasis. The results and verifications provide new ideas for

the evaluation and prediction of CRC progression and prognosis.
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Materials and methods

Selection of clinical patients

To ensure the accuracy of the experiment and reduce the

interference of confounding factors, we altogether collected the

data of 755 patients who underwent standard radical surgery for

CRC from August 2015 to September 2018 at The Third Bethune

Hospital of Jilin University by setting a series of strict inclusion and

exclusion criteria. There were 443 male patients and 312 female

patients. The mean age of the male patients was 62.8 ± 10.7 years

and of the female patients was 63.1 ± 10.8 years.

The inclusion criterion were as follows: 1) Patients diagnosed with

CRC by cytology or pathology before surgery. 2) No anti-tumor

treatment after CRC diagnosis; 3) Karnofsky Performance Status Scale

score of >60. 4) Stable vital signs and consciousness. The exclusion

criterion were as follows: 1) Patients with malignancies other than CRC.

2) Patients with distant metastases of CRC and who were difficult to

treat with radical surgery. 3) Patients with familial adenomatous

polyposis. 4) Patients taking immunosuppressive or immune-

enhancing agents. 5) Patients with severe hematological, autoimmune,

cardiovascular, or respiratory diseases; sepsis; uncontrollable diabetes

mellitus; and/or obesity. 6) Women who were pregnant or lactating.

Those 755 CRC patients were classified into training set.
Follow-up of CRC patients

This study used the follow-up system of The Third Bethune

Hospital of Jilin University, with telephone call being the main

follow-up method. Follow-up was mainly used to assess the survival

status and survival time of the patients. Follow-up ended in May

2023, and we collected the overall survival (OS) data of 572 patients,

with a loss to follow-up rate of 24.2%.
Measurement of Ki67, Her-2, and
MutP53 expression in CRC tissues and
pathological observation

We collected surgically resected tumor specimens from the 755

patients with CRC. The specimens were fixed using formaldehyde,

embedded with paraffin, cut into 4-mm slices, and dewaxed and

washed. A proportion of the sections were processed for pathological

observation using conventional hematoxylin and eosin staining.

Additional sections were incubated with 3% hydrogen peroxide

solution for 15 minutes and washed with distilled water. Citric acid

repair solution was added, and the sections were heated in a

microwave for 10–15 minutes to repair the antigen. After cooling

to room temperature, the sections were washed three times with

phosphate-buffered saline (PBS). Subsequently, goat serum blocking

solution was added and incubated for 15 minutes, and primary

antibodies against Ki67 [Abcam Anti-Ki67 antibody (ab15580)],

Her-2 [Abcam Anti-ErbB2 antibody (ab16901)], and MutP53

[Abcam Anti-P53 antibody (ab1101)] were added and incubated

for 4 hours at 37°C. The wild-type P53 protein is very unstable, with a
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short half-life of only a few minutes, leading to its rapid degradation

(10, 12). In contrast, the MutP53 proteins have significantly

prolonged half-life and improved stability (13). Furthermore, before

fixing the pathological specimen in formaldehyde, it is necessary to

carefully dissect the specimen, locate the lesion, and check the

resection range. The specimen is also presented to the patient’s

family for viewing and explanation of the operation in detail,

which takes approximately 20-25 minutes. Consequently, most of

the wild-type P53 protein is destroyed during this period. As a result,

the majority of P53 proteins detected in the immunohistochemistry

are of the mutant types. Due to the TP53 gene mutations occurring at

different sites, there are various types of mutant P53 proteins

translated. It is important to note that the antibody used in our

study does not recognize a specific type of mutant P53 protein.

Therefore, in this study, the detected mutant P53 proteins were not

specifically associated with any particular types. After washing with

PBS, secondary antibodies were added and incubated at 37°C for 1

hour. After rinsing the secondary antibody, the color was developed

with diaminobenzidine for 10 minutes and rinsed with deionized

water. The slices were then re-stained with hematoxylin for 1 minute,

followed by dehydration and resin sealing. The expression of Ki67,

Her-2, and MutP53 proteins were measured under a microscope at

200× magnification. The immunohistochemical staining results were

interpreted individually by two independent pathologists who were

blinded to the patients’ clinicopathological and prognostic

information, before being judged by a third pathologist. The

tumor–node–metastasis (TNM) stage of CRC was determined

according to the criteria outlined by the American Joint Committee

on Cancer (AJCC), 8th edition.
Determination of Ki67, Her-2, and MutP53
immunohistochemical staining results

The expression of Ki67 and MutP53 proteins were determined

based on the staining depth and the percentage of cells with positive

staining. Her-2 protein expression was rated based on the Valtorta

scoring criteria (14). Figures 1A-D displays the expression levels of

Her-2 proteins, categorized as negative, 1+, 2+, and 3+. The

expression levels of MutP53 proteins, ranging from 10%+ to 90+,

are presented in Figures 1E-I. Additionally, Figures 1J-N illustrates

the expression levels of Ki67 proteins, which include 10%+, 30%+,

50%+, 70%+, and 90%+.
Mismatch repair protein detection and
dMMR/pMMR definition

The tumor specimens were fixed using formaldehyde and

embedded with paraffin for sectioning. The immunohistochemical

procedure is described above. Immunohistochemical staining of

MMR proteins was performed using anti-MMR protein antibodies

[Abcam Anti-Mismatch Repair antibody (ab92471, ab110638,

ab14206, ab70270)]. Deficient mismatch repair (dMMR) was

defined as one or more MMR protein expression deficiencies.

MMR protein expression deficiencies were defined as the absence
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of nuclear staining in tumor cells, while positive nuclear staining was

present in normal colonic epithelium and lymphocytes. If all four

MMR proteins were expressed (any degree and proportion of tumor

cell nuclear staining was determined as the presence of protein

expression), the tumor was considered as proficient mismatch

repair (pMMR). Figures 1O, P illustrate the expression of MLH1

protein in both negative and positive states. Similarly, Figures 1Q, R

demonstrate the expression of MSH2 protein in negative and positive

states. Lastly, the expression of MSH6 and PMS2 proteins in negative

and positive states is shown in Figures 1S–V, respectively.
Collection of independent
validation cohort

We totally screened 211 patients who underwent radical

colorectal cancer surgery from August 2015 to September 2018 at

the Xinmin Branch of the Third Bethune Hospital of Jilin

University according to the same inclusion and exclusion

criterion, with follow-up ending in May 2023. There were 132

male and 79 female patients, with a mean age of (64.6 ± 10.1) years

for males and (62.1 ± 10.3) years for females. The identification of

immunohistochemical results and observation of postoperative

tumor tissue pathology were identical to the previous methods.
Frontiers in Oncology 04
Statistical analysis and data visualization

The baseline data were calculated using the chi-square test.

Spearman’s correlation was used to examine the relationship

between the expression of the three key proteins. The correlation

chord diagram was used to present the results of the correlation tests,

and visualization was performed using the igraph package. The

Complexheatmap package in R was used to generate the heat map,

while the ggplot2 package was utilized to create the frequency

histograms. The relationships between various pathological features

and protein expression were examined using Wilcoxon’s rank-sum

test and the Kruskal–Wallis test, and the results were visualized using

the ggplot2 package. A binary logistic model was constructed using

the glm function. Subsequently, the net benefit was calculated

using the rmda package. Lastly, the DCA results were visualized

using the ggplot2 package.

The survival analysis of patients with CRC with different

pathological features and different levels of protein expression was

performed using the Survival package, and Kaplan–Meier curves

were drawn using the survminer package of R software. We used the

STRINGdb package to analyze proteins in the STRING database

(15) that are closely linked to Ki67, Her-2, and P53 proteins and to

depict the interaction network. We then developed a risk model

using the multivariate Cox regression analysis based on Ki67, Her-
FIGURE 1

Determination of Her-2, MutP53, Ki67, and Mismatch repair (MMR) proteins immunohistochemical staining results. Her-2 protein expression levels of
negative (A), 1+ (B), 2+ (C), 3+ (D). MutP53 proteins expression levels of 10%+ (E), 30%+ (F), 50%+ (G), 70%+ (H), 90%+ (I). Ki67 protein expression
levels of 10%+ (J), 30%+ (K), 50%+ (L), 70%+ (M), 90%+ (N). MLH1 protein negative (O) and positive (P) expression. MSH2 protein negative (Q) and
positive (R) expression. MSH6 protein negative (S) and positive (T) expression. PSM2 protein negative (U) and positive (V) expression.
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2, and MutP53 proteins expression, as well as the survival data of

the 572 patients with CRC. The risk score was calculated by

0.0337 × (Ki67) + 0.4826 × (Her-2) + 0.0216 × (MutP53). We

applied this equation to calculate the risk score of each of the 755

patients, which were subsequently stratified into two groups using

the median risk score as the cut-off. Patients with scores higher than

the median were allocated to the high-risk group, while patients

with scores lower than the median were allocated to the low-risk

group. The forest plot of the risk model was visualized using the

ggplot2 package of R, the alluvial plot was processed using the

ggalluvial package of R, the survival differences between the high-

and low-risk groups were analyzed using the Survival package of R.

The Kaplan-Meier curves and cumulative hazard curves were

constructed using the survminer package of R. We used the

timeROC and ggplot2 packages to analyze and characterize the

time-dependent receiver operating characteristic (ROC) curves of

the risk model and the expression of the three proteins. The risk

factor maps of the risk model were visualized using the ggplot2

package of R. The ggplot2 package was used to depict the principal

component analysis (PCA) graph after dimensionality reduction of

the risk model using the PCA method. We also performed a

calibration analysis of the risk model using the Survival and rms

packages of R and depicted the prognostic calibration curve.

We analyzed the differences between the risk scores and various

pathological characteristics of patients with CRC using the Wilcoxon

rank-sum test and Kruskal–Wallis test, and we used the ggplot2

package of R to visualize the results of the analysis. We used the rms

package of R to analyze the degree of fitting between the risk model

and the different pathological features of CRC and to delineate

diagnostic calibration curves. The ResourceSelection package was

used to analyze the risk model calibration measures. We then chose

the pROC package to analyze, compare, and depict the diagnostic

ROC curves and PR curves of the risk model and the expression of

the three proteins in specimens with different pathological features.

We used the univariate and multivariate Cox proportional

hazards regression analysis to analyze the effects of various factors

on the prognosis of patients with CRC, and we drew forest plots using

the ggplot2 package of R. We used the rms package to build the

nomogram prediction model and to draw the prognostic column line

diagram. The rms package of R was used for prognostic calibration

analysis and visualization of the nomogram prediction model. We

classified 572 patients into low, medium and high hazard groups

according to the tertile of the nomo score. The survival and risk

differences among the three hazard groups were analyzed using the

Survival package, and the Survminer package was deployed to depict

the Kaplan-Meier curves, cumulative hazard curves and cumulative

event curves. Then the t-SNE analysis of three hazard groups were

caculated by the Rtsne package and the results were visualized using

the ggplot2 package. We then employ the timeROC package to

analyze and profile the time-dependent ROC curve of the

nomogram prediction model. We further performed Cox

regression analysis for the nomogram prediction model using the

Survival package, and the ggplot2 package was implemented for

delineating the prognostic proportional hazard plot. The pROC

package of R software was used to analyze and depict the

prognostic ROC curves for the nomo scores, risk scores, and
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various independent influencing factors. Next, we fit the prognostic

model using the survival package and inscribed the prognostic

decision curve analysis (DCA) curves using the stdca.R package.

And then we utilized the rms package to implement the construction

of the restricted cubic spline model and conduct correlation analysis.

Additionally, we employed the plotRCS package to visualize the

results. For the depiction and analysis of the error line plots of

the concordance index, we leveraged the ggplot2 package. Finally,

the Python Nricens1.6 package was employed to perform net

reclassification index (NRI) analysis, comparing the prognostic

prediction accuracy of the nomo score and risk score.

In addition, we deployed the same approach and calculation

equation to establish the risk model and nomogram prediction

model in the validation set. All the 211 patients were stratified into

different risk groups and hazard groups according to the same

criterion in the training set. The methods for analyzing and

depicting the alluvial plot, survival curves, cumulative hazard

curves, prognostic calibration curves, time-dependent ROC and

prognostic proportional hazard plots were the same as the

above procedures.

Based on the expression levels of Ki67, Her-2, and MutP53

proteins, we analyzed two cohorts comprising 755 and 211 CRC

patients. Nine different machine-learning algorithms including

XGBoost, LightGBM, AdaBoost, Logistics, GaussianNB,

ComplementNB, Kneighbors, SVM, Multi-layer perception were

employed to develop a lymph node metastasis model using

resampling methods. The random seed was set to 42, with a

validation group proportion of 20% and a fold of 10. These

procedures were performed using Python version 3.7. The best

machine-learning algorithm was selected based on ROC, PR, DCA

curves, calibration plot, and forest plot. The SHAP model (SHAP

package, version 0.39.0, Python 3.7) was then applied to illustrate

the contribution and importance of the three key proteins in the

predictive lymph node metastasis model. Finally, we randomly

select three samples to provide detailed explanations on how

these key proteins influence the model using force plots.
Results

Overall pathological characteristics of
patients with CRC and the relationship
between Ki67, Her-2, and MutP53
proteins expression

The baseline data for overall pathological characteristics of the

755 patients with CRC are presented in Table 1A. According to the

presence of lymph node metastasis, we classified TNM stages I and II

as early CRC and TNM stage III as advanced CRC. We employed the

chi-square test to detect potential disparities between early and

advanced CRC in terms of sex, age, tumor location, degree of

organization differentiation, nerve invasion, vascular invasion,

pMMR/dMMR, presence of mucinous carcinoma component,

signet ring cel l carcinoma component, and adenoma

carcinogenesis. Age, sex, tumor location, mucinous carcinoma

component, and adenoma carcinogenesis did not differ significantly
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between early CRC and advanced CRC (P > 0.05 for all). The level of

organization differentiation, pMMR/dMMR, vascular invasion, nerve

invasion, and signet ring cell carcinoma component were significantly

different between the two groups (P < 0.05 for all). To investigate the

correlation between the expression of Ki67, Her-2, and MutP53

proteins, we employed Spearman’s correlation test, and the results

were visualized using a correlation chord plot (Figure 2A). The

correlation coefficients and correlation test results between the
Frontiers in Oncology 06
expression of the three proteins are listed in Table 1B and

Table 1C. The graph shows a positive correlation between the

expression of the three proteins (P < 0.05). However, the

correlation coefficient values indicate weak expression relations

between these proteins. Furthermore, in order to provide a direct

visualization of the overall expression patterns of Ki67, Her-2, and

MutP53 proteins in 755 CRC patients with varying pathological

characteristics, a heat map was created (Figure 2B).
TABLE 1A Overall pathological characteristics of patients with CRC.

Characteristics TNM stages I & II TNM stage III Total P value

n 390 365 755

Sex, n (%)

Male 229 (30.3%) 214 (28.3%) 443 0.980

Female 161 (21.3%) 151 (20.0%) 312

Age (years), n (%)

≤65 237 (31.4%) 200 (26.5%) 437 0.097

>65 153 (20.3%) 165 (21.9%) 318

Organization differentiation, n (%)

High differentiation 40 (5.3%) 7 (0.9%) 47 4.02e−24

Medium differentiation 282 (37.4%) 169 (22.4%) 451

Low differentiation 68 (9.0%) 189 (25%) 257

Tumor location, n (%)

Right hemicolon 94 (12.5%) 85 (11.3%) 179 0.771

Left hemicolon 102 (13.5%) 104 (13.8%) 206

Rectum 194 (25.7%) 176 (23.3%) 370

Mismatch repair (MMR), n (%)

Proficient mismatch repair (pMMR) 359 (47.5%) 354 (46.9%) 713 0.003

Deficient mismatch repair (dMMR) 31 (4.1%) 11 (1.5%) 42

Vascular invasion, n (%)

Yes 60 (7.9%) 218 (28.9%) 278 1.57e−36

No 330 (43.7%) 147 (19.5%) 477

Perineural invasion, n (%)

Yes 63 (8.3%) 143 (18.9%) 206 1.27e−12

No 327 (43.3%) 222 (29.4%) 549

Mucinous carcinoma component, n (%)

Yes 87 (11.5%) 85 (11.3%) 172 0.748

No 303 (40.1%) 280 (37.1%) 583

Signet ring cell carcinoma component, n (%)

Yes 6 (0.8%) 31 (4.1%) 37 9.71e−6

No 384 (50.9%) 334 (44.2%) 718

Adenoma carcinogenesis, n (%)

Yes 33 (4.4%) 23 (3.0%) 56 0.258

No 357 (47.3%) 342 (45.3%) 699
fro
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Determination of Ki67, Her-2 and MutP53
immunohistochemical staining results

To clearly illustrate the frequency distribution of the expression

levels of the three key proteins, we constructed separate frequency

histograms (Figure 3). In Figure 3A, it is evident that Ki67 70%+

expression levels exhibited the highest frequency distribution.

Figure 3B demonstrates a gradual decrease in frequency distribution

as the expression level of Her-2 increases. Additionally, Figure 3C

reveals that the MutP53 proteins’ expression level of 90%+ accounted

for the highest percentage.
Comparisons between Ki67, Her-2, and
MutP53 proteins expression and various
CRC pathological features

Aiming at analyzing the relationship between Ki67 protein

expression and various pathological features of CRC, the Wilcoxon

rank-sum and Kruskal–Wallis tests were deployed (Figure 4). The

violin plots suggest that Ki67 expression was not significantly

different (P > 0.05) based on age (Figure 4A), sex (Figure 4B),

mucinous carcinoma component (Figure 4C), pMMR/dMMR

(Figure 4D), perineural invasion (Figure 4G), or tumor location

(Figure 4M). Ki67 expression increased with an increase likelihood

of signet ring cell carcinoma component (Figure 4E), degree of

vascular invasion (Figure 4H), T-stage (Figure 4J), N-stage
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(Figure 4K), and TNM stage (Figure 4L) (P < 0.05 for all), while

Ki67 expression decreased with an increase in the degree of adenoma

carcinogenesis (Figure 4F) and organization differentiation

(Figure 4I) (P < 0.05).

We used the same method to analyze the relationship

between Her-2 expression and the different pathological features

of CRC (Figure 5). Her-2 expression was not associated with age

(Figure 5A), sex (Figure 5B), mucinous carcinoma component

(Figure 5C), adenoma carcinogenesis (Figure 5F), or tumor

location (Figure 5M) (P > 0.05 for all). Her-2 expression

gradually increased with an increase in MMR instability

(Figure 5D), level of signet ring cell component (Figure 5E),

degree of perineural invasion (Figure 5G), vascular invasion

(Figure 5H), T-stage (Figure 5J), N-stage (Figure 5K), and TNM

stage (Figure 5L) (P < 0.05 for all). However, as the degree of

organization differentiation (Figure 5I) increased, the expression of

Her-2 gradually decreased (P < 0.05).

Finally, for the purpose of examining the expression level of

MutP53 proteins in various CRC pathological features, we deploy

the same analyzing methods. Figure 6 shows that MutP53 proteins

expression did not differ significantly depending on age (Figure 6A),

sex (Figure 6B), mucinous carcinoma (Figure 6C), or tumor

location (Figure 6M) (P > 0.05 for all). MutP53 proteins

expression gradually increased with an increase in the likelihood

of signet ring cell carcinoma component (Figure 6E), degree of

perineural invasion (Figure 6G), and vascular invasion (Figure 6H);

T-stage (Figure 6J); N-stage (Figure 6K); and TNM stage
A B

FIGURE 2

Overall pathological characteristics of patients with CRC and the relationship between Ki67, Her-2, and MutP53 expression. Relationship between
Ki67, Her-2, and MutP53 protein expression (A). General situation of Ki67, Her-2 and MutP53 protein expression in 755 CRC patients with different
pathological characteristics (B).
TABLE 1B Table of correlation coefficients.

Ki67 Her-2 MutP53

Ki67 - 0.209 0.261

Her-2 0.209 - 0.179

MutP53 0.261 0.179 -
TABLE 1C Correlation test form (P value).

Ki67 Her-2 MutP53

Ki67 - 6.69e-9 3.3e-13

Her-2 6.69e-9 - 7.08e-7

MutP53 3.3e-13 7.08e-7 -
fro
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(Figure 6L) (P < 0.05 for all). However, MutP53 proteins expression

decreased with an increase in the level of MMR instability

(Figure 6D), adenoma carcinogenesis (Figure 6F), and

organization differentiation (Figure 6I) (P < 0.05 for all). Overall,

there was a close association between the expression of the three

proteins and various pathological features in CRC.
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Comparisons of the diagnostic value of
three key proteins for different CRC
pathological features

To assess the diagnostic value of three key protein expression

levels in different CRC pathological features, we employed
A B C

FIGURE 3

Determination of Ki67, Her-2 and MutP53 proteins immunohistochemical staining results. Determination of Ki67 (A), Her-2 (B) and MutP53 (C)
proteins immunohistochemical staining results.
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FIGURE 4

Comparisons between Ki67 protein expression and the pathological features of CRC. Comparisons between Ki67 protein expression and age (A), sex
(B), mucinous carcinoma component (C), MMR (D), Signet ring cell component (E), adenoma carcinogenesis (F), perineural invasion (G), vascular
invasion (H), organization differentiation (I), T stage (J), N stage (K), TNM stage (L), tumor location (M). ***P < 0.001; ns, not significant.
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diagnostic DCA (decision curve analysis) curves to analyze and

present the comparative results. Figure 7 illustrates that Ki67

exhibited the highest diagnostic value in determining the T stage

(Figure 7A), N stage (Figure 7B), organization differentiation

(Figure 7C), signet ring cell carcinoma component (Figure 7F),

and adenoma carcinogenesis (Figure 7G). Additionally, for the

diagnosis of the mucinous carcinoma component (Figure 7H),

Her-2 displayed the highest diagnostic value. MutP53 proteins

demonstrated superior performance in the diagnosis of perineural

invasion (Figure 7D), vascular invasion (Figure 7E), and pMMR/

dMMR (Figure 7I).
Analysis of survival differences based on
the expression of Ki67, Her-2, and MutP53,
and various pathological features in
patients with CRC

For the purpose of analyzing survival differences among 572

patients with CRC based on the expression of three proteins and
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different pathological characteristics, Kaplan-Meier curves were

utilized. Furthermore, the log-rank test was performed to

determine if there were significant variations in the survival

curves. Figure 8 shows that the higher the expression of Her-2

(Figure 8A), the worse the prognosis of patients with CRC (P <

0.05). Using the median Ki67 protein expression level as a

threshold, we divided the patients into the low and high Ki67

expression groups. Figure 8B shows that the overall survival of the

patients in the low Ki67 expression group was higher than that of

patients in the high Ki67 expression group (P < 0.05). We used the

same criteria to classify MutP53 proteins expression. Figure 8C

shows that patients with low MutP53 proteins expression had a

better overall prognosis than patients with high MutP53 proteins

expression (P < 0.05). The Kaplan–Meier curves show that the

overall survival of the patients gradually decreased as the T-stage

(Figure 8D), N-stage (Figure 8E), level of signet ring cell carcinoma

component (Figure 8F), perineural invasion (Figure 8G), vascular

invasion (Figure 8H), and TNM stage (Figure 8M) increased (P <

0.05). In contrast, as the degree of adenoma carcinogenesis

(Figure 8I) and organization differentiation (Figure 8N) increased,
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FIGURE 5

Comparisons between Her-2 protein expression and the pathological features of CRC. Comparisons between Her-2 protein expression and age (A),
sex (B), mucinous carcinoma component (C), MMR (D), Signet ring cell component (E), adenoma carcinogenesis (F), perineural invasion (G), vascular
invasion (H), organization differentiation (I), T stage (J), N stage (K), TNM stage (L), tumor location (M). *P < 0.05; ***P < 0.001; ns, not significant.
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the overall survival of the patients was prolonged (P < 0.05). In

addition, we found that overall survival was higher for patients

aged ≤65 years (Figure 8L) than for patients aged >65 years (P <

0.05). In addition, the length of overall survival was not associated

with pMMR/dMMR (Figure 8J), sex (Figure 8K), or tumor location

(Figure 8O) (P > 0.05).
Establishment and prognostic evaluation of
the risk model

In order to explore the interactions of Ki67, Her-2, and P53

proteins within the signaling pathway, we conducted a

comprehensive analysis of proteins closely associated with these

three proteins in the STRING database. The resulting interaction

network is presented in Figure 9A. Our analysis revealed a

significant number of protein molecules closely linked to the

three key proteins, resulting in multiple, intricate, and complex

signaling pathway interactions. The intricate nature of these
Frontiers in Oncology 10
interactions suggests a close relationship between those three

proteins. Consequently, compared to individual protein

molecules, a clinical model based on the combined expression of

Ki67, Her-2, and MutP53 proteins might provide a more accurate

and comprehensive reflection of CRC progression and prognosis.

To construct a risk model based on the expression of these

proteins, we employed multivariate Cox proportional hazards

regression analysis. Based on the risk model scoring equation,

we assigned risk scores to 755 patients and further divided the

patients into high-risk and low-risk groups according to the

median score. Figure 9B shows the foundation of the risk model

in the form of a forest plot. To vividly illustrate the correlation

between the TNM stage, risk group, and survival status of the 572

patients, an alluvial plot (Figure 9C) was used. The figure shows

that most of the patients with TNM stages I and II were in the low-

risk group, while most of the patients with TNM stage III were in

the high-risk group. Correspondingly, the majority of patients in

the low-risk group remained alive, while the majority of patients

in the high-risk group were deceased. In terms of comparing the
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FIGURE 6

Comparisons between MutP53 proteins expression and the pathological features of CRC. Comparisons between MutP53 protein expression and age
(A), sex (B), mucinous carcinoma component (C), MMR (D), Signet ring cell component (E), adenoma carcinogenesis (F), perineural invasion (G),
vascular invasion (H), organization differentiation (I), T stage (J), N stage (K), TNM stage (L), tumor location (M). *P < 0.05; **P < 0.01; ***P < 0.001;
ns, not significant.
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prognosis and cumulative hazard of patients in the high- and low-

risk groups, Figures 9D, E were delineated. Both figures clearly

show that patients in the low-risk group had better overall survival

and lower cumulative hazard. To assess the predictive efficacy of

the risk model (Figure 9F), Ki67 expression (Figure 9G), Her-2

expression (Figure 9H), and MutP53 proteins expression

(Figure 9I) on patient survival at 12, 36, and 60 months, we

generated time-dependent ROC curves. The results suggest that

the predictive efficacy of the risk model was the best. In order to

provide a clear visualization of the correlation among the risk

groups, survival status, and expression levels of the three proteins,

we generated a risk factor plot (Figure 9J). The majority of patients

in the low-risk group are still alive, and the expression of all three

key proteins was lower. In contrast, the majority of patients in the

high-risk group were deceased, and the expression of all three key

proteins was higher than in patients in the low-risk group. To

distinguish the differences among the risk groups, we employed

the Principal Component Analysis (PCA) method to scale down

the data and showcase the outcomes in a PCA plot (Figure 9K). It
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was not difficult to identify a discrepancy between the high- and

low-risk groups. Finally, for the purpose of assessing the accuracy

of the risk model for predicting patient survival at 12, 36, and 60

months, we utilized the prognostic calibration curve (Figure 9L).

The results suggest that the risk model had a high degree of fitness.
Relationship between the risk model and
the pathological characteristics of CRC

After establishing the risk model, we utilized violin scatter plots

to investigate the correlation between different pathological features

of CRC and the risk model. The comparative plots show that sex

(Figure 10A), age (Figure 10B), tumor location (Figure 10C),

pMMR/dMMR (Figure 10D), and mucinous carcinoma

(Figure 10M) were not associated with the risk score (P > 0.05).

The risk score gradually increased with an increase in N-stage

(Figure 10E), T-stage (Figure 10F), TNM stage (Figure 10H), degree

of perineural invasion (Figure 10J), vascular invasion (Figure 10K),
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FIGURE 7

Comparisons of the diagnostic value of three key proteins for different CRC pathological features. Comparison of the diagnostic value of three key
proteins for T stage (A), N stage (B), organization differentiation (C), perineural invasion (D), vascular invasion (E), signet ring cell carcinoma
component (F), adenoma carcinogenesis (G), mucinous carcinoma component (H) and pMMR/dMMR (I).
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and level of signet ring cell carcinoma component (Figure 10L) (P <

0.05). In contrast, the risk score gradually decreased as the degree of

adenoma carcinogenesis (Figure 10G) and organization

differentiation (Figure 10I) increased (P < 0.05). All of the

analytic results show that the risk model was closely related to the

different pathological characteristics of CRC.
Fitness degree evaluation and diagnostic
effectiveness of the risk model

We found that the risk model was closely related to T-stage,

N-stage, TNM stage, organization differentiation, perineural

invasion, vascular invasion, level of signet ring cell carcinoma

component, and adenoma carcinogenesis. Additionally, to assess

the accuracy and predictive performance of this risk model for the
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aforementioned pathological features, we employed diagnostic

calibration curves, ROC curves, and PR curves. In the diagnostic

calibration curves, the diagonal dashed line represents the ideal

curve, the red curve represents the calibration curve, and the blue

line represents the prediction curve. The better the calibration curve

fits the ideal curve, the better the model fits the actual situation

and the stronger the predictive power of the model. Figure 11 shows

that the risk model has a proper degree of fitness for predicting

T-stage (Figure 11A), N-stage (Figure 11B), organization

differentiation (Figure 11C), vascular invasion (Figure 11D),

perineural invasion (Figure 11E), level of adenoma carcinogenesis

(Figure 11F), and signet ring cell carcinoma component

(Figure 11G), especially N-stage and signet ring cell carcinoma

component. We then compared the diagnostic efficacy of the risk

model and the expression of the three proteins for different

pathological features in Figure 11 in the means of ROC curves
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FIGURE 8

Analysis of survival differences based on the expression of Ki67, Her-2, and MutP53, and various pathological features in patients with colorectal
cancer (CRC). The Kaplan–Meier curves demonstrate differences in prognosis based on Her-2 expression (A), Ki67 expression (B), MutP53
expression (C), T-stage (D), N-stage (E), signet ring cell carcinoma component (F), perineural invasion (G), vascular invasion (H), adenoma
carcinogenesis (I), MMR (J), sex (K), age (L), TNM stage (M), organization differentiation (N), and tumor location (O).
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and PR curves. The risk model had the highest diagnostic predictive

efficacy, not only for T-stage (Figures 11H, O), N-stage (Figures 12I,

P), and organization differentiation (Figures 11J, Q), but also for

vascular invasion (Figures 11K, R), perineural invasion

(Figures 11L, S), level of adenoma carcinogenesis (Figures 11M,

T), and signet ring cell component (Figures 11N, U). The risk model

showed a high degree of fitness and predictive diagnostic efficacy for

the main pathological features of CRC.
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Establishment, comparison, evaluation
and analysis of the nomogram
prediction model

In order to assess the independent impact of the risk model on

prognosis, we conducted univariate and multivariate Cox regression

analyses, including all relevant influencing factors. The results are

presented in the form of forest plots. Combining the univariate Cox
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FIGURE 9

Establishment and prognostic evaluation of the risk model. (A) Interaction network of Ki67, Her-2, and P53 protein expression and other related
proteins. (B) Establishment of the risk model using the multivariate Cox proportional hazards regression analysis. (C) Alluvial plot showing the
relationship between TNM stage, risk groups, and survival status. Survival (D) and cumulative hazard (E) differences between high and low risk
groups. Predictive efficacy of the risk model (F), Ki67 protein expression (G), Her-2 protein expression (H), and MutP53 protein expression (I) for
survival at 12, 36, and 60 months. (J) Risk factor plot of the risk model. (K) PCA plot testing the discrimination between the high-risk and low-risk
groups. (L) Prognostic calibration curve for the risk model.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1236441
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yuan et al. 10.3389/fonc.2023.1236441
regression forest plot in Figure 12A with the multivariate Cox

regression forest plot in Figure 12B, T-stage, N-stage, TNM stage,

and the risk model were all independent factors influencing

prognosis. In addition, the hazard ratio of the risk model was >1,

indicating that the risk model was a risk factor. To construct a more

comprehensive clinical prediction model, we developed a

nomogram prediction model that incorporates all the

aforementioned influencing factors and the risk model. By

utilizing this model, we obtained the nomo scores, which provide

a reliable measure of risk. We inscribed the nomogram prediction

model in the form of a prognostic column line plot (Figure 12C). To

further analyze the accuracy of the nomogram prediction model in

predicting survival rates at 24, 36, and 60 months, prognostic

calibration curves were plotted. Figure 12D shows that the
Frontiers in Oncology 14
nomogram prediction model had a high degree of fitness for

predicting the actual prognosis of the patients. All the patients

were classified into three hazard groups based on the tertile of nomo

scores. To compare the prognostic risk among different hazard

groups, we delineated survival curves and cumulative hazard/event

curves. Figures 12E-G vividly shows that the low-hazard group has

the best prognostic outcome, the lowest cumulative risk and event.

Conversely, the high-hazard group has the worst prognostic

outcome, the highest cumulative risk and event. In order to

distinguish the differences between the hazard groups, we utilized

the tSNE method to reduce and visualize the results in a tSNE plot

(Figure 12P). Our analysis clearly revealed a noticeable discrepancy

among the high-, medium-, and low-hazard groups. What’s more,

the nomogram prediction model exhibits extremely high predictive
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FIGURE 10

Relationships between the risk score model and the pathological characteristics of CRC. Relationships between the risk score and sex (A), age (B),
tumor location (C), MMR (D), N stage (E), T stage (F), adenoma carcinogenesis (G), TNM stage (H), organization differentiation (I), perineural invasion
(J), vascular invasion (K), signet ring cell component (L), mucinous carcinoma component (M). ***P < 0.001; ns, not significant.
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efficacy for a wide range of survival periods (Figure 12H). To assess

whether the nomogram satisfies the proportional risk assumption, a

prognostic proportional risk plot was created and analyzed.

Figure 12I intuitively illustrates the HR values of the nomogram
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prediction model at different prognostic times. At the same time,

the prognostic proportional risk plot indicates that the nomo score

meets with the proportional risk assumption. We conducted a

comparison of the predictive efficacy for prognosis using the
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FIGURE 11

Fitness degree evaluation and diagnostic effectiveness of the risk model. Diagnostic calibration curves of the risk model for T-stage (A), N-stage
(B), organization differentiation (C), vascular invasion (D), perineural invasion (E), level of adenoma carcinogenesis (F), and signet ring cell carcinoma
component (G). Diagnostic ROC curves comparing the diagnostic efficacy of the risk model and the expression of the three proteins for T-stage
(H), N-stage (I), organization differentiation (J), vascular invasion (K), perineural invasion (L), level of adenoma carcinogenesis (M), and signet ring cell
carcinoma component (N). Diagnostic PR curves comparing the diagnostic value of the risk model and the expression of the three proteins for
T-stage (O), N-stage (P), organization differentiation (Q), vascular invasion (R), perineural invasion (S), level of adenoma carcinogenesis (T), and
signet ring cell carcinoma component (U).
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nomo score, risk score, T-stage, N-stage, and TNM stage. To

illustrate this, we generated a prognostic ROC curve (Figure 12J).

The ROC curve demonstrates that the nomo score had the best

efficacy at predicting prognosis. To assess the clinical utility of the
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nomo score, risk score, T-stage, N-stage, and TNM stage in

predicting survival at different time points (24, 36, 48, 60, and 72

months), prognostic DCA plots were constructed. Figures 12J–O

shows the highest clinical utility of the nomo score for patient
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FIGURE 12

Establishment, comparison, evaluation, and analysis of the nomogram prediction model. (A) Univariate Cox regression forest plot and (B) multivariate
Cox regression forest plot. The prognostic column line diagram (C) inscribes the nomogram prediction model. (D) Prognostic calibration curve of
the nomogram prediction model. Survival (E), cumulative hazard (F) and cumulative event (G) differences among the three hazard groups. (H) Time-
dependent ROC of the nomogram prediction model. (I) Prognostic proportional risk plot of the Nomo model. (J) Prognostic ROC curve. Prognostic
DCA curves of survival at 24 (K), 36 (L), 48 (M), 60 (N), and 72 (O) months. tSNE plot of nomogram (P). Prognostic restricted cubic spline curves of
risk model (Q) and nomogram (R). Error line plot showed the concordance index of nomogram, risk model, T-stage, N-stage and TNM-stage (S).
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prognosis. In order to analyze the fitting of the risk model

(Figure 12Q) and nomogram (Figure 12R), the prognostic

restricted cubic spline curves were examined with 3 knots. The

correlations between the hazard ratio and the risk model as well as

the nomogram were clearly demonstrated. To further compare the

predictive accuracy and prognostic fitness of the nomo score, risk

score, T-stage, N-stage, and TNM stage, the concordance index (C-

index) was calculated based on the DCA curves (Figure 12S). The

C-index values for the nomogram prediction model, risk model, T-

stage, N-stage, and TNM stage were 0.840 (0.831-0.849), 0.790

(0.779-0.802), 0.633 (0.621-0.646), 0.749 (0.738-0.760), and 0.746

(0.736-0.756) respectively. The higher the C-index, the better the

predictive accuracy and prognostic fitness. The results

demonstrated that the nomogram prediction model had the

highest predictive accuracy and prognostic fitness. To compare

the prognostic prediction accuracy of the nomo score and risk score,

we used the net reclassification index (NRI) analysis with an

intercept value of 0.5. The nomo score was considered as the new

index and the risk score as the original index. A positive NRI value

indicates that the predictive accuracy of the new index is higher

than that of the original one, while a negative value suggests the

opposite. A value of 0 signifies no discrepancies between the two.

The NRI value of 0.306 indicated that the prognostic prediction

accuracy of the nomogram was 30.6% higher than the risk model.

Overall, the nomogram prediction model had relatively high clinical

application value.
Validation of the risk model and
nomogram prediction model

To validate the risk model and nomogram prediction model, we

adopted the same modeling method and calculation equation to

construct both models using the validation set consisting of 211 CRC

patients. Based on the same median risk score of 3.8741 and tertile

nomo score of 1.564202 and 3.404522, all the validation set patients

were stratified into different risk groups and hazard groups. To

examine the correlation among risk groups, hazard groups, and

survival status, we employed the alluvial plot (Figure 13A). In order

to make a direct comparison of the survival outcome among the risk

groups, Figures 13B, C were created. The results showed that the

low-risk group has better survival outcome and lower cumulative

hazard. Aiming at evaluating the predictive efficacy and fitness

degree, we generated time-dependent ROC curve (Figure 13D) and

prognostic calibration curve (Figure 13E). Those figures vividly

demonstrate that the risk model exhibits high prognostic

predictive efficacy and degree of fitness. With the purpose of

assessing the compliance of the risk model with the COX risk

proportion assumption, we formatted Figure 13F. We can discern

from the Figure 13F that the risk model in the validation set

conforms to the COX risk proportion assumption and the risk

score is a kind of hazardous factor. We generated Figures 13G-J to

appraise and compare the survival outcomes, prognostic predictive

efficacy, and fitness degree of the nomogram. After analyzing the

survival differences among the three hazard groups, Figures 13G, H

indicate that the survival discrepancies are significant. Furthermore,
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the nomogram prediction model shows stronger prognostic

predictive efficacy and fitness degree (Figures 13I, J). Similarly, the

nomogram prediction model also complies with the COX risk

proportion assumption and the nomo score is a hazardous factor

for CRC prognosis (Figure 13K).
Establishment, evaluation, interpretation
and validation of lymph node
metastasis model

Aiming at establish a lymph node metastasis model based on

Ki67, Her-2, and MutP53 proteins expression levels in 755 CRC

patients (training set), we applied nine different machine-learning

algorithms. To determine the best algorithm, we analyzed ROC, PR,

DCA, calibration curves, and forest plots. From Figures 14A, E, it is

evident that the XGBoost algorithm had the highest AUC and AP in

the training group. Additionally, the XGBoost algorithm also

demonstrated the highest AUC and AP in the validation group

(Figures 14B, F). Furthermore, we plotted DCA curves (Figure 14C)

and forest plots (Figure 14D). The results consistently indicated that

the XGBoost algorithm possessed the strongest predictive ability. By

analyzing the fitness degree of all nine algorithms using a

calibration plot (Figure 14G), we found that the XGBoost

algorithm had the lowest Brier score, signifying the highest fitness

degree for predicting lymph node metastasis. In comparison to the

risk model established by the multivariate COX regression method

(Figure 11I, AUC=0.852), XGBoost proved to be the most suitable

approach for the lymph node metastasis model.

In order to explain and highlight the contribution and

significance of the three key proteins in the lymph node metastasis

model constructed by the XGBoost algorithm, the SHAP model was

utilized. Figure 14H clearly demonstrates that MutP53 proteins have

the highest contribution in the predictive model. Figure 14I depicts

protein expression levels, where a redder dot indicates higher

expression and a bluer dot indicates lower expression. Moreover,

higher SHAP values hint a greater likelihood of promoting lymph

node metastasis. Therefore, the higher the expression levels of these

three key proteins, the higher the probability of lymph node

metastasis. Additionally, three samples were randomly selected to

illustrate the lymph node metastasis model using force plots

(Figures 14J-L). In the force plots, a blue stripe indicates a

negative contribution, while a red stripe implies a positive

contribution, with each stripe representing a different protein

expression level. If f(x) is smaller than the basal value, the chances

of tumor cells metastasizing through the lymph node decrease. On

the other hand, if f(x) is larger than the basal value, the likelihood of

tumor cells metastasizing through lymph nodes increases.

Finally, to further validate the lymph node metastasis model,

the same approach was employed in the validation set consisting of

211 CRC patients. The XGBoost algorithm constantly exhibited

superior clinical value in both the training group (Figure 14M) and

the validation group (Figures 14N, P, Q), reaffirming its

effectiveness. Moreover, when compared to the risk model, the

XGBoost algorithm remained the most appropriate choice for the

lymph node metastasis model (Figure 14O).
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Discussion

In this study, we systematically analyzed the differences in Ki67,

Her-2, and MutP53 proteins expression in CRC in the context of

various pathological features. The prognostic discrepancies between

the expression of the three key proteins and various pathological

features were investigated. We then established a risk model to

assess the pathological characteristics and prognosis of patients with

CRC and fully demonstrated the usefulness and reliability of the

model. Based on the risk model, we constructed the nomogram

prediction model and found that the nomogram prediction model
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had superior prognostic prediction efficacy and a higher degree of

fitness. The risk model and nomogram prediction model provide a

theoretical basis and data support for future clinical work to assess

the progression and prognosis of CRC.

With the continuous development of translational medicine

and molecular biology, it is being gradually recognized that the

occurrence and progression of CRC are multistep and multifactorial

processes. Gene mutations (16), activation or inhibition of signaling

pathways (17), and alterations in the immune microenvironment

(18) might affect the prognostic outcome of CRC to various degrees.

In particular, gene overactivation and mutations that alter the
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FIGURE 13

Validation of the risk model and nomogram prediction model. (A) Alluvial plot shows the relation between the risk groups, hazard groups and
survival status. Survival (B) and cumulative hazard (C) differences between the low and high-risk groups. Time-dependent ROC (D), prognostic
calibration curve (E) and prognostic proportional risk plot (F) of the risk model. Survival (G) and cumulative hazard (H) differences among the
three hazard groups. Time-dependent ROC (I), prognostic calibration curve (J) and prognostic proportional risk plot (K) of the nomogram
prediction model.
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expression of the corresponding proteins and subsequently lead to

changes in a series of downstream signaling pathways are important

factors influencing CRC progression. Therefore, searching for genes

and proteins that play key roles in CRC progression and prognosis

is indispensable in clinical research.
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Ki67 is expressed in the proliferation-active G1, S, G2, and M

phases of cell division, especially the G2 and M phases, while it is not

expressed in the G0 phase (19). Ki67 is sensitive to proteases and is

extremely easy to hydrolyze. As a result, Ki67 is not susceptible to

other growth factors. Based on these features, Ki67 is closely
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FIGURE 14

Establishment, evaluation and interpretation of lymph node metastasis model. ROC curves (A) and PR curves (E) for 9 different machine-learning
algorithms of training group in training set. ROC curves (B), DCA curves (C), forest plots (D), PR curves (F) and calibration plots (G) for 9 different
machine-learning algorithms of validation group in training set. SHAP summary bar plot (H) and summary dot plot (I) of XGBoost algorithm. Force
plots of three samples (J-L) in XGBoost lymph node metastasis model. ROC curves (M) for 9 different machine-learning algorithms of training group
in validation set. ROC curves (N), forest plots (P) and calibration plot (Q) of validation group in validation set. ROC curves (O) of the risk model
regarding lymph node metastasis.
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associated with malignant tumor cells. The higher Ki67 protein

expression, the stronger the proliferative ability of tumor cells and

the higher the degree of malignancy (20). In a previous study, the

pathological immunohistochemical results of 1800 patients with

CRC showed that Ki67 protein expression was related to TNM

stage and N-stage. Moreover, Ki67 expression was an independent

indicator of prognosis (21). In the immunohistochemical analysis of

CRC tumor tissues and paraneoplastic tissues, Ki67 expression in

paraneoplastic tissues was significantly lower, and Ki67 expression

gradually decreased with an increase in the distance between

paraneoplastic and tumor tissues (22). All of these findings

support our results. In addition, we found that the Ki67 content

gradually increased as the T-stage, level of signet ring cell carcinoma

component, and degree of vascular invasion increased. In contrast, as

the level of adenoma carcinogenesis and organization differentiation

increased, Ki67 expression decreased. Therefore, we assume that the

high expression of Ki67 not only promotes infiltration and lymph

node metastasis, but also promotes vascular invasion of tumor cells,

which provides the basis for hematological tumor metastasis. It has

also been shown that the higher the level of signet ring cell carcinoma

component in CRC, the poorer the overall prognosis of the patients

(23). In our present study, a high level of signet ring cell carcinoma

component was strongly correlated with high Ki67 expression. We

propose that Ki67 protein expression is higher in signet ring cell

carcinoma, which enhances the invasive ability of signet ring cell

carcinoma and is associated with poor survival outcomes. In terms of

the relationship between the level of adenoma carcinogenesis and

Ki67 expression, we suggest that Ki67 expression is low in benign

lesions, such as adenomas, but increases after partial carcinogenesis

of adenomas. When adenoma is completely cancerous and tumor

tissue is filled with cancer cells, Ki67 expression will be further

elevated. Consequently, elevated Ki67 expression not only promotes

cell proliferation, but it may also promote cell carcinogenesis, which

ultimately shortens patient survival.

HER2, as an important member of the HER family, is an

essential proto-oncogene that is involved in the progression of

several malignancies. Her-2, the tyrosine kinase receptor encoded

byHER2, is either expressed at a low level or not expressed in healthy

cells. However, when external factors lead to dimerization of Her-2

or heterodimerization of Her-2 and Her-3, the mitogen-activated

protein kinase pathway and PI3K pathway are abnormally activated,

which promotes frenzied cell proliferation and inhibits apoptosis

(24). As a key protein that is closely associated with CRC, high

expression of Her-2 promotes lymph node metastasis, increases

tumor infiltration, and increases the TNM stage in CRC (25).

Another study showed that the prognosis of patients with CRC

with Her-2 overexpression is significantly worse than that of patients

with low Her-2 expression (26). These findings support our

conclusions. In addition, we found that Her-2 expression gradually

increases with the degree of vascular invasion, perineural invasion,

level of signet ring cell carcinoma, and MMR instability. Therefore,

we believe that overexpression of Her-2 promotes vascular and

perineural invasion of tumors and provides a basis for distant

tumor metastasis. With regard to the observation that Her-2

expression in dMMR patients is higher than in pMMR patients,
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we speculate that downstream pathway alteration caused by Her-2

overexpression may lead to an expression deficiency in mismatch

repair proteins, thus leading to carcinogenesis of genetically defective

cells. However, this speculation still needs to be validated in further

experiments. In summary, Her-2 overexpression can increase tumor

malignancy by promoting infiltration, lymph node metastasis, and

neurovascular invasion, increasing the level of signet ring cell

carcinoma component and MMR instability, and decreasing the

degree of organization differentiation, which leads to an undesirable

survival outcome.

Wild type TP53 encodes the wild type P53 protein. When cells

are threatened by hypoxia, DNA damage, or radiation, amongst other

factors, the wild type P53 protein accumulates and is rapidly

activated, regulating a series of signaling pathway changes, leading

to cell proliferation arrest, apoptosis, and senescence, thereby

avoiding cell carcinogenesis (27). Therefore, wild type P53 has a

significant antitumor function. However, wild type P53 is difficult to

detect by immunohistochemical staining because of its short half-life

and poor stability (10, 12). Mutations in the P53 protein are often

derived from mutations in TP53. The MutP53 proteins lose their

DNA binding ability and is recruited to the promoters of anti-

apoptotic or proliferative genes by interacting with other

transcription factors to activate the transcription of these genes,

thereby promoting cancer development (28). Moreover, the half-life

of the MutP53 proteins are significantly prolonged and their stability

are improved (13), so it is possible to detect the MutP53 proteins by

immunohistochemistry. One study showed that MutP53 protein

expression is positively correlated with tumor diameter (29).

Another study showed that patients with high MutP53 proteins

expression have a significantly shorter survival time than patients

with high expression of the wild-type P53 protein (30). Moreover,

patients with CRC with dMMR have significantly lower MutP53

proteins expression than patients with pMMR (31). These findings

corroborate the findings of our present study. We also found that

MutP53 proteins expression was positively correlated with T-stage,

N-stage, TNM stage, neurovascular invasion, and signet ring cell

carcinoma component, and negatively correlated with the degree of

adenoma carcinogenesis and organization differentiation. This

indicates that MutP53 proteins can enhance tumor malignancy and

worsen prognosis by promoting tumor infiltration, lymph node

metastasis, adenoma carcinogenesis, and nerve and blood vessel

invasion; increasing the level of signet ring cell carcinoma; and

decreasing the degree of organization differentiation. Concerning

the phenomenon that MutP53 proteins expression in patients with

adenoma carcinogenesis is lower than in patients without adenoma

carcinogenesis (exclusively cancerous cells in pathological sections),

we regarded carcinogenesis caused by MutP53 proteins as a gradual

process. With adenomas, which are benign lesions, the degree of

malignancy gradually increases as the degree of carcinogenesis

increases, and the MutP53 proteins are key factors in the initiation

and promotion of carcinogenesis. Higher MutP53 proteins

expression further weakens the cancer-suppressive effect and thus

drives the cells toward malignancy. Moreover, the accumulation and

activation of the MutP53 proteins may cause normal colorectal

epithelial cells to develop into signet ring cell carcinoma.
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It is evident that Ki67, Her-2, and MutP53 proteins influence

CRC progression through different pathways. Spearman’s

correlation test revealed a positive correlation between the

expression of these three proteins, which is consistent with the

findings of Yang et al. (32) in which Her-2 protein expression was

positively correlated with Ki67 and MutP53 proteins expression. It

has been elucidated that wild type P53 inhibits Ki67 expression in a

dose-dependent manner and that P53 mediates transcriptional

repression of Ki67 by interacting with the P53-binding motif and

SP1-binding site in the Ki67 promoter, thus inhibiting excessive cell

proliferation (33). In addition, it has been demonstrated that the

Her-2/neu-mediated Akt pathway activates the phosphorylation of

MDM2 and thus accelerates the degradation of the wild type P53

protein (34). Above all, Ki67, Her-2 and P53 proteins might be

inextricably linked with each other. Further analysis of the

interactions between these three key proteins through the

STRING database revealed that not only are there intricate

networks among the three proteins, but the three proteins also

have large and complex interaction pathways with other closely

related proteins. In this network, different proteins exert different

effects on the tumor. There may be superimposed and containment

effects among the proteins. Therefore, the effects of Ki67, Her-2, and

P53 on the progression and prognosis of CRC and the interactions

among them can be viewed as a complex and tangled network of

pathways. Changes in the expression of a single protein not only

affect tumor progression through its unique signaling pathway, but

it may also alter the expression of other proteins through associated

signaling pathways, which in turn influences the outcome on

different levels. Therefore, investigating the effect of a single

protein on tumors might have the potential to produce biased

results. On this theoretical basis, we attempted to establish a risk

model by applying the multivariate Cox regression method

considering the expression of the three key proteins, and we

comprehensively assessed the clinical value of this risk model in

the pathological diagnosis and prognosis of CRC. The clinical

application of a risk model based on Ki67, Her-2, and MutP53

proteins expression has not yet been reported in previous research,

so we first explored the clinical usefulness and reliability of this

risk model.

First, in terms of diagnosis of clinicopathological features, this

risk model was closely associated with the pathological features

of CRC. High risk scores were associated with higher T-stage,

N-stage, and TNM stage; the level of signet ring cell carcinoma

component; neurovascular invasion; a lower degree of organization

differentiation; and adenoma carcinogenesis. In contrast, the risk

model was independent of age, sex, and tumor location, indicating

that the risk model was slightly influenced by confounding factors

and highly stable in terms of the degree of tumor progression. The

diagnostic efficacy of the risk model was higher than the three

proteins alone, and the diagnostic predictions of the risk model for

various pathological features were well fitted to the actual situation.

This fully demonstrates the existence of network interactions

among the three key proteins. Moreover, the value of combined

measurement of the expression of the three proteins in clinical

diagnostic prediction was greater than that of individual proteins.
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Additionally, this model may be more relevant and thus more

practical and reliable for the overall assessment of patients. An

increase in the risk model score represents a higher progressive

stage of CRC with enhanced malignancy. Conversely, a decrease in

the risk score suggests that CRC is still in the early stage and of

relatively low malignancy. Therefore, during preoperative

colonoscopy for CRC, we can obtain minor tumor tissue, execute

immunohistochemical examination, and calculate a risk score, thus

predicting the degree of tumor progression and malignancy before

obtaining a postoperative pathology report.

Second, in terms of prognosis, the risk model could be used as

an independent prognostic factor according to the univariate and

multivariate Cox regression analyses. The risk model not only had

higher prognostic predictive efficacy and prognostic clinical utility

than the three individual protein indicators and the conventional T-

stage, N-stage, and TNM stage, but the prognostic prediction results

fit well with the actual prognosis. These observations not only

demonstrate that this risk model has strong prognostic

differentiation and predictive value, but it also further supports

that systematic measurement of the expression of these proteins

better reflects the actual tumor prognosis. An increase in the risk

score predicted a poor prognostic outcome and a poor quality of life,

while a low-risk score signified a relatively good prognosis. In

current clinical application, carcinoembryonic antigen (CEA), as a

tumor marker, occupies an important place in CRC diagnosis and

treatment. However, alterations in CEA often do not reflect the

actual situation. It has been noted that the variation in the CEA

concentration in peripheral blood is not highly specific (35).

Another commonly used tumor marker for CRC, carbohydrate

antigen 19-9 (CA19-9), was less sensitive in a multicenter,

controlled observation of 17,833 patients with CRC (36). It is

obvious that a single index often suffers from limitations in terms

of its detection ability, making it difficult to comprehensively

summarize and measure CRC progression. Consequently, the

establishment of joint model metrics is particularly critical in

future studies. However, there are insufficient suitable model

indicators to predict the pathological diagnosis and prognosis of

CRC. Hence, the risk model created in this study can be further

validated and improved by expanding the sample size in future

work. Meanwhile, the activation or inhibition of signaling pathways,

alteration of the tumor immune microenvironment, and

transformation of molecular functions involved in this risk model

deserve in-depth exploration. We speculate that the poor prognosis

of patients with a high risk score may be attributed to the restricted

function of immune cells that inhibit tumor progression in the

tumor microenvironment, activation of signaling pathways that

activate tumor cell proliferation and metastasis, downregulation of

molecules associated with tumor apoptosis, insensitivity to

inhibitory growth signals, uncontrolled cellular energy

metabolism, non-mutational epigenetic reprogramming, and

increased inflammatory effects of tumors. Experimental studies of

these corresponding mechanistic alterations deserve further

excavation and demonstration.

Based on the risk model, we continued to search for prognostic

prediction models with higher clinical utility and reliability. After
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incorporating all relevant clinical factors, we established the

nomogram prediction model. Prognostic clinical utility value

analysis, prognostic diagnostic predictive efficacy analysis, and

prognostic calibration analysis confirmed the superior value of

the nomogram prediction model for predicting CRC prognosis.

The higher the Nomo score is, the worse the prognostic outcome

and higher hazard will be. We propose that the stronger efficacy of

this nomogram prediction model in prognostic prediction is due to

the incorporation of a complete set of factors, as well as a large

prognostic sample size. In clinical practice, we can use this novel

nomogram prediction model to calculate the nomo score for each

postoperative CRC patient and predict their survival outcome. At

the same time, the nomogram prediction model can be deployed for

risk stratification of CRC patient, thus assessing the prognostic

hazard more accurately. The prognostic predictive values of the risk

model and nomogram prediction model are fully verified by the

validation set.

Lymph node metastasis plays a crucial role in determining the

prognosis of patients with CRC. Moreover, the presence and extent

of lymph node metastasis also significantly impact the choice of

surgical resection. Therefore, it is of utmost importance to accurately

assess lymph node metastasis before surgery. Utilizing the XGBoost

algorithm and considering the expression of Ki67, Her-2, and

MutP53 proteins, we developed a robust and highly accurate

lymph node metastasis model. This model demonstrates strong

predictive ability and fitness, enabling clinicians to assess and

evaluate the presence and severity of CRC lymph node metastasis

effectively. Consequently, combined with imagological examination,

clinicians can devise appropriate surgical interventions based on this

valuable information.

The risk model, nomogram prediction model, and lymph node

metastasis model have all provided valuable insights into the

involvement of these three key proteins in the progression and

prognosis of CRC. However, there are still limitations that need to

be addressed for further improvement. One of the key areas for

improvement is the expansion of clinical sample sizes in future

studies. This will enhance the credibility and validity of the three

models, as well as enable a more comprehensive assessment of patient

survival. Moreover, it is crucial to explore the interaction mechanisms

among these three key proteins and their specific roles in CRC

carcinogenesis. Additionally, the immune microenvironment and

drug treatment responses associated with these clinical models

should be further investigated to gain a deeper understanding. By

addressing these limitations, we can strive to identify more

personalized therapeutic solutions for CRC patients.
Conclusions

In general, the risk model established in this study can be used

to comprehensively evaluate and predict the clinicopathological

characteristics and prognosis of patients with CRC. Furthermore,
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we were able to discern remarkable differences in the clinical

significance of CRC between the high-risk and low-risk groups,

whereby the low-risk score predicted a beneficial prognostic

outcome. The nomogram prediction model had higher clinical

prognostic predictive efficacy. Stratifying CRC patients to different

hazard groups according to the nomo scores might have a more

reliable impact in clinical practice. The lymph node metastasis

model established by the XGBoost algorithm might accurately

assess and predict CRC lymph node metastasis, which will help

clinicians develop reasonable and personalized surgical solutions

for different CRC patients. Thus, the risk model, nomogram

prediction model and lymph node metastasis model applied for

each patient with CRC in future clinical work can comprehensively

assess the progression and prognosis of CRC, which is of

extraordinary clinical value for CRC diagnosis and treatment.
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